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A Mu ltileve l Newton Algorithm with  
Macromodeling  and Latency for the 

Analysis o f Large-Scale Nonlinear 
Circuits in the T ime Domain 

N. B. GUY RABBAT, SENIOR MEMBER, IEEE, ALBERT0 L. SANGIOVANNI-VINCENTELLI, MEMBER, IEEE 

AND HSUEH Y. HSIEH, MEMBER, IEEE 

Abstmct-Analysis techniques which take advantage of the strUmal 
properties of large-scale electrical networks are discussed. Exact macro- 
models of a subnetwork are defined and a sufficient condition on the 
subnetwork equations for the existence of a macromodel is given. A 
multilevel Newton algoritkm based on macromodels is presented. The 
aigoritbm is shown to have local quadratic convergence provided that 
suitable conditions on the continuity and nonsingularity of the Jacobian of 
the network equations are satisfied. The concept of latency for the analysis 
of large-scale networks in the time domain is discussed. ‘Ibe relationship 
between latency and numerical integration methods is investigated. 

I. INTRODUCTION 

T  HE time-domain analysis of electronic circuits re- 
quires the solution of nonlinear algebraic-differential 

equations. Implicit integration formulas (for example [l]), 
modifications of the Newton-Raphson’s algorithm (for 
example [2]) and sparse matrix techniques (for example 
[3]) made possible the accurate analysis of circuits con- 
taining up to hundreds of active devices within reasonable 
computation time. Computer programs such as SPICE [4] 
and ASTAP [5] have been developed by applying the 
previously mentioned numerical techniques. 

Recent advances in large-scale integrated circuits have 
posed the challenge of analyzing circuits containing thou- 
sands of active devices. In this framework, the use of 
circuit simulation programs such as ASTAP or SPICE is 
not economically feasible. Recently, timing simulation [6], 
[7] has been proposed as a viable alternative to circuit 
simulation when only an approximate analysis of the 
digital circuit is required. Hybrid simulation [8], [9] has 
now been introduced to analyze circuits where various 
parts of the same integrated circuit must be analyzed with 
different accuracy. Hybrid simulation programs such as 
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DIANA [8] and SPLICE [9] perform concurrent circuit, 
timing, and logic analysis of various parts of the same 
circuit. 

In this paper, we will discuss techniques required to 
exploit the characteristic properties of many electronic 
circuits for a  more efficient analysis. In particular, we will 
explore the fact that many of these i) consist of identical 
repetitive subnetworks and ii) contain subcircuits which 
are “inactive,” i.e., their electrical variables are almost 
constant, for most of the simulation time. Characteristic i) 
can be exploited by using tearing algorithms [23]-[32] and 
by macromodeling [ 111, [ 171, [ 181. The basic idea is to 
decompose the circuit into identical subcircuits and to 
analyze them separately. 

Characteristic ii) has been used to speed up the analysis 
in logic simulation called “event driven” when only the 
active part of the circuit is analyzed. The idea of taking 
advantage of the latency of electronic circuits in a circuit 
simulation has been introduced in [ 111, [ 121. Basically, 
when a subnetwork is found to be latent at a  certain 
instant of time t,+ 1, the corresponding elements in the 
Jacobian of the circuit equations are not evaluated at t,,+ 1, 
and the value of the subcircuit variables is set equal to the 
one taken at time t,,. 

In this paper, we define rigorously an exact macro- 
model of a  given nonlinear network and we give a 
sufficient condition on the nonlinear network equations 
for the existence of a  macromodel. Then we propose a 
new multilevel Newton algorithm with local quadratic 
convergence properties. The algorithm is based on macro- 
models and effectively decomposes the network into 
smaller subsystems which can be analyzed separately. 
Then we introduce the concept of latency. The relation- 
ship between latency and numerical integration methods 
is investigated. The multilevel Newton algorithm with 
macromodels and latency has been implemented in the 
IBM’ program MACRO (macromodular analysis of 
circuit response and operation). 

‘MACRO is described in [36]. 

