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An Efficient Heuristic Cluster Algorithm for 
Tearing Large-Scale Networks 

ALBERT0 SANGIOVANNI-VINCENTELLI, MEMBER, IEEE, LI-KUAN CHEN, MEMBER, IEEE, 
AND LEON 0. CHUA, FELLOW, IEEE 

Abshzcr-An efficient heuristic algorithm for solving a cluster problem 
associated with the tearing of an undirected graph is presented via the 
concept of a contour tableau. lie required computation time is shown to 
be bounded by tJ(nb), where n and b are the number of nodes and 
braocbes of the input graph, respectively. 

Experimental results show that OUT algorithm is highly efficient and 
yields near optimal solutions. 

I. INTRODUCTION 

I N DEALING WITH large-scale networks and sys- 
tems, extensive decomposition algorithms have been 

proposed in varidus fields. In operation research, for exam- 
ple, we have’the Dantzig-Wolfe decomposition principle 
for linear programming [l] and the Hu decomposition 
algorithm for shortest path calculations [2]. In circuit 
theory, we have the diakoptic analysis, the generalized 
hybrid analysis, and the node-tearing nodal analysis 
[3]-[6]. Finally, decomposition techniques also play an 
important role in the computation [7] and stability analysis 
[8] of large-scale Jystems. 

All decomposition methods require that the large 
network or system be, partitioned into subsystems (i.e., 
clusters) such that elements in the same subsystem are 
strongly interconnected, whereas elements in the different 
subsystems are weakly interconnected. In some cases 
where the system has a simple layout, a fairly good cluster 
partition can be determined by inspection. For arbitrary 
systems, however, an algorithm must be used to systemati- 

‘tally partition the associated graph into an optimal, or 
suboptimal, arrangement of clusters. 

Some attempts have been made at finding an optimal 
cluster partition in computer logic and page partitioning 
[9], [lo], in power system bus clustering [I 11, in network 
decomposition [ 121, in IC placement problems [ 131, and in 
statistical data grouping [14]. In general, the cluster parti- 
tion problem is formulated as a graph optimization problem 
‘in which an optimal partition of nodes is sought, such that 
a certain measure on the interconnection between diffe- 
rent groups of nodes is minimized. Depending on the 
nature of the problem, the minimization objectives may be 
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based upon the number of interconnection nodes [2], 
[5]-[8], the number of interconnection branches [3], [4], 
[9]-[12], the total cost of interconnection branches [13], or 
the distance between the “centroids” of clusters [14]. The 
various approaches for solving the cluster partition prob- 
lems may be classified into four major categories: 

i) growing clusters from scratch [9], [12]; 
ii) interchanging nodes until some local optimality con- 

dition is satisfied [13]; 
iii) transforming the problem into some associated 

mathematical equation [lo], [ 141; 
iv) finding the “contour” of an associated graph [l 11. 

It has to be pointed out here that none of the above 
attempts [9]-[ 141 yields an efficient global algorithm. Act- 
ually, none of them even yields an efficient heuristic 
algorithm [15] and there are reasons to believe [5] that all 
cluster partition problems belong to a class of hard prob- 
lems, the so-called NP-complete class [16], [17], where no 
polynomial-bounded global solutions are likely to exist. 

In this paper, we will restrict ourselves to the cluster 
problem associated with the node-tearing nodal analysis of 
large-scale networks [5], [6]. Since it has been shown in [5] 
that this cluster problem is NP-complete, we will con- 
centrate on finding an efficient but heuristic cluster algo- 
rithm. 

II. THECLUSTER PROBLEM ANDTHECONTOUR 
APPROACH 

We shall briefly recall the cluster problem’ as defined in 
[5]. Basically, given an n x n structurally symmetric matrix 
Y, we want to permute Y into a bordered-block-diagonal 
form such that each diagonal block has dimension < nmax 
and the dimension of the border is minimized. This prob- 
lem has a straightforward graph-theoretic interpretation 
[5]. Given a matrix Y, let g, =(a,,, $i3,,) be the associated 
undirected graph constructed in accordance with the 
following properties: 

i) 4 ,, contains n nodes (i.e,, I%,/ = n); 
ii) an undirected branch b E ?i3 y joins n, and nj if, and 

only if, Yjj#O. 
9, is the so-called sparsity graph of Y [ 181, [ 191. Let 

{ %,, , ay,} denote a partition of nodes of 9,. Then, the 
cluster problem consists of minimizing I%yZ[ over all 

