
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977 709

An Efficient Heuristic Cluster Algorithm for
Tearing Large-Scale Networks

ALBERT0 SANGIOVANNI-VINCENTELLI, MEMBER, IEEE, LI-KUAN CHEN, MEMBER, IEEE,
AND LEON 0. CHUA, FELLOW, IEEE

Abshzcr-An efficient heuristic algorithm for solving a cluster problem
associated with the tearing of an undirected graph is presented via the
concept of a contour tableau. lie required computation time is shown to
be bounded by tJ(nb), where n and b are the number of nodes and
braocbes of the input graph, respectively.

Experimental results show that OUT algorithm is highly efficient and
yields near optimal solutions.

I. INTRODUCTION

I N DEALING WITH large-scale networks and sys-
tems, extensive decomposition algorithms have been

proposed in varidus fields. In operation research, for exam-
ple, we have’the Dantzig-Wolfe decomposition principle
for linear programming [l] and the Hu decomposition
algorithm for shortest path calculations [2]. In circuit
theory, we have the diakoptic analysis, the generalized
hybrid analysis, and the node-tearing nodal analysis
[3]-[6]. Finally, decomposition techniques also play an
important role in the computation [7] and stability analysis
[8] of large-scale Jystems.

All decomposition methods require that the large
network or system be, partitioned into subsystems (i.e.,
clusters) such that elements in the same subsystem are
strongly interconnected, whereas elements in the different
subsystems are weakly interconnected. In some cases
where the system has a simple layout, a fairly good cluster
partition can be determined by inspection. For arbitrary
systems, however, an algorithm must be used to systemati-

‘tally partition the associated graph into an optimal, or
suboptimal, arrangement of clusters.

Some attempts have been made at finding an optimal
cluster partition in computer logic and page partitioning
[9], [lo], in power system bus clustering [I 11, in network
decomposition [121, in IC placement problems [131, and in
statistical data grouping [14]. In general, the cluster parti-
tion problem is formulated as a graph optimization problem
‘in which an optimal partition of nodes is sought, such that
a certain measure on the interconnection between diffe-
rent groups of nodes is minimized. Depending on the
nature of the problem, the minimization objectives may be

Manuscript received November 22, 1976; revised June 23? 1977. This
work was supported in part by the Joint Services Electromcs Program
under Contract F44620-76-C-0100, in part by the National Science
Foundation under Grant ENG75-22282, and in part by the Naval
Electronics System Command under Contract NOOO39-75-C-0034.

A. Sangiovanni-Vincentelli and L. 0. Chua are with the Department
of Electrical Engineering and Computer Sciences and the Electronics
Research Laboratory, University of California, Berkeley? CA 94720.

L. K. Chen is with the American Electric Power Service Corporation,
New York, NY.

based upon the number of interconnection nodes [2],
[5]-[8], the number of interconnection branches [3], [4],
[9]-[12], the total cost of interconnection branches [13], or
the distance between the “centroids” of clusters [14]. The
various approaches for solving the cluster partition prob-
lems may be classified into four major categories:

i) growing clusters from scratch [9], [12];
ii) interchanging nodes until some local optimality con-

dition is satisfied [13];
iii) transforming the problem into some associated

mathematical equation [lo], [141;
iv) finding the “contour” of an associated graph [l 11.

It has to be pointed out here that none of the above
attempts [9]-[141 yields an efficient global algorithm. Act-
ually, none of them even yields an efficient heuristic
algorithm [15] and there are reasons to believe [5] that all
cluster partition problems belong to a class of hard prob-
lems, the so-called NP-complete class [16], [17], where no
polynomial-bounded global solutions are likely to exist.

In this paper, we will restrict ourselves to the cluster
problem associated with the node-tearing nodal analysis of
large-scale networks [5], [6]. Since it has been shown in [5]
that this cluster problem is NP-complete, we will con-
centrate on finding an efficient but heuristic cluster algo-
rithm.

