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Abstmzct-This paper deals with tearing methods for the solution of a 
large scale system of linear algebraic equations. A modification algorithm 
is presented and evaluated with respect to other available techniques, 
namely, Howebolder’s formula and Bennet’s algorithm. Then, an optimi- 
zation problem related to the “beat” way of tearing a given matrix A with a 
certain associated structore is stated and solved by proving it to be 
equivalent to tbe determination of a minimum essential set of a suitably 
defined hypergraph H. A branch-and-bound algorithm for minimum essen- 
tial set la H, based on a number of local reduction roles is outlined. 
Finally, the application of the obtained results to the tearing problem is 
discussed and its complexity compared with LU decomposition method. 

I. 1NTRoDucT10~ 

R 

ECENTLY much effort has been devoted to tearing 
methods for the analysis of large scale electrical 

networks [ 1 I--[5]. 
Tearing, usually referred to as diakoptics, was in- 

troduced by Kron [6] and basically consists in breaking 
the original analysis problem into simple subproblems 
which can be solved either independently or according to 
a (possibly partial) ordering. 

The basic problem dealt with in this paper is simply 
finding x E R n such that 

Ax=6 (1.1) 

where A E R .’ and b E R n are given. 
As is well known, the classical tearing technique basi- 

cally consists of two steps. First, a (n x n)-matrix C has to 
be found such that 

i) the nonzero entries of C are equal to the correspond- 
ing ones in A ; 
ii) B 42 A - C is nonsingular and generally such as to 
make the solution of Bx = b a relatively simple task. 
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Then, the solution of Bx= b is modified to obtain the 
solution of system (1.1) by taking into account the “per- 
turbation” due to the nonzero entries of the “cut matrix” 
c. 

Such an approach is in fact followed in [5] by making 
use of Householder’s formula. However, solving the prob- 
lem via matrix .inversion is, in general, a costly technique 
which furthermore fully destroys, with the original spar- 
sity of A, any possibility of saving computer time and 
storage. In [6] these difficulties have been encompassed by 
a method related to Bennet’s algorithm [7]. This algorithm 
consists in computing the LU factorization of A in terms 
of C and the LU factorization of B. 

In this connection, the following terminology is here 
adopted. If a problem P( -) depends on a (n X n)-matrix 
A = B + C, B and C being given, any method leading to 
P(A) by adding to P(B) the appropriate correcting term 
is generally called a modification method [5]-[lo]. 

An extension to the multiple case of the modification 
algorithm described in [lo] is given in Section II and a few 
comments about its computational complexity, as com- 
pared with other existing modification algorithms, are 
presented in Section III. Section IV deals with the prob- 
lem of optimal tearing, i.e., with the problem of determin- 
ing a cut matrix C such that a suitable measure of the 
overall computational effort involved by the method 
above is minimized. Under reasonable assumptions, this 
problem is shown to be equivalent to the one of finding a 
minimum essential set (MES) in a hypergraph H 
associated to A. In Section V, a particular way of applying 
the results obtained in Section II to a matrix reordered 
according to the criterion given in Section IV is described 
together with some computational remarks. 

II. A Two LEVELS MODIFICATION ALGORITHM 

Consider a system of linear algebraic equations of the 
form 

(B+ C)x=b (2.1) 

where B E Rn2 is nonsingular, C E R”’ has rank m and is 
such that A L B + C is nonsingular. Furthermore, let C = 
HK’, where H, K E R”“, and denote by Ik the identity 
matrix of order k. Then, the following theorem can easily 
be proven by extending to the multiple case (m > 1) a 
similar result given in [lo]. 
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Fig. 1. Two levels structure of MA. 

Theorem 2. I 

Let x”E R”, X E R”“, and w E R” be such that 

Blx’ j X1=/b j HI (212) 

(zm+K’X)w=K’xo (2.3) 

then, the solution of system (2.1) is given by 

x=x”-xw. 