‘It is referred to as GOP1 in [5]. 
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Fig. 1. A contour tableau. 

distinct partitions {a,, , ?XY,} such that 
i) the removal of all nodes in ?XY2 would disconnect the 

remaining graph into m components 9\, , ‘&, , * . . ,87, ; 
ii) ]?)I.$ ] < nmax, where %$, denote the set of nodes 

contained’in !J”,,, k= 1,2;. . ,m. 
In [5], this cluster problem is shown to be NP-complete. 

Hence, any practical solution would call for a heuristic 
approach. The heuristic algorithm to be proposed in this 
paper follows a strategy similar to the one introduced in 
[ll], and is based on the concept of a contour tableau 
which consists of an array of three columns, as shown in 
Fig. 1. The leftmost column is called the iterating set (IS), 
the middle column the adjacent set (AS), and the right- 
most column the contour number (CN). The entries of the 
tableau are determined as follows.2 

Contour Tableau Construction Algorithm: 
Step 1) Choose an initial iterating node and store it in 

IS( 1). 
Step 2) Store in AS(I) all nodes that are adjacent to the 

node in IS(l). 
Step 3) Place .the cardinality of AS(l) in CN(l). 
Step 4) Let i=l. 
Step 5) If CN (i) =O, stop! 
Step 6) Choose the next iterating node, denoted by ni+ ,, 

from AS(i) and place it in IS(i + 1). 
Step 7) Update’ AS(i + 1) from AS(i) by deleting the 

node n,, , and adding the set V representing all node 
adjacent to n,,, that are not already in AS(i) or 
{ Uj= JW}. 

Step 8) CN(i + 1) = ]AS(i + 1)1. 
Step 9) Let i=i+ 1, go to Step 5. 
Let us first clarify Step 7 with the aid of Fig. 2. In AS(i) 

and AS(i+ l), we store the adjacent nodes of the sets of 
iterated nodes 

respectively. Instead of finding AS(i + 1) from scratch at 
each iteration, we want to find an efficient way of updat- 
ing AS(i+ 1) from AS(i). Now, let us look at Fig. 2, where 
the solid lines denote adjacency relations and the dotted 
lines denote possible adjacency relations. Sets { IS(i + 1)) 

%e graph is assumed to be connected for simplicity. 

Fig. 2. A graphic interpretation of Step 7 for updating AS(i+ 1) from 
AS(i). 

Fig. 3. An example for illustrating the contour tableau construction 
algorithms. 

and {AS(i)- IS(i+ 1)) are adjacent to 

(’ I 
i.J Is(i) . 

j=l 

Since {AS(i) - IS(i + 1)) and V are adjacent to 

we can therefore update AS(i + 1) from AS(i) by deleting 
IS(i + 1) and adding V, which is precisely Step 7. 

Now, let us pause to look at an example. Fig. 3 shows a 
graph with nine nodes. It is clustered into two groups of 
nodes, { n,,n,,n,,n,} and { n,,n,,n,,n,} which are sep- 
arated by the hinged node n5. Let us start the construction 
of our contour tableau by selecting arbitrarily the initial 
node, say n,, and store it in IS( 1). Since { n2, n3, n4, n,} are 
the nodes adjacent to n,, they are stored in AS(l). Conse- 
quently, CN(l) =4. Let us choose arbitrarily an iterating 
node from AS(l), say n3, and put it in IS(2). Observe that 
the nodes that are adjacent to { n,,n,} are { n2,n4,n5}. So 
they are put in AS(2) and hence CN(2)= 3. Choose the 
next iterating node as IS(3) = n5, then AS(3) = 
{ n2, n4, n6, n7, n8, n9} and hence CN(3) = 6. The complete 
tableau is shown in Fig. 4(a). 

In order to understand how the preceding algorithm 
can be used to separate the graph into clusters, let us 
observe that if X denotes the set of nodes of a given 
graph, then the set of AS nodes always separates X into 
three subsets; namely, 

I Z(i) k b IS(j) AS(i) 
j=l 1 
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Fig. 4. Three different contour tableaus associated with the graph in 
Fig. 17 by using three different strategies during the construction. (a) 
Arbitrary choice. @) Greedy strategy in choosing the next iterating 
node. (c) Initial iterating node selection. 