II. THECLUSTER PROBLEM ANDTHECONTOUR
APPROACH

We shall briefly recall the cluster problem’ as defined in
[5]. Basically, given an n x n structurally symmetric matrix
Y, we want to permute Y into a bordered-block-diagonal
form such that each diagonal block has dimension < nmax
and the dimension of the border is minimized. This prob-
lem has a straightforward graph-theoretic interpretation
[5]. Given a matrix Y, let g, =(a,,, $i3,,) be the associated
undirected graph constructed in accordance with the
following properties:

i) 4 ,, contains n nodes (i.e,, I%,/ = n);
ii) an undirected branch b E ?i3 y joins n, and nj if, and

only if, Yjj#O.
9, is the so-called sparsity graph of Y [181, [191. Let

{ %,, , ay,} denote a partition of nodes of 9,. Then, the
cluster problem consists of minimizing I%yZ[over all

‘It is referred to as GOP1 in [5].

710 IEEE TRANSACTTONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977

Fig. 1. A contour tableau.

distinct partitions {a,, , ?XY,} such that
i) the removal of all nodes in ?XY2 would disconnect the

remaining graph into m components 9\, , ‘&, , * . . ,87, ;
ii)]?)I.$] < nmax, where %$, denote the set of nodes

contained’in !J”,,, k= 1,2;. . ,m.
In [5], this cluster problem is shown to be NP-complete.

Hence, any practical solution would call for a heuristic
approach. The heuristic algorithm to be proposed in this
paper follows a strategy similar to the one introduced in
[ll], and is based on the concept of a contour tableau
which consists of an array of three columns, as shown in
Fig. 1. The leftmost column is called the iterating set (IS),
the middle column the adjacent set (AS), and the right-
most column the contour number (CN). The entries of the
tableau are determined as follows.2

Contour Tableau Construction Algorithm:
Step 1) Choose an initial iterating node and store it in

IS(1).
Step 2) Store in AS(I) all nodes that are adjacent to the

node in IS(l).
Step 3) Place .the cardinality of AS(l) in CN(l).
Step 4) Let i=l.
Step 5) If CN (i) =O, stop!
Step 6) Choose the next iterating node, denoted by ni+ ,,

from AS(i) and place it in IS(i + 1).
Step 7) Update’ AS(i + 1) from AS(i) by deleting the

node n,, , and adding the set V representing all node
adjacent to n,,, that are not already in AS(i) or
{ Uj= JW}.

Step 8) CN(i + 1) =]AS(i + 1)1.
Step 9) Let i=i+ 1, go to Step 5.
Let us first clarify Step 7 with the aid of Fig. 2. In AS(i)

and AS(i+ l), we store the adjacent nodes of the sets of
iterated nodes

respectively. Instead of finding AS(i + 1) from scratch at
each iteration, we want to find an efficient way of updat-
ing AS(i+ 1) from AS(i). Now, let us look at Fig. 2, where
the solid lines denote adjacency relations and the dotted
lines denote possible adjacency relations. Sets { IS(i + 1))

%e graph is assumed to be connected for simplicity.

Fig. 2. A graphic interpretation of Step 7 for updating AS(i+ 1) from
AS(i).

Fig. 3. An example for illustrating the contour tableau construction
algorithms.

and {AS(i)- IS(i+ 1)) are adjacent to

(’ I
i.J Is(i) .

j=l

Since {AS(i) - IS(i + 1)) and V are adjacent to

we can therefore update AS(i + 1) from AS(i) by deleting
IS(i + 1) and adding V, which is precisely Step 7.

Now, let us pause to look at an example. Fig. 3 shows a
graph with nine nodes. It is clustered into two groups of
nodes, { n,,n,,n,,n,} and { n,,n,,n,,n,} which are sep-
arated by the hinged node n5. Let us start the construction
of our contour tableau by selecting arbitrarily the initial
node, say n,, and store it in IS(1). Since { n2, n3, n4, n,} are
the nodes adjacent to n,, they are stored in AS(l). Conse-
quently, CN(l) =4. Let us choose arbitrarily an iterating
node from AS(l), say n3, and put it in IS(2). Observe that
the nodes that are adjacent to { n,,n,} are { n2,n4,n5}. So
they are put in AS(2) and hence CN(2)= 3. Choose the
next iterating node as IS(3) = n5, then AS(3) =
{ n2, n4, n6, n7, n8, n9} and hence CN(3) = 6. The complete
tableau is shown in Fig. 4(a).