Proof By definition of x0, X, and w, it follows that 

x”=B -lb 

X=B-‘H 

In fact [9], the nonsingularity of A and B and m being the 
rank of C imply the nonsingularity of (I,,, + K’B -‘H), 
while Householder’s formula yields 

hence 

and the theorem is proven. cl 
Theorem 2.1 induces in a straightforward way the 

following Modification Algorithm (MA). 
Let ho 2 b, xi and hj be the jth column of H and X, 

respectively. Furthermore, set i = 0. 
Step I: Compute the LU factorization of B. 
Step 2: Compute (by forward elimination and back 

substitution) xi such that Bx’= hi. 
Step 3: If i= m, go to Step 4; otherwise i= i+ 1 and 

go to Step 2. 
Step 4: Compute the LU factorization of I,,, + K’X. 
Step 3: Compute (by forward elimination and back 

substitution) w such that (1, + K’X)w = K’x’. 
Step 6: Compute x = x0 - Xw. 

Remark 2.1: From a conceptual point of view, MA is a 
two levels algorithm the structure of which is shown in 
Fig. 1, where the subproblems P, and Pi, i =O, 1,. + . ,m, 
are defined as follows: 

P,:Bx’=h’, i=O, 1; * * ,m 

P, : (Z, + K’X)w = K’x’, x=x”-xw. 0 

Remark 2.2: The relationships between Theorem 2.1 
and the general theory of large scale systems are stronger 
and deeper than Remark 2.1 seems to show. As a matter 
of fact, the use of Householder’s formula in the proof of 
Theorem 2.1 is just an unnecessary shortcut; deeper in- 
sight into the logical frame of the method can actually be 
gained by looking at the solution of the subproblems Pi, 
i=O, 1; f. ,m, as to an identification of the relationship 
between the “prediction” of an interaction vector and its 
“correspondingly resulting” value [ 1 l]-[ 131. More specifi- 
cally if system (2.1) is written as Bx = b - HK’x = b - Hv 
where u A K’x, then it is straightforward to see that, 
taking u as an interaction vector, the original problem is 
equivalent to finding d E R m such that K’c? is equal to t?, 
where Bi = b-Hi?. To do that, the (linear) relationship 
between 5 and K’s must be preliminarily identified and 
this can be done by m + 1 “experiments” consisting in 
taking first 6 = 0 (see PO, in Remark 2. l), then b = 0 and r? 
equal to the ith orthonormal negative versor in R”, i= 
1,2; *. ,m (see Pi, in Remark 2.1). Finally, imposing that 
K’(x’+ Xti) be equal to d, the “exact” value of d can be 
determined as well as the corresponding value of x (see P,, 
in Remark 2.1). III 

III. COMPUTATIONALREMARKS 

In this section, the complexity of MA is analyzed and 
subsequently compared with other available modification 
techniques, namely, Householder’s formula and Bennet’s 
algorithm. 

Assumption 3.1: The number of multiplications required 
by a method is considered as its complexity measure. 
(Inversions are counted as multiplications.) cl 

Assumption 3.2: n >> m . 0 
Under these assumptions, Step 1’ of MA requires n + 

Ei;\Sk(yk+ 1) operations where lk+ 1 is the number of 
nonzero elements in the first row and yk + 1 is the number 
of nonzero elements in the first column of the reduced 
matrix of order n - k + 1 during the kth step of Gaussian 
elimination performed in natural order on B [lo]. Step 2 
requires p= n +E.nk.i,(yk + &J operations; since it has to 
be repeated m+ 1 times (Step 3), (m + 1) operations are 
globally required. Step 4 requires m2n operations to com- 
pute K’X. The LU factorization of 1, + K’X (which is 
generally full) and Step 5 require globally l/3m3 + m2- 
1/3m operations; Step 6 requires mn operations. 

In Table I, the above results are summarized and com- 
pared with the corresponding ones relative to the direct 
application of Householder’s formula and Bennet’s algo- 
rithm, under two different assumptions (full or sparse) 
concerning B. 