Fig. 5. The graphical interpretation of the role of AS(i) as a separating 
set. 

,_----. 
(DS * 

Cluster 

Cc) 

and 

W(i) g X-Z(i)-AS(i) 

Fig. 6. An example showing that the greedy strategy may sometimes 
give undesirable results. (a) The example graph. (b) Cluster obtained 
by choosing n, as the next iterating node. (c) Cluster obtained by 
choosing n2 as the next iterating node. 

where Z(i) nodes are not adjacent to W(i) nodes (Fig. 5). 
As we construct the tableau, the size of AS(j) (i.e., CN(I’)) 
in each step varies. It is when CN(1’) is very small, hence- 
forth called a bottleneck, that Z(i) and W(i) form 
clusters. Our aim then is to choose a particular contour 
tableau construction algorithm that would yield a good 
cluster whenever CN(I’) encounters a bottleneck. By using 
arbitrary choices in Steps 1 and 6, as in the preceding 
example, the best AS(i) is { n2,n4,n5} (Fig. 4(a)). However, 
it is far from the optimal result; namely, AS(j)= {n,}, 
which in this case can be obtained by inspection. 

In the original contour construction algorithm, there are 
only two places where choices are made. They are in Step 
1 when choosing the initial iteratingcnode, and in Step 6 
when choosing the next iterating node. Let us first examine 
Step 6. In [ 111, the strategy chosen is the minimum-fill-in 
strategy which is quite time-consuming and hence in- 
efficient. In this paper, we propose a greef$ strategy;3 
namely, at every iteration, we simply choose the node in 
AS(j) that yields minimum CN(1’+ l)= IAS(I’+ I)1 or, 
equivalently, we choose the node that yields minimum 
) I/). If a tie is encountered, we choose arbitrarily among 
the ties. To illustrate this strategy, we start with n, and 
eventually construct the tableau shown in Fig. 4(b). In- 
deed, it yields our desired goal; namely, to separate the 
two clusters { n,,n,,n,,n,} and { n,,n,,n,,n,} through the 
bottleneck { n5}. 

3“greedy” is a very common term in the graph literature [2] and is 
attributed to Jack Edmonds [24]. It means that the algorithm determines 
the direction for iteration generally by checking for the “cheapest” local 
condition. 

Our main reason for choosing the greedy strategy is that 
it can be easily implemented. To analyze the efficiency of 
this strategy, we will shortly derive its computational 
complexity. Before doing this, however, let us first identify 
its shortcomings by analyzing the example shown in Fig. 
6(a). Suppose after the ith iteration, AS(i)= { n,,n,}. If we 
choose n, to iterate next, we will end up with the cluster 
shown by the dotted line in Fig. 6(b) which has two 
bottleneck nodes. On the other hand, since 1 V(n,)l=3 and 
j V(nJl=2, application of our greedy strategy would re- 
quire that n2 be iterated next. The resulting cluster is 
shown by the dotted line in Fig. 6(c) which has five 
bottleneck nodes. This result, i.e., five bottleneck nodes 
versus two bottleneck nodes, of course is undesirable. 

Let us examine next the choice of the initial iterating 
node. If we start the tableau construction from n, in Fig. 3 
and use the greedy strategy, then the resulting tableau is 
shotin in Fig. 4(c). Observe that the basic contour prop- 
erty for identifying the clusters is lost. In this case the 
choice of node n5 as the starting node is highly undesir- 
able because n5 is a bottleneck node. In fact, the initial 
choice of a bottleneck node-separating, for example, two 
cludters+nds up in a contour which identifies the union 
of the two “real” clusters and of the bottleneck node as a 
“unique” cluster. Therefore a sound strategy for choosing 
the initial node is to avoid bottleneck nodes. Since a 
typical characteristic of a bottleneck node is revealed by 
its degree, which is in general large compared with the 
degree of the other nodes in the graph, a good rule is to 
start with a node with the minimum degree. In our exam- 
ple, all nodes except n2 have degree 1. Observe that if we 