In order to understand how the preceding algorithm
can be used to separate the graph into clusters, let us
observe that if X denotes the set of nodes of a given
graph, then the set of AS nodes always separates X into
three subsets; namely,

I Z(i) k b IS(j) AS(i)
j=l 1

SANGIOVANNI-VINCENTELLI et cd.: HEURISTIC CLUSTER ALGORITHM 711

(4 09 (4

Fig. 4. Three different contour tableaus associated with the graph in
Fig. 17 by using three different strategies during the construction. (a)
Arbitrary choice. @) Greedy strategy in choosing the next iterating
node. (c) Initial iterating node selection.

Fig. 5. The graphical interpretation of the role of AS(i) as a separating
set.

,_----.
(DS *

Cluster

Cc)

and

W(i) g X-Z(i)-AS(i)

Fig. 6. An example showing that the greedy strategy may sometimes
give undesirable results. (a) The example graph. (b) Cluster obtained
by choosing n, as the next iterating node. (c) Cluster obtained by
choosing n2 as the next iterating node.

where Z(i) nodes are not adjacent to W(i) nodes (Fig. 5).
As we construct the tableau, the size of AS(j) (i.e., CN(I’))
in each step varies. It is when CN(1’) is very small, hence-
forth called a bottleneck, that Z(i) and W(i) form
clusters. Our aim then is to choose a particular contour
tableau construction algorithm that would yield a good
cluster whenever CN(I’) encounters a bottleneck. By using
arbitrary choices in Steps 1 and 6, as in the preceding
example, the best AS(i) is { n2,n4,n5} (Fig. 4(a)). However,
it is far from the optimal result; namely, AS(j)= {n,},
which in this case can be obtained by inspection.

In the original contour construction algorithm, there are
only two places where choices are made. They are in Step
1 when choosing the initial iteratingcnode, and in Step 6
when choosing the next iterating node. Let us first examine
Step 6. In [111, the strategy chosen is the minimum-fill-in
strategy which is quite time-consuming and hence in-
efficient. In this paper, we propose a greef$ strategy;3
namely, at every iteration, we simply choose the node in
AS(j) that yields minimum CN(1’+ l)= IAS(I’+ I)1 or,
equivalently, we choose the node that yields minimum
) I/). If a tie is encountered, we choose arbitrarily among
the ties. To illustrate this strategy, we start with n, and
eventually construct the tableau shown in Fig. 4(b). In-
deed, it yields our desired goal; namely, to separate the
two clusters { n,,n,,n,,n,} and { n,,n,,n,,n,} through the
bottleneck { n5}.

3“greedy” is a very common term in the graph literature [2] and is
attributed to Jack Edmonds [24]. It means that the algorithm determines
the direction for iteration generally by checking for the “cheapest” local
condition.

Our main reason for choosing the greedy strategy is that
it can be easily implemented. To analyze the efficiency of
this strategy, we will shortly derive its computational
complexity. Before doing this, however, let us first identify
its shortcomings by analyzing the example shown in Fig.
6(a). Suppose after the ith iteration, AS(i)= { n,,n,}. If we
choose n, to iterate next, we will end up with the cluster
shown by the dotted line in Fig. 6(b) which has two
bottleneck nodes. On the other hand, since 1 V(n,)l=3 and
j V(nJl=2, application of our greedy strategy would re-
quire that n2 be iterated next. The resulting cluster is
shown by the dotted line in Fig. 6(c) which has five
bottleneck nodes. This result, i.e., five bottleneck nodes
versus two bottleneck nodes, of course is undesirable.