It has to be noted that in the case of full matrices MA 
requires about half the time required by Bennett’s algo- 
rithm. 
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TABLE I 
COMPARISON OF HOUSEHOLDER’S FORMIJLA, BENNBT’S 

&GORITHM, AND h&4 

Initial inversion or decomposition Initial solution Solution of the modified system 7 

full SpSSe full SpalFSe full SpEilX3e 

Householder n3 

Bennett l/3 n3 

n3 2 II2 3mn2 3mn2 

n-l n-l. n-l 
c (Ykck+ck) n2 c (Yk+cp (2mcl)n2 3m2n+(2~l)~ (Y +5 

kzl k ' 
) 

k*l k=l 

MA l/3 n3 
n-1 2 n-l 

Ykck+ck) * c (Yk+ckM ml2 m2n + m “C(Y +c ) 
k=l k-l k k 

IV. OPTIMAL DECOMPOSITION PROBLEM 

This section deals with the important case where the 
system under consideration consists of a number of inter- 
connected subsystems; i.e., the case where the unknown 
vector x can be “a priori” thought as “naturally” parti- 
tioned into a number of subvectors with an interaction 
pattern which is very strong among the elements of the 
same subvector and relatively weak among elements of 
different subvectors. 

In this situation, it .is generally conceivable to look for a 

Definition 4.1: A partition a( .) EII,, is said to be regu- 
lar if 

a?k)={{lJ~ ... + ,j,}, { jI + lj, +2,-. * ,j2},* *. 3 

{j,_,+l,jh-l+2,...,k}} 

for some j,,j,; *. ,.&-r E Qk, O&j0 <ji <j2 < 
q-0 <j,-,<j,, g k. cl 

Remark 4.1: Any regular partition G(e) En,,, induces 
in an obvious way a corresponding partition ii(*) on R”‘; 
formally 

“cut matrix” C such that B g A - C is reducible to a 
block lower triangular form; consequently, the solution of 
Bx = b (see Step 1 and Step 2 of MA) does actually. 
decompose into a number of simpler and partially ordered 
subproblems corresponding to the strongly connected 
components of the digraph associated to B [lo]. Such a 

&= 
rs 

decomposition can actually be done in more than a single 
way, so that an obviously important task is to find, among 

+,(-):A /+,k 

all the possible decompositions, at least one of those 
which are optimal in some specific sense. Problems of this 
kind are, in general, extremely difficult to solve and it is 
even hard to find’ situations where the computational 
effort needed to solve it is worth to be paid. However, it is 
quite reasonable, when searching for an optimal decom- 
position, to restrain the attention to some suitable subclass 
of all possible decompositions, thus resulting in a com- 
putationally feasible and economically, efficient proce- 
dure. The herein adopted approach consists in restraining 
the search for an optimal decomposition only to those 
decompositions which retain, in a sense, the natural struc- 
ture of the given system, which is supposed to originally 
consist of a number of well identified interacting subsys- 
tems. 

In order to specifically state the, optimization .problem 
and illustrate the corresponding decomposition procedure, 
it is necessary to introduce some further definitions and 
notations. 

Let Qk be the set of the first k integers, Z, be the class 
of all ordered sets of k elements, 9’)k and IIkh be the 
classes of all possible permutations from Z, to C, and 
partitions from Z, to Z,, h < k, respectively. 

Definition 4.2: A matrix A E Rn2 is block lower triangu- 
lar with respect to a regular partition G( .) E IIn4 if 2 is 
lower triangular; i.e., if & =Owheneverr<s; r,sEQ,. 0 

Proposition 4.1: For any r( *) E lIk,, there exist a unique 
regular partition i?( .) E IIkh and a unique permutation 
PEG’), such thatr(*)=G(p(*)). 0 

Remark 4.2: Proposition 4.1 says that any partition is a 
regular partition of a permutation. The partition G( *) and 
the permutation p ( .) will henceforth be referred to as the 
regular partition and the permutation defined by r( .). 0 

Remark 4.3: Any permutation p( *) E 9,, induces in an 
obvious way a corresponding (symmetric) permutation 
~?(a) on R”‘; formally 

~5 (.) : A t-+EAE’ 

where E E R”* is a unimodular matrix defined as follows. 