712 IEEE TRANSACDONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977 

“IO 

“9 
“II 

“9 

(4 

IS As tl 

I 
“11 “lo*“5 

I 
“10 “5 

1 

“5 
n1,t~2,n3,n4.n6,*7.*8.*~ 8 

“1 
“2,“3’“4’“6*“7’“8’“9 7 

“2 “3*“4’“g~“7’“8*“g 6 

k31 
“4>“6,“7.“8*“9 

1’1 

“4 n6’“,‘n8’n9 4 

“6 “7.“8’“9 3 

“7 “8 ‘“9 
2 

n 
8 

“9 1 

“9 + 0 

“2 

“I 4 

“9 

(4 
Fig. 7. Examples showing how the “minimum-degree initial-choice” 

strategy may sometimes give undesirable results. (a) An example 
graph. (b) Contour tableau obtained by choosing n10 as the initial 
node. (c) Another example graph. 

choose any one of them as the starting node, they will all 
yield a tableau similar to Fig. 4(b). Besides, this 
minimum-degree strategy coincides with our greedy 
strategy since a node with the minimum degree will yield 
a minimum CN(1). We still may have problems in identi- 
fying correctly clusters in the graph as shown in Fig. 7(a) 
and (b). 

In this case we identify {n,,,n,,} and {n,;.. ,n4, 
n6; . . , n,j as the clusters with ns as the bottleneck node. 

This phenomenon can be classified as a special case of 
the so-called redundancy phenomenon, which we will now 

(4 

--- 
A 8+D C+E+F 

(4 (4 

Fig. 8. A graphic;1 illustration of the redundancy phenomenon and the 
dynamic contour cutting strategy to overcome it. (a) Example with 
three clusters. (b) Original contour tableau. (c) Original CN curve. (d) 
Contour tableau with dynamic contour cutting. (e) CN curve with 
dynamic contour cutting. 

illustrate with the help of the example shown in Fig. 8(a).4 
This example shows three clusters A, B, and C separated 
by bottleneck nodes, D, E, and F. Let us start with A and 
use solid lines to denote adjacency relations and dotted 
lines to denote possible adjacency relations. Using the 
preceding cluster algorithm, we will end up with the 
tableau shown in Fig. 8(b) and the associated CN curve 
shown in Fig. 8(c). Observe that bottleneck node F is 
redundant in the sense that it appeared twice, in {D + F} 
and {E + F}. Therefore, in selecting the best place to cut 
the CN curve into clusters, we have inaccurate informa- 
tion because I{D+F}u{E+F}~#~{D+F}I+I(E+F)I. 
The resulting cut may not be the best one that is possible. 
Moreover, it is unnecessary to iterate on D, E, and F in 
the tableau because, once they are determined to be 
bottleneck nodes, their adjacency is of no more concern to 
the remaining graph. 

To overcome this redundancy phenomenon, we must 
resort to the concept of dynamic contour cutting; namely, 
after we have determined cluster A and its bottleneck 
{D + F}, we throw away {D + F} from any future itera- 

4Although CN is actually a discrefe function of the iteration step, we 
will approximate it by drawing a continuous curve through these discrete 
points as shown in Figs. 8 and 9. 
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Fig. 9. An illustration of the various shapes of CN versus iteration ste 
and some methods for grouping the nodes into clusters. (a) Smoot 1 
curve with well-defined clusters. (b) A cluster containing nplax nodes 
before a local minimum is reached. (c) A cluster contaimng many 
small wiggles. (d) A cluster containing many small clusters. (e) Least- 
local-mimmum clustering strategy. 

tion. The dynamic contour cutting strategy will therefore 
yield a smaller and more efficient tableau as illustrated in 
Fig. 8(d) and (e). Let us now return to the example shown 
in Fig. 7(a). After we have determined the cluster formed 
bY ln109 n,,} and bottleneck node n5, we throw away n5. 
The identification of {n,, n2, n3, n4} and of { n6, n,, n8, n,} as 
clusters is then immediate. This final result is the correct 
identification of the three clusters of the graph. Therefore 
the dynamic contour cutting enhances the efficiency of 
the “minimum-degree initial-choice” strategy. Another 
possible shortcoming of the minimum-degree selection, 
which cannot be avoided by the dynamic control cutting, 
is shown in Fig. 7(c). In this case, the graph has a cluster 
formed by one node only and this node is selected as the 
initial choice. Although it is unlikely that this situation 
will occur in practice, we can nevertheless avoid such poor 
initial choice by rejecting all initial nodes which are char- 
acterized by a large value of CN(2)-CN(l). 