Let us examine next the choice of the initial iterating
node. If we start the tableau construction from n, in Fig. 3
and use the greedy strategy, then the resulting tableau is
shotin in Fig. 4(c). Observe that the basic contour prop-
erty for identifying the clusters is lost. In this case the
choice of node n5 as the starting node is highly undesir-
able because n5 is a bottleneck node. In fact, the initial
choice of a bottleneck node-separating, for example, two
cludters+nds up in a contour which identifies the union
of the two “real” clusters and of the bottleneck node as a
“unique” cluster. Therefore a sound strategy for choosing
the initial node is to avoid bottleneck nodes. Since a
typical characteristic of a bottleneck node is revealed by
its degree, which is in general large compared with the
degree of the other nodes in the graph, a good rule is to
start with a node with the minimum degree. In our exam-
ple, all nodes except n2 have degree 1. Observe that if we

712 IEEE TRANSACDONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977

“IO

“9
“II

“9

(4

IS As tl

I
“11 “lo*“5

I
“10 “5

1

“5
n1,t~2,n3,n4.n6,*7.*8.*~ 8

“1
“2,“3’“4’“6*“7’“8’“9 7

“2 “3*“4’“g~“7’“8*“g 6

k31
“4>“6,“7.“8*“9

1’1

“4 n6’“,‘n8’n9 4

“6 “7.“8’“9 3

“7 “8 ‘“9
2

n
8

“9 1

“9 + 0

“2

“I 4

“9

(4
Fig. 7. Examples showing how the “minimum-degree initial-choice”

strategy may sometimes give undesirable results. (a) An example
graph. (b) Contour tableau obtained by choosing n10 as the initial
node. (c) Another example graph.

choose any one of them as the starting node, they will all
yield a tableau similar to Fig. 4(b). Besides, this
minimum-degree strategy coincides with our greedy
strategy since a node with the minimum degree will yield
a minimum CN(1). We still may have problems in identi-
fying correctly clusters in the graph as shown in Fig. 7(a)
and (b).

In this case we identify {n,,,n,,} and {n,;.. ,n4,
n6; . . , n,j as the clusters with ns as the bottleneck node.

This phenomenon can be classified as a special case of
the so-called redundancy phenomenon, which we will now

(4

A 8+D C+E+F

(4 (4

Fig. 8. A graphic;1 illustration of the redundancy phenomenon and the
dynamic contour cutting strategy to overcome it. (a) Example with
three clusters. (b) Original contour tableau. (c) Original CN curve. (d)
Contour tableau with dynamic contour cutting. (e) CN curve with
dynamic contour cutting.

illustrate with the help of the example shown in Fig. 8(a).4
This example shows three clusters A, B, and C separated
by bottleneck nodes, D, E, and F. Let us start with A and
use solid lines to denote adjacency relations and dotted
lines to denote possible adjacency relations. Using the
preceding cluster algorithm, we will end up with the
tableau shown in Fig. 8(b) and the associated CN curve
shown in Fig. 8(c). Observe that bottleneck node F is
redundant in the sense that it appeared twice, in {D + F}
and {E + F}. Therefore, in selecting the best place to cut
the CN curve into clusters, we have inaccurate informa-
tion because I{D+F}u{E+F}~#~{D+F}I+I(E+F)I.
The resulting cut may not be the best one that is possible.
Moreover, it is unnecessary to iterate on D, E, and F in
the tableau because, once they are determined to be
bottleneck nodes, their adjacency is of no more concern to
the remaining graph.

To overcome this redundancy phenomenon, we must
resort to the concept of dynamic contour cutting; namely,
after we have determined cluster A and its bottleneck
{D + F}, we throw away {D + F} from any future itera-

4Although CN is actually a discrefe function of the iteration step, we
will approximate it by drawing a continuous curve through these discrete
points as shown in Figs. 8 and 9.