Let { P,,P~, . . - ,P,> k p(Q,>, then eti = $,iJ, vi,j E Q,,, 
where S,,, is the Kronecker function. 0 

Definition 4.3: For any m( .) EI&,, let T,( .) g ;i(p^( e)) 
where 7j( *) and p^( +) are induced by the regular partition 
5( .) and the permutation p ( 0) defined by m( . ). cl 

Definition 4.4: A matrix A E R n2 is block reducible rel- 
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ative to 7r(.)EIII,, if there exists p”( *) E ‘??)4 such that 
TpoC,,(A) is lower triangular. El 

Remark 4.4: Assume that system (1.1) consists of 4 
interconnected subsystems and that this kind of structural 
information can be specified by means of a regular parti- 
tion 57( .) E II,,. If A is block reducible relative to F(e), 
then splitting the problem into an equivalent set of q 
(partially ordered) subproblems is an almost trivial task. If 
this is not the case, a conceivable approach, in view of 
Theorem 2.1 consists in looking for a minimum rank 
matrix C such that A - C is block reducible relative to a 
partition r(e) l IIInp, p < n, the largest element of which 
has a cardinality significantly less than n. This kind of 
approach is followed in the sequel, where an optimal 
decomposition problem is formally stated and solved. 0 

Given A E R”’ and S c Q,,, let r( *) E III,, be such that 
r(Q,,)= {Q,, - S, S}; furthermore, let k p T,(A); then, 
define As k i,,. In other words, A, is the matrix obtained 
from A by removing all rows and columns whose index is 
in S. 

Given ~(.)={~,(.),m2(.);..,~~(.)}~IT,, and SEQ,,, 
with lSl=m, let rsrs(.)~II,,, y A n-m, be such that 

Definition 4.5: For any S c Q,, the matrix A E R”* is 
block S-reducible relative to a( *) EI& if there exists 
P*(*)E 9q such that T p.Cns,(As) is lower triangular; 
namely, if A, is block reducible relative to v~( e). cl 

Proposition 4.2: Let A E R”‘, S c Q,, and n( *) E III,,. If 
A is block S-reducible relative to r(a), then there exists 
~~*(.)EII~~ such that i,r is block lower triangular with 
respect :: to the regular partition defined by p*(vrs( a)), 
where A = T,.(A). 0 

An optimization problem which, in view of Theorem 
4.1, Remark 4.4, and Proposition 4.2, is of obvious interest 
can now be formally stated as follows. 

Optimal Decomposition Problem (ODP) 

Given A E R”’ and m( *) E’II,,, find S c Q, of minimal 
cardinality such that A is block S-reducible relative to 
r(*)* 0 

In order to solve the problem above, it is quite natural 
to restate it in graph-theoretical terms. 

A directed hypergraph H =(X, Y) is constituted by a 
node set X and an arc set Y the elements of which are 
ordered pairs of nonempty subsets of X. Let fi = 
{ q,+, *. , wI}, t > 1, be an ordered subset of X. If, for 
each wi E !& there exists a pair 2’ and Z: of subsets of X 
such that 

qEZ:nz: 

vi A (z:,zL+l)E Y, qi Z Tj, ViJ E Q,, i#j 

where 

Z- I+1 zzi 

then 52 is a cycle of H of length t and the vi’s are called 
arcs of the cycle. A directed hypergraph without cycles is 
said to be acyclic. 

Given a directed hypergraph’H = (X, Y) and a subset Z 
of X, the section hypergraph of H with respect to Z is an 
hypergraph Hz = (2, Y,), where. 

Y$ ((*i,q)12i=xinz,$=qlz, (X,,X,.)E Y}. 

Any subset S of X is an essential set of H if Hx-, is 
acyclic. An essential set of minimum cardinality is said to 
be a minimum essential set. Its cardinality is said to be the 
index of H. 

Given a matrix A E R”* and a partition ~(0) = 
{7r,(*),7r2(.); *. ,T~(*)} EII,,~, let H(A,r) be the direct 
hypergraph relative to A and 7~( .) defined as follows: 
H (A,r) = (X, Y) where X = Q,, Y = Y,, u Yin where 

The arcs in Y,, are called external arcs, the arcs in Yin are 
called internal arcs. It has to be noted that I Y,,l= q. 