0098-4094/79/0900-0733$00.75 0 1979 IEEE 



734 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CA.+26, NO. 9, SEPTEMBER 1979 

II. THEORETICAL BACKGROUND . . 

A nonlinear lumped circuit can be analyzed in the time 
domain by solving a set of differential-algebraic nonlinear 
equations of the form 

f(z(t>,i(t>,t>=e> T>t>O (2.1) 

where z(t) E RP is, in general, the vector of node voltages, 
branch voltages, branch currents, capacitor charges and 
inductor fluxes, 8 is the origin in Rp, fz RP x RP x R ,+RP 
is a continuously differentiable function with respect to 
t(f) and i(t), and a piecewise continuous function of t. 

Since (2.1) is, in general, a stiff system, implicit and stiffly 
stable [l] integration formulas are used to solve (2.1). In 
particular, we will concentrate on the backward dif- 
ferentiation formulas introduced in [13]. According to 
[ 131, we “discretize” the operator d/dt and use a back- 
ward differentiation formula of order k to obtain 

-hi,,+,= i: aiZn+l-i (2.2) 
i=O 

where &,+ , is the computed value of i(t,+ ,), z,+ ,-i is the 
computed value of z(t,,+,-i), i=O;**,k, hp t,,+,-tn; 
and the ai’s are determined by the requirements that (2.2) 
be exact for polynomials of degree $k. By using (2.2), 
(2.1) becomes 

A Zn+19Zn,’ * * ~zn+1-k,tn+1)=f4 n=k-l;..,q 

(2.3) 

where tq+ , = T, and z,; - * , zk-, are computed by a first- 
order backward differentiation formula or a Runge-Kutta 
method (both self-starting). Since z,+, -i, i = 1, * * * , k, have 
been already computed at time t,,+,, (2.3) can be consid- 
ered as a function of zn+, only. Then (2.3) can be written 
as 

’ eI+1(zn+1)=~9 n=k-l;..,q (2.4) 

where l$+ , : RP+RP is continuously differentiable and 
the index n + 1 indicates that the function is different at 
different instants of ti.me. Equation (2.4) must be solved 
for zn+,. The most commonly used methods for solving 
(2.4) are based on the Newton-Raphson method which 
consists of the following iterative schemes: 

z;+z’ PI+1 - ~~~+,(z!+,)-‘~+,(z~+I~ (2.5) 

where D&+,(zj+,)-’ is the inverse of the Jacobian of 
F,+, computed at z{+ ,. It is well known that the iterations 
defined by (2.5) converge to z,,+ , if the initial guess zz,, is 
sufficiently close to z, + ,, and that the rate of convergence 
is quadratic (e.g., see [14]). In order to improve conver- 
gence, it is often worth starting with an initial guess z,“,, 
which is predicted b;y fitting a polynomial of degree k 
through z,, * * * , z,-~. ‘Therefore, we have 

k+l 

Z,O+l=Z,P;1 A x YiZn+l-i* 
i=l 

(2.6). 

Fig. 1: The a-port. 

The truncation error of the backward differentiation for- 
mula of order k for a component z~,~+, of z,, ,, r- 
1; * * ,p, has been proven (e.g., see [13]) to be 

& ; g h(i,(r,+,)-i,,,+,)=E,‘+8(hk+2), r= )... 1 

(;p7) 

where 

EL= t 
h 

n+l-‘n-k 
(z,,,+,-z~‘,+,)+0(hk+2), 

r= 1; * * ,P (2.8) 
and (z,,,-~-z,(~,-~)) is assumed to be 8(hk”). 

III. MACROMODELS ’ 

A. Definition of Macromodels 

Let GJZ. be the large-scale network to be analyzed. Let 
% consist of interconnected (possibly repetitive) sub- 
networks Si, i = 1, * + * ,p. In general, each of the p sub- 
networks interacts with the rest of the network only at a 
small number of nodes. A macromodel of a network 
consists of a set of nonlinear and/or time varying 
elements or of a set of nonlinear algebraic-differential 
equations [ 181 simulating the external behavior of the 
subnetwork, We make use of macromodels at the 
Newton-Raphson iteration level, i.e., when (2.4) is solved. 