SANGIOVANNI-VINCENTELLI et al.: HBURISTIC CLUSTER ALGGRITHM 713

c
cluster I

‘nmox llerallon

CN

(4

Fig. 9. An illustration of the various shapes of CN versus iteration ste
and some methods for grouping the nodes into clusters. (a) Smoot 1
curve with well-defined clusters. (b) A cluster containing nplax nodes
before a local minimum is reached. (c) A cluster contaimng many
small wiggles. (d) A cluster containing many small clusters. (e) Least-
local-mimmum clustering strategy.

tion. The dynamic contour cutting strategy will therefore
yield a smaller and more efficient tableau as illustrated in
Fig. 8(d) and (e). Let us now return to the example shown
in Fig. 7(a). After we have determined the cluster formed
bY ln109 n,,} and bottleneck node n5, we throw away n5.
The identification of {n,, n2, n3, n4} and of { n6, n,, n8, n,} as
clusters is then immediate. This final result is the correct
identification of the three clusters of the graph. Therefore
the dynamic contour cutting enhances the efficiency of
the “minimum-degree initial-choice” strategy. Another
possible shortcoming of the minimum-degree selection,
which cannot be avoided by the dynamic control cutting,
is shown in Fig. 7(c). In this case, the graph has a cluster
formed by one node only and this node is selected as the
initial choice. Although it is unlikely that this situation
will occur in practice, we can nevertheless avoid such poor
initial choice by rejecting all initial nodes which are char-
acterized by a large value of CN(2)-CN(l).

In our original cluster problem, the number of nodes in
each cluster is constrained to be less than or equal to nmax.
In the preceding cluster algorithm, this constraint has not
yet been taken into consideration. However, we can easily
incorporate it by cutting the contour whenever the num-
ber of nodes in the cluster reaches nmax before a local
minimum is attained (Fig. 9(a) and (b)).

Fig. 10. Flow chart for the refined cluster algorithm.

Another assumption that we have made in the preced-
ing cluster algorithm is that the CN curves in Fig. 9(a)
and (b) are very “smooth.” In .practice, the CN curve
could be very erratic and may in fact contain many small
wiggles as illustrated in Fig. 9(c). Moreover, it may also
contain many small clusters as in Fig. 9(d). In such
situations, our cluster algorithm would simply yield too
many clusters, each with a very small dimension. Besides,
the total number of bottleneck nodes would become too
large.

To overcome the occurrence of small clusters, we can
delay our searching for a local minimum until after Lyn,,,
nodes have been iterated, where (u=O.64.8 (Fig. 9(d)). To
overcome the occurrence of small wiggles, we can keep a
record of all local minima and choose the smallest local
minimum that occurs between cxn,,, and nmax as the cutoff
point. This is illustrated in Fig. 9(e).

We are now ready to present a “refined” cluster algo-
rithm which takes into consideration all of the problems
identified in the preceding discussions; namely, the nmax
constraint, the small wiggle and small cluster properties of
CN curves, and the redundancy phenomenon. The flow
chart for this refined cluster algorithm is presented in Fig.
10. It has to be noted that the block “update adjacency
list” implements the dynamic contour cutting by removing
the adjacency relations involving elements from $& and
from the cluster formed by

I
i 1 U IS(j) .

j=l

714 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977

TABLE I
TESTINGRESIJLTSOFTHEI~~IPLEMENTATIONOFTHECLUSTER

ALGORITHM

Let us now analyze the computational complexity’ of the
cluster algorithm.

Theorem: Let n and b denote the number of nodes and
branches of the input graph, respectively; then the computa-
tional complexity of the cluster algorithm is bounded by
8 (nb).