In our original cluster problem, the number of nodes in 
each cluster is constrained to be less than or equal to nmax. 
In the preceding cluster algorithm, this constraint has not 
yet been taken into consideration. However, we can easily 
incorporate it by cutting the contour whenever the num- 
ber of nodes in the cluster reaches nmax before a local 
minimum is attained (Fig. 9(a) and (b)). 

Fig. 10. Flow chart for the refined cluster algorithm. 

Another assumption that we have made in the preced- 
ing cluster algorithm is that the CN curves in Fig. 9(a) 
and (b) are very “smooth.” In .practice, the CN curve 
could be very erratic and may in fact contain many small 
wiggles as illustrated in Fig. 9(c). Moreover, it may also 
contain many small clusters as in Fig. 9(d). In such 
situations, our cluster algorithm would simply yield too 
many clusters, each with a very small dimension. Besides, 
the total number of bottleneck nodes would become too 
large. 

To overcome the occurrence of small clusters, we can 
delay our searching for a local minimum until after Lyn,,, 
nodes have been iterated, where (u=O.64.8 (Fig. 9(d)). To 
overcome the occurrence of small wiggles, we can keep a 
record of all local minima and choose the smallest local 
minimum that occurs between cxn,,, and nmax as the cutoff 
point. This is illustrated in Fig. 9(e). 

We are now ready to present a “refined” cluster algo- 
rithm which takes into consideration all of the problems 
identified in the preceding discussions; namely, the nmax 
constraint, the small wiggle and small cluster properties of 
CN curves, and the redundancy phenomenon. The flow 
chart for this refined cluster algorithm is presented in Fig. 
10. It has to be noted that the block “update adjacency 
list” implements the dynamic contour cutting by removing 
the adjacency relations involving elements from $& and 
from the cluster formed by 

I 
i 1 U IS(j) . 

j=l 
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TABLE I 
TESTINGRESIJLTSOFTHEI~~IPLEMENTATIONOFTHECLUSTER 

ALGORITHM 

Let us now analyze the computational complexity’ of the 
cluster algorithm. 

Theorem: Let n and b denote the number of nodes and 
branches of the input graph, respectively; then the computa- 
tional complexity of the cluster algorithm is bounded by 
8 (nb). 

Proof The most time-consuming step in the cluster 
algorithm is the choice of the next iterating node from AS. 
Applying our greedy strategy, each adjacency list [20] of 
nodes in AS is scanned once. Let 10(nk) denote the length 
of the original adjacency list of node n, and let li(nk) 
denote the length of the adjacency list of node n, in AS(i). 
The reason for distinguishing &(n,J, Z,(n,); . . , is that the 
adjacency lists actually become shorter after every itera- 
tion. Now, the computational bound can be expressed as 

i=l n, EAS(i) k=l nkeAS(i) 

The last equality holds because each list appears 
throughout at most n times in the whole tableau. Hence 
the computational complexity of our cluster algorithm is 
bounded by 0 (nb). 0 

A computer program for implementing this cluster algo- 
rithm has been developed and the detailed results are 
given in [21]. We will just mention here that the program 
employs an efficient data structure-the edge-oriented 
adjacency list [20]- and a novel “flag” system in updating 
the list structures. 

Part of the test results are shown in Table I, which 
includes a total of ten examples. For each example, we 
have listed the number of nodes n, the number of 
branches b, the product nb, the nmax constraint, the num- 
ber of clusters yielded by the cluster algorithm, the total 
number of bottleneck nodes, and the computer time spent. 
In the sequel, we are going to discuss some of these 
examples in detail. 

5T’he complexity used here is defined to be the number of comparisons 
involved. 
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c 3rd cluster f13,16,15,i7.181; 
Stop! 

08 
Fig. 11. An example illustrating the cluster algorithm. (a) Example 

with three clusters and nmax = 10. (b) The resulting contour tableau. 