Let S be a subnetwork to be represented by a macro- 
model. Let S(r,) be the nonlinear companion network 
associated with the integration formula used at time t,, 
[23]. Let N, JNI2 = (I + 1, be the subset of nodes of S which 
are connected to the rest of the network. We now pick up 
a node in N. as a reference node and we consider S as a 
u-port (see Fig. 1). Let u E R” and iE R” be the port 
voltages and the port currents of S. Let y E R”, 
y p [Up’ * * ,up,ir+,; * * ,i,]’ be the vector of the output or 
responses of S and UERO, u k [i,; * * ,i,,v,.+,; * * ,u,]’ be 
the vector of the inputs or stimuli of S. We assume that the 
interactions of S with the rest of the network take place 
only at the nodes in N, i.e., there is no coupling between 
elements of S and elements of the rest of GJ. Let 

4h~~dd = 8 (3.1) 

be the set of the nonlinear algebraic equations describing 
the behavior of the companion network S(t,,), where x,, E 
R” is the vector of “internal” variables of S( t,) and H,: 

21 + 1 denotes the cardinality of a set. 
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R” x R” x R”+R”+“. Since now on all the discussion will 
be concerning S(t,), for the sake of notational simplicity, 
we drop all the subscripts n from vectors and functions. 
Let S2cRZo+” be the set of all the admissible variables for 
S(t,), i.e., 

i-2 p {(u,x,Y)j~(u,x,Y)=~}. (3.2) 

We  define an exact macromodel for S(t,) as follows. 
Definition 3.1: Let S( t,) be described by (3.1). An exact 

macromodel of S(t,) is an input-output map of the form 

Y= G,(u) (3.3) 

where GY: Ra+Ro, such that for all (&,.?,$)>E,j= G,(s). 
q 

Remark 3.2: Some papers (e.g., [17], [18]) introduce 
macromodels represented by circuit elements or equations 
which approximate the “external” behavior of S(t,,) or of 
S. Our definition of macromodel is such that the external 
behavior of the circuit is exactly represented by the mac- 
romodel. cl and 

B. Existence of Macromodels and Their Differentiability 
Properties 

A basic question to answer is under which conditions 
on (3.1) a macromodel of S(t,) exists. 

Assumption 3.3: Let DH denote the Jacobian of H and 
DH(u,x,y) denote the Jacobian of H evaluated at the 

. point (u,x,y). H in (3.1) is Lipschitz continuously dif- 
ferentiable and DH is uniformly bounded on 52, i.e., 

a) there exists L>O such that for all pairs (ur,x”,y’), 
(u2, X2,Y2) E Q, 

1) DH(u’,x’,y’) - DH(u2,x2,y2)ll 

<LJ((~1,~1~Y1)-(~2~~2,Y2)ll (3.4) 

b) there exists (Y > 0 such that for all (u, x,y) E a, 

IlDH(u,x,~)ll (a. (3.5) 

q 
Assumption 3.4: Let D,H, D,,H, D,H, Dx,yH denote, 

respectively, the Jacobians of H with respect to x, to y, to 
u, and to x and y. The inverse of the (u + n) x (a+ 7) 
matrix Dx,YH(u,x,y), Dx,YH(u,x,y)-l exists for all (u,x,y) 
ES~ and is uniformly bounded on 52. 0 

Proposition 3.5: Suppose that Assumptions 3.3 and 3.4 
hold. Then a macromodel of S(t,) exists and is Lipschitz 
continuously differentiable. 

Proof: By the implicit function theorem (see [14, p. 
1281) for all (u, x,y) E a, there exists a unique continuously 

differentiable function G: R”-+Ra+v, G(u) k G,(u) 

( 1  G,(u) ’ 
G,: R”+Rn, G,: Ra+Ro, such that 

H(u,G,(u),G,(u))=e (3.6) 

, 
735  

A 
i A  ic 

C  
+ G,(i,,i,), + 

+ 
"A 

-6 ' 

_ GA(iA,ic) + vc 

Fig. 2. An example of macromodel.  

DG(u)= 

= - D#(u, C(u), C,(u))-‘D,H(u, G ,(u), G ,(u)) 
(3.7) 

where DG(u) is the Jacobian of G evaluated at u. Then, 
according to Definition 3.1, G, is a macromodel of S(t,,), 
and G, is continuously differentiable. Next, define the set 
U g {u]3x,y such that (u,x,y)EQ}. To prove that DGy is 
Lipschitz on U, it is sufficient to prove that 
Dx,,JW, x,Y)- ’ is Lipschitz on Q, since the product and 
the composition of two Lipschitz functions is Lipschitz. 
By uniform boundedness of Dx,YH