Proof The most time-consuming step in the cluster
algorithm is the choice of the next iterating node from AS.
Applying our greedy strategy, each adjacency list [20] of
nodes in AS is scanned once. Let 10(nk) denote the length
of the original adjacency list of node n, and let li(nk)
denote the length of the adjacency list of node n, in AS(i).
The reason for distinguishing &(n,J, Z,(n,); . . , is that the
adjacency lists actually become shorter after every itera-
tion. Now, the computational bound can be expressed as

i=l n, EAS(i) k=l nkeAS(i)

The last equality holds because each list appears
throughout at most n times in the whole tableau. Hence
the computational complexity of our cluster algorithm is
bounded by 0 (nb). 0

A computer program for implementing this cluster algo-
rithm has been developed and the detailed results are
given in [21]. We will just mention here that the program
employs an efficient data structure-the edge-oriented
adjacency list [20]- and a novel “flag” system in updating
the list structures.

Part of the test results are shown in Table I, which
includes a total of ten examples. For each example, we
have listed the number of nodes n, the number of
branches b, the product nb, the nmax constraint, the num-
ber of clusters yielded by the cluster algorithm, the total
number of bottleneck nodes, and the computer time spent.
In the sequel, we are going to discuss some of these
examples in detail.

5T’he complexity used here is defined to be the number of comparisons
involved.

1

2

3

4

5
6

7

8

9

10

1

2

3

4

5

6

7

s

9

LO

1

2

3

1

5

c 1st cluster (1.2.4.3.7.5.61;
throw avay cluster and borrlene
bottleneck nodes (i.e.. node 8);
start again.

c 2nd cluster 111,9,10,19.21.20.
2,.22.24.25): Lh-0” away cluster
and bottleneck nodes (i.e.. nodes
12. 14); start again.

c 3rd cluster f13,16,15,i7.181;
Stop!

08
Fig. 11. An example illustrating the cluster algorithm. (a) Example

with three clusters and nmax = 10. (b) The resulting contour tableau.

Let us now examine Example 1 of Table I thoroughly,
using the graph shown in Fig. 1 l(a) with nmax = 10. The
tableau derived from our cluster algorithm is shown in
Fig. 1 l(b). Observe that the resulting three clusters coin-
cide with those enclosed by the three dotted lines shown
in Fig. 1 l(a). The bottleneck is identified as { n8,n,,,n,,}.
This result is quite good since the optimal solution as
obtained by inspection consists of one of the following
three possibilities: {n,,n,a}, {n,,n,,}, or {n,,,n,,}.

Three. more examples, i.e., Examples 2, 5, and 9 of

SANGIOVANNI-VINCENTELLI et cd.: HEURISTIC CLUSTER ALGORITHM

(4

Fig. 12. Nine more examples of the application of the cluster algo-
rithm. (a) Example 2 with three clusters and nmax= 19. (b) Example 5
with five clusters and nmaX=
nmax= 17.

27. (c) Example 9 with four clusters and

715

Fi .
t

13. The corn uter time s
ound. The num E P

ent versus nb plot illustrating the O(nb)

Table I.
er in this p ot corresponds to the example number of

Table I, are shown in Fig. 12(a)-(c), respectively, where
the initial nodes are identified by arrows and the clusters
are encircled by dotted lines. The other examples used in
Table I can be found in [5].

As a final remark about the computational complexity
associated with the cluster algorithm, let us plot the com-
puter times spent of Table I versus the product of nb in
Fig. 13. It is clear that 8 (nb) is an upper bound for the
complexity because all the data points are bounded by a
straight line.

Before we finish this section, let us look at the practical
circuit example shown in Fig. 14(a), where the schematic
circuit diagram for each operational amplifier is shown in
Fig. 14(b) [22]. Using the Ebers-Moll model (Fig. 14(c))
[23], each transistor is replaced by a triangular graph in
the induced sparsity subgraph (Fig. 14(d)). Our associated
graph optimization problem (i.e., Example 5 in Table I)
contains 94 nodes and 176 branches (Fig. 12(b)). Since
each operational amplifier contains 19 internal nodes, let
us choose nmax= 27. Applying our cluster algorithm, we
obtain five clusters shown by the dotted lines in Fig. 14(e),
where the first operational amplifier is split into two
clusters. This solution is reasonably good unless we de-
mand that each operational amplifier be included in a
single cluster. A careful analysis of the tableau shows that
the “local” character of our greedy strategy is responsible
for the separation of the first operational amplifier into
two clusters. On the other hand, if one is adamant about
retaining each operational amplifier as an inseparable unit
within each cluster, then we should transform this prob-
lem into the following weighted clusterproblem: Transform
each operational amplifier into a “super” node with
weight 19 (i.e., the total number of internal nodes) and let
all other nodes have weight 1. Find the set %r2 with
minimum total weight such that each cluster has weight
< nmax.