Lemma 4.1 

For any AER”‘, ~(.)EII,,, and p(.)~$?‘,,H(A,vr) is 
isomorphic to H (A,p(m)). cl 

Lemma 4.2 

For any A ER”‘, v(.)EII,~, let G(.) and p(e) be the 
regular partition and the permutation defined by VT(.); i.e., 
P(O)= +(~(a)). Then H(A,n) is isomorphic- to H(fi(A),*) 
wherep^( .) is the (symmetric) permutation on R”* induced 
bp(.). 0 

Lemma 4.3 

For any A E R”’ and r(a) EII~~, H (A,r) is acyclic if 
and only if A is block reducible relative to r(e). 

Proof: If A is block reducible relative to r(e), then (see 
Definition 4.4) there exists p”( *) E qq such that TpoC,,(A) is 
lower triangular. Thus if V( 0) and p( .) are the regular 
partition and the permutation defined by ~‘(a( e)), and 
p^(.) is defined as in Remark 4.3 then the hypergraph 
H (p^(A),G) is acyclic since none of its external arcs is 
going from any node of Fi(Q,) to any node of ?(Q,), 
whatever i, jE Q, may be, with i >j. Since, in view of 
Lemma 4.2, H (j(A),%) is isomorphic to H(A,p’(a)) and, 
in view of Lemma 4.1, H(A,p’(r)) is isomorphic to 
H(A,r), the conclusion can be drawn that H(A,m) is 
acyclic. 

Conversely, if H (A, r) is acyclic, then there exists p”( *) 
E??‘, such that, letting rm(.) Apm(,rr(.)), H(A,vrm) has 
no external arcs going from any node of ri”(Q,J to any 
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node of rjm( Q,,), whatever i, j E Q4 may be, with i > j. This 
means that TpmCn, (A) is lower triangular, hence A is block 
reducible relative to n(e). Cl 

Theorem 4. I 

For any A ER”‘, S c Q,,, and IT( *) EI&, A is block 
S-reducible relative to m(e) if and only if S is an essential 
set of H(A,?r). 

Proof The hypergraph Hx-,(A,n) is acyclic if and 
only if S is an essential set of H (A,vr). On the other hand, 
Hx-,(A,?r)= H (A,,rs). Hence, in view of Lemma 4.3, S 
is an essential set of H (A,r) if and only if As is block 
reducible relative to rs(.), i.e. (see Definition 4.5) if and 
only if A is block S-reducible relative to P( *). cl 

Corollary 4.‘Z: Given A E R”’ and a(.) ED,,, ODP is 
equivalent to the determination of a minimum essential 
set of H (A, 7r). 0 

It has to be noted that the problem of finding a mini- 
mum essential set in H (A,r) can be easily proven to be 
hard.’ In fact, the same problem for digraphs (also re- 
ferred to as the minimum feedback vertex set problem) is 
well known to be hard [14]. The minimum essential set 
problem has been investigated in a number of papers and 
some satisfactory approaches have been developed. In 
particular, preliminary simplifications [ 15]-[ 171, branch 
and bound techniques [ 15]-[ 181 and near optimal algo- 
rithms [ 171, [ 181 have been devised. 

In the sequel, some definitions are introduced so as to 
extend to H (A,r) some results obtained to solve the 
minimum feedback vertex set problem. This extension is 
possible due to the very particular structure of the hyper- 
graph associated to A. 

Definition 4.6: The elimination of x E y( Q,) from 
H (A,~T) is accomplished: i) by forming the section hyper- 
graph Hs(A , n), S = X - {x}, ii) by adding to Y,, a set of 
new arcs Y& f Y; u Y; u Y; 

Y; g { (r,s)l(r,s) G Ye,, (r,x) E Ye,, (w) E Ye, } 

Y,X A {(r,s)l(r,s)@ Ye,, (r,x)E Yex,sEnj(Qn)} 

Y$A {(r,s)l(r,s)G Ye,, (-v)E Ye,, rep}. 0 

Definition 4.7: Let x E T( QJ be a node of H (A, vr): 
i) the external out-degree of x, de:(x) is 

d,: (x) = I y,: (-a 
where Y~(~>={y~Y,l~=(x,z),z~Q,} 

‘A problem is said to be hard (NP complete) if it belongs to a class of 
well-known- combinatorial problems (covering, sequencing, knapsack, 
0- 1 integer programming, Hamiltonian circuit, etc.) which are equiv- 
alent, in the sense that no algorithm terminating with a number of steps 
bounded by a polynomial in the dimension of the problem (length of the 
input) exists for their solution. Moreover, it has been shown that a 
polynomial bounded algorithm for one of them yields polynomial 
bounded algorithms for all. This result strongly suggests that these 
problems will remain “intractable” perpetually [ 141. 