Let us now examine Example 1 of Table I thoroughly, 
using the graph shown in Fig. 1 l(a) with nmax = 10. The 
tableau derived from our cluster algorithm is shown in 
Fig. 1 l(b). Observe that the resulting three clusters coin- 
cide with those enclosed by the three dotted lines shown 
in Fig. 1 l(a). The bottleneck is identified as { n8,n,,,n,,}. 
This result is quite good since the optimal solution as 
obtained by inspection consists of one of the following 
three possibilities: {n,,n,a}, {n,,n,,}, or {n,,,n,,}. 

Three. more examples, i.e., Examples 2, 5, and 9 of 
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(4 

Fig. 12. Nine more examples of the application of the cluster algo- 
rithm. (a) Example 2 with three clusters and nmax= 19. (b) Example 5 
with five clusters and nmaX= 
nmax= 17. 

27. (c) Example 9 with four clusters and 

715 

Fi . 
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13. The corn uter time s 
ound. The num E P 

ent versus nb plot illustrating the O(nb) 

Table I. 
er in this p ot corresponds to the example number of 

Table I, are shown in Fig. 12(a)-(c), respectively, where 
the initial nodes are identified by arrows and the clusters 
are encircled by dotted lines. The other examples used in 
Table I can be found in [5]. 

As a final remark about the computational complexity 
associated with the cluster algorithm, let us plot the com- 
puter times spent of Table I versus the product of nb in 
Fig. 13. It is clear that 8 (nb) is an upper bound for the 
complexity because all the data points are bounded by a 
straight line. 

Before we finish this section, let us look at the practical 
circuit example shown in Fig. 14(a), where the schematic 
circuit diagram for each operational amplifier is shown in 
Fig. 14(b) [22]. Using the Ebers-Moll model (Fig. 14(c)) 
[23], each transistor is replaced by a triangular graph in 
the induced sparsity subgraph (Fig. 14(d)). Our associated 
graph optimization problem (i.e., Example 5 in Table I) 
contains 94 nodes and 176 branches (Fig. 12(b)). Since 
each operational amplifier contains 19 internal nodes, let 
us choose nmax= 27. Applying our cluster algorithm, we 
obtain five clusters shown by the dotted lines in Fig. 14(e), 
where the first operational amplifier is split into two 
clusters. This solution is reasonably good unless we de- 
mand that each operational amplifier be included in a 
single cluster. A careful analysis of the tableau shows that 
the “local” character of our greedy strategy is responsible 
for the separation of the first operational amplifier into 
two clusters. On the other hand, if one is adamant about 
retaining each operational amplifier as an inseparable unit 
within each cluster, then we should transform this prob- 
lem into the following weighted clusterproblem: Transform 
each operational amplifier into a “super” node with 
weight 19 (i.e., the total number of internal nodes) and let 
all other nodes have weight 1. Find the set %r2 with 
minimum total weight such that each cluster has weight 
< nmax. 

Observe that with some minor modifications, our 
cluster algorithm is still applicable in solving the above 
weighted cluster problem. 



716 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977 

(a) 

=sls l.Ok 50 k 1 

C C 

a a 4-4 E E 

14 181 
OFFSET 

NULL 
3 (51 50 

Ok 

(4 

03 
Fig. 14. A practical circuit cluster problem. (a) A frequency-shift keyer tone generator. (b) The operational amplifier circuit schematic. (c) The 

Ebers-Moll model for transistors. (d) The mduced transistor sparsity subgraph. (e) The resulting five clusters. Note that due to the greedy strategy, 
the first operational amplifier is broken into two clusters. 
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III. CONCLUDING REMARKS 

A heuristic algorithm for solving the cluster problem 
associated with the tearing of large-scale networks has 
been presented via the contour approach. First, the con- 
cept of a contour tableau was fully explored and utilized 
in developing our cluster algorithm. Then, several intuitive 
ideas such as the greedy strategy, the minimum-degree 
initial-node strategy, and the dynamic cutting strategy 
were employed to improve the efficiency of our algorithm. 

The tradeoffs [15] involved in the strategies adopted 
were discussed together with the computational complex- 
ity of the algorithm. Finally, experimental results showed 
that our algorithm is highly efficient and yields near 
optimal solutions. 
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