Observe that with some minor modifications, our
cluster algorithm is still applicable in solving the above
weighted cluster problem.

716 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-24, NO. 12, DECEMBER 1977

(a)

=sls l.Ok 50 k 1

C C

a a 4-4 E E

14 181
OFFSET

NULL
3 (51 50

Ok

(4

03
Fig. 14. A practical circuit cluster problem. (a) A frequency-shift keyer tone generator. (b) The operational amplifier circuit schematic. (c) The

Ebers-Moll model for transistors. (d) The mduced transistor sparsity subgraph. (e) The resulting five clusters. Note that due to the greedy strategy,
the first operational amplifier is broken into two clusters.

SANGIOVANNI-VINCENI’JZLLI et al.: HEURISTIC CLUSTER ALGORITHM

III. CONCLUDING REMARKS

A heuristic algorithm for solving the cluster problem
associated with the tearing of large-scale networks has
been presented via the contour approach. First, the con-
cept of a contour tableau was fully explored and utilized
in developing our cluster algorithm. Then, several intuitive
ideas such as the greedy strategy, the minimum-degree
initial-node strategy, and the dynamic cutting strategy
were employed to improve the efficiency of our algorithm.

The tradeoffs [15] involved in the strategies adopted
were discussed together with the computational complex-
ity of the algorithm. Finally, experimental results showed
that our algorithm is highly efficient and yields near
optimal solutions.

fll

PI

(31

141

151

PI

171

PI

191

1101

1111

f121

1131

1141

v51

1161

iI71

frsl

REFERENCES
G. B. Dantzig and P. Wolfe, “The decomposition algorithm for
En;; programmmg,” Econometrica, vol. 29, no. 4, pp. 767-778,

T. C. Hu, Integer Programming and Network Flow.
Addison-Wesley, 1969.

Reading, MA:

G. Kron, Diakoptics-Piecewise Solution of Large-Scale Systems.
London, England: MacDonald, 1963.
L. 0. Chua and L. K. Chen, “Diakoptic and generalized hybrid
analysis,” IEEE Trans. Circuits and Systems, vol. CAS-23, pp.
694705, Dec. 1976.
A. Sangrovanni-Vincentelli, L. K. Chen, and L. 0. Chua, “Node-
tearing nodal analysis,” Electronics Research Laboratory, Univ.
California, Berkeley, Memo. No. ERL-M582, Sept. 1976.
-“A new tearing approach-The node-tearing nodal analysis,”
in Proc. 1977 IEEE Int. Symp. Circuit and Systems (Phoenix, AR,
Apr. 1977d) gp. 143-148.
G. Guar a ass1 and A. Sangiovanni-Vincentelli, “A two levels
algorithm for tearing,” IEEE Trans. Circuits and Systems, vol.
CAS-23, pp. 783-791, Dec. 1976.
F. M. Callier, W. S. Chan, and C. A. Desoer, “Input-output
stability theory of interconnected systems using decomposition
techniques,” IEEE Trans. Circuits and Systems, vol. CAS-23, pp.
714-729, Dec. 1976.
D. Ferrari, “Improving locality by critical working sets,” Comm of
ACM, vol. 17, no. 11, pp. 614-620, Nov. 1974.
W. E. Donath and A. J. Hoffman, “Lower bounds for the parti-
tioning of graphs,” IBM J. Res. and Dev., vol. 17, no. 5, pp.
420425, Sept. 1973.
E. C. 0 buobiri, W. F. Tinney, and J. W. Walker, “Sparsity-di-
rected % ecomposition for Gaussian elimination on matrices,”
iffoE Trans. Power, Appr. Syst., vol. PAS-89, pp. 141-150, Jan.