ii) the external in-degree of x, de;(x) is 

4; (x> = I Ye;; (x)1, 

whereY,;(x)={yEY,,(y=(~,x),~EQ~}. 0 

A self-loop is an arc y = (r,s) in Y,, such that r = s. 
As in the standard case [ 15]-[ 181, a number of local 

reduction rules can now be stated, on the basis of which 
branch-and-bound-type algorithms can easily be set up. 
Once a MES has been determined, it is a relatively simple 
task to find a rows and columns permutation such that A 
is given a bordered block lower triangular form. 

Reduction Rule 1: The elimination of x E X such that 

4;; wez (xl =o 
de; (x) + d,: (x) < 1 

is index preserving. 
Definition 4.8: For any S cX, let Ad+(S) A {xI(x,r) 

E Y,,, t-ES} and Ad-(S) A {xl(r,x)E Y,,, t-ES}. 
Reduction .Rule 2: If JAd’(rj(Q,))j = 1 and 

Ad+(~(Q,,))n~j(Q,,)=O or if [Ad-(~(Q,J)l= 1 and 
Ad-(y(Q,J)n ?(Q,,)= 0, then the elimination of all the 
vertices x E rj( Q,) is index preserving. 

Definition 4.9: Any S c ?(Q,,) is a cover of Y,&, 
where Y;Te ) 2 Yn.te ,n Y,,, if (r,s) E Y,$, implies { r,s} 
nSZ0.’ ‘” 

I n 

Definition 4.10: A minimum cover is a cover of mini- 
mum cardinality. 

Reduction Rule 3: If Ad+(rj(Q,)) C yj(Q,,) or 
Ad-(~(Q,J)~~(Q,) and if S is a minimum cover of 
Y ten,, then at least one MES of H (A,?r) contains S and 
no elements of rj( Q,) - S. 

Definition 4.11: A doublet is a cycle of length two. 
Reduction Rule 4: If, after removing all the arcs form- 

ing doublets, [Ad+(n,(Q,))= 0 and Ad-(T(Q,,))n ?(Q,,) 
=a1 or [Ad-(~j(Q,))=0 and Ad+(rj(Q,,))n Tj(Q”)=B], 
then the removal from Y of any element of Ad-(rj(Q,J) 
X T( Q,) or Ad ‘(T( Q,,)) X ?(Q,), respectively, is index 
preserving. 

Proposition 4.4: If Ad+(rj(Q,)) n rj(Q,,) # (21 or 
Ad-(~(Q,>)n~(Q,,)#(21, then any MES of H(A,P) con- 
tains a cover of Y,“Tp ). 

Corollary 4.2 (Redktion Rule 5): If (x,x) E Y,,, then x 
belongs to any MES of H (A, n). 

Reduction Rule 6: If x E rj(Q,) and there exists y 4 
?(Q,,> such’that i) (y,r)~ Y,,, VrET(Q,J, ii) (X,Z)E Y,, 
*(y,z) E Y,,, Vz B T( Q,), then the removal of (y,x) is 
index preserving. 

V. THETEARINGALGORITHM 

In this section, a particular way of applying MA to a 
system Ax = b, where A is a bordered block lower triangu- 
lar matrix, is described and some computational remarks 
are given. 
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Specifically, let 

AA AI, A,2 I I A21 A22 

ER”* 

where 

A;; 0 a. 

A,, k A:: A;; a. 
. . . . . . . . 

A;: A;; . . 

and, correspondingly, for any i = 0, 1, * * * , m, let 

E R”-” 

b 11 

b1 

ho’bg b 
I I 

’ 
b,ki : 

2 

b 19 

Step 5: Compute xi = hi - A,,xi. 
Step 6: i=i+l. If i=m+l, go to Step 7, otherwise 

go to Step 2. 
Step 7: Compute the LU factorization of Z,,,+X,, 

x2 g 1x:x;-. * XTl. 
Step 8: Compute (by forward elimination and back 

substitution)x, such that (I,,, + X,)x, = xi. 
Step 9: Compute x, = xy - Xix,, X, A IX:, xf, 

. . . ,xyt. 
In order to compare the performances of TA with respect 
to LU decomposition method the number of multiplica- 
tions needed in TA is evaluated. 

Let ALL E Rpz, e: + 1 be the number of nonzero elements 
in the first row and &” + 1 be the number of nonzero 
elements in the first column of the reduced matrix of 
order pk - i + 1 during the ith step of Gaussian elimination 
performed in natural order on A& Let N be the total 
number of nonzero elements in A,, and A:sl, r < s, s= 
2; * * ,q. Step 1 of TA requires El= i Zp=, (ek.$F + ek) 
multiplications. Step 3 and Step 5 require globally n - m + . 

E R”-“. 

(m + 1) (Cz, i(Zy= i (er + tp) +pJ + N) multiplications. 
Step 7 and Step 8 require m3/3- m/3+ m2 multiplica- 

” tions. Step 9 requires m(n - m) multiplications. Globally, 
TA requires 

4 Pi, 

Then, it is easy to see that MA can now be given the 
following form. 

Let 

: h’h2. . . A”‘, I I 
h; 

+m3/3+m2-m/3+(m+l)(n-m) 

h;‘, 

/,;‘A : , i= 1,2;. * m 

hi 19 

be of rank m and set 

K& I” 

I I m 

then 

B&A--K’= A,, 0 
I I A ’ 21 L 

multiplications. LU decomposition ‘requires [lo] 

n-l 
z. (ciyi +2& + yi) + n multiplications 

i=l 
(5.1) 

where li and yi have been defined in Section III. 
Assumption 5.1: The elimination orderings in LU de- 

composition and in TA are the same. Moreover, rows and 
columns have been rearranged so that the chosen elimina- 
tion ordering is the natural one. 0 

In view of Assumption 5.1, let n,k = Si - E: and 0: = yi - 
tik; then (5.1) can be rewritten as 

Step 1: i=O. Compute the LU factorization of A& 
k= 1, 2;. . ,q. 

Step 2: k = 0. k=l i=l 

Step 3: k = k + 1. Compute (by forward elimination n-1 

and back substitution) xik such that A “xi = hik - kk Ik 
+ 2 (ckYk+21k+Yk)+me 

X;;;A;;x& 
k=n-m+l 

Step 4: If k = q, go to Step 5, otherwise go to Step 3. TA requires less operations then LU decomposition if the 
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TABLE II 
COMPARISON OF LU DECOMPOSITION (GAUSSIAN ELIMINATION) 

AND TA 

Assumptions 

4 " n, P ' ) $ P2("+l)q2 / (P3/~+(2~l)P2/4)s2 1 B 1 

following inequality holds: 

n-1 

+k n~m+l(~kYk+2~k+Yk). 

By inspection, it is possible to claim that TA tends to 
overcome when m decreases and nik, Bik-increase w.r.t. N. 
A precise evaluation can be given if some particular cases 3 

are investigated. In Table II, some comparison are given. 
1 

For all the cases considered in Table II, the following Ei 
assumptions hold: i) pk =p, k = 1; * . , q and ii) A,,, A,,, 

7 
6 

A22, and Ajs’, r < s, s = 1,. . . ,q are full matrices. 9 
10 

Remark 5.2: If the structure of the system is repetitive, 11 

i.e., if the matrices on the main diagonal of A,, are equal, 12 

TA performs only once Step 1, ‘saving in this way many Fig. 2. Zero-nonzero pattern of A. 

operations. 0 
Remark 5.3: TA does not generate any fill-in in A;:, . 

r<s,s=2;*.,q,andinA,,. Cl 
Remark 5.4: At Step 3 of TA at most a square matrix 

of dimension pk and a rectangular matrix of dimensions 
I . pk XP, (where p, =maxj, ,; . . ,k-, pj) must be retained \ 

contemporarily in the fast memory. This feature makes 
TA suitable for the analysis of large systems with small 
computers. 0 

c 

Remark 5.5: Step 1 of TA can be accomplished by 
parallel computation. 0 

Fig. 3. Hypergraph associated to A. 