F. Luccio and M. Sami, “On the decomposition of networks in
minimally interconnected subnetworks,“IEEE Trans. Circuit
Theory, vol. CT-16, pp. 184-188, May 1969.
B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell System Tech. J., vol. 49, no. 2, pp.
291-307, Feb. 1970.
J. C. Gower, “Comparison of some methods of cluster analysis,”
Biometrics, vol. 54, pp. 623-637, Dec. 1967.
S. Lin, “Heuristic programming as an aid to network design,”
Networks, vol. 5, no. 1, pp. 3343, 1975.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
;9n$4&sis of Computer Algortthms. Reading, MA: Addison-Wesley,
-.. . .
R. M. Karp, “On the computational complexity of combinatorial
problems,” Networks, vol. 5, no. 1, pp. 45568, 1975.
S. Parter, “The use of linear graphs in Gaussian elimination,”
SIAM Reuiew, vol. 3, no. 2, pp. 119-130, Apr. 1961.

+

Leon 0. Chna (S’SO-M’62-SM’7(rF’74), for a photograph and biogra-
phy please see page 117 of the March issue of this TRANSACTIONS.

[I91

PO1

[W

WI
1231

~241

717

R. A. Willoughby, “A survey of sparse matrix technology,” IBM
&.;arch, Yorktown Heights, New York, NY, Rep. RC 3872, May
__ .-.
L. K. Chen, B. S. Ting, and A. Sangiovanni-Vincentelli, “An
edge-oriented adjacency list for undirected
Research Laboratory, Univ. California,

gra hs,”
P

Electronics
Berke ey, Memo. No.

ERL-M589, May 1976; also Int. J. Circuit Theoty Appl., to be
published.
E. C. Cua, “Fundamental loops generation and clusters analysis-
-algorithm and implementation,” Master’s thesis (plan II) De-
partment of Electrical Engineering and Computer Science, Univ.
California, Berkelev, June 1976.
Linear Integrated -Circuits Data Book, Motorola, 1972, pp. (7-
440)-(7-442).
L. 0. Chua and P. M. Lin, Computer-Aided Analysis of Electronic
Circuits: Algorithms and Computational Techniques. Englewood
Cliffs, NJ: Prentice-Hall, 1975.
J. Edmonds, “Matroids and the greedy algorithm,” Math. Pro-
gramming, vol. 1, pp. 127-136, Nov. 1971.

Alberto Sangiovanni-Vincentelli (M’74) was
born in Milano, Italy, on June 1947. He received
the Dr. Eng. degree (Summa cum Laude) from
the Politecnico di Milano, Milano, Italy, in
1971.

From 1974 to 1977 he held the position of
Associate Professor at the Istituto di Elettro-
tecnica and Elettronica de1 Politecnico di
Milano, Milano, Italy. In 1975 he was Research
Associate at the Department of Electrical En-
gineering and Computer Sciences, University of

California, Berkeley. Dunng the academic year 19761977, he was
Visiting Assistant Professor at the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley. Since July
1977, he has been Assistant Professor at the same department. His
research interests are in computer-aided design of electronic circuits and
systems, large-scale systems, and layout of large-scale electronic circuits.

Dr. Sangiovanni is a member of IEEE. He is a member of the
Large-Scale Networks Committee of the IEEE Circuits and Systems
Society.

*

His current interests
tion of modem circu

Li-Kuan Chen (S’73-M’77) was born in China,
1949. He received the B.S., M.S., and Ph.D.
degrees in electrical engineering and computer
sciences from the University of California,
Berkeley, in 1970, 1974, and 1976, respectively.

He has since been associated with the Com-
puter Applications Division of the American
Electric Power Service Corporation. His current
responsibility lies in the area of application of
analytical and computational techniques in the
operations of AEP river transportation system.

also include large-scale networks and the applica-
it and system theory to power system problems.