VI. AN ILLUSTRATIVE EXAMPLE regular partition F(Q12) = { { 1, 2, 3, 4}, (5, 6, 7}, (8, 9, lo}, 
{ 11, 12}}. The hypergraph H (A, 3 associated to A is 

In order to illustrate most of the definitions and some shown in Fig. 3. 
of the results given in the present paper, a simple example In order to find a MES for the hypergraph of Fig. 3, the 
is here worked out in detail. local reduction rules presented in Section IV can be used. 

Fig. 2 shows the zero-nonzero pattern of a (12 x 12)- 
matrix A. In ‘this case, A is partitioned according to the 

Fig. 4(a) is obtained by applying to H (A,?) the Reduc- 
tion Rule 4. The hypergraph of Fig. 4(b) has been ob- 
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(C) 

Fig. 4. Step by step reduction of H(A,n). 

Fig. 5. Optimal bordered lower triangular form of A. 

tained from the one of Fig. 4(a) by applying the Reduc- 
tion Rule 1. Finally, Reduction Rule 2 leads to the hyper- 
graph of Fig. 4(c), where S = { 2,3, 5) is apparently a MES 
as it can also be formally ascertained through the succes- 
sive (repeated) application of Reduction Rules 5 and 2. 

According to Theorem 4.1, A is block S-reducible rela- 
tive to f(e). In fact, Gs(Q12-S)={{l, e}, (6, 7}, (8, 9, 
lo}, { 11, 12)) and there exists a permuation p*(a), with 

p*(rs)={{8, 9, lo}, (11, 12}, (6, 7}, (1, 4}),.such that 
T,.~,~(A,) is lower triangular (Fig. 5). 

VI. CONCLUSIONS 

In this paper, tearing methods for solving large scale 
systems of linear algebraic equations have been discussed. 
In particular, a modification algorithm which extends 
previous results given in [lo] has been presented and its 
complexity critically evaluated. Then, the problem of de- 
termining what are the “best” elements to be torn in the 
original given matrix A has been faced. In particular, the 
reduction of A into a block lower triangular matrix with 
as few “modifications” as possible has been assumed as 
goal to achieve. Under rkasonable assumptions, the prob- 
lem of determining the optimal rearranging of A accord- 
ing to the selected goal, has been proven to be equivalent 
to the determination of a mmimum essential set in an 
hypergraph associated to A. A branch-and-bound algo- 

rithm based on a number of local reduction rules has been 
outlined. Finally, a particular way of applying the previ- 
ously presented modification algorithm to a matrix re- 
arranged according to the chosen criterion has been dis- 
cussed and its performances compared with LU decom- 
position method. 

Further work could be done in defining new criteria to 
be followed in rearranging A and in deriving efficient 
algorithms to solve the related optimization problems. 
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An Efficient Algorithm for Simulation of 
Transients in Large Power Systems 
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Abstrarl-The simulation of the transient response of a large intercon- 
nected power system involves the solution of a very large system of 
differential-algebraic equations under a great variety of initial conditions 
and disturbances. The demands imposed on a digital transient stability 
program to i) study larger power system interconnections, ii) provide a 
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, 

more detailed representation of the power system components, and iii) 
permit the simulation of longer time periods, have the effect of increasing 
the computing time. The importance of, and the need for, efficient 
computational schemes is apparent. The method presented in this paper 
makes detailed use of the structural properties of the differential-algebraic 
system representation. The nonlinear differential-algebraic system is split 
into a nonstiff part with long time constants coupled to a stiff part with a 
sparse Jacobian matrix whose longest time constant is shorter than that of 
the first part. These two parts are linear in their respective states, i.e., the 
system is semilinear. With the nonstiff part removed, a smaller set of stiff 
equations with a smaller conditioning number than the original system is 
obtained. Consequently, longer stepsizes can be used’s0 as to reduce the 
computation time. The proposed multistep integration schemes exploit the 
stiffness and semilinearity properties. Numerical results on a small test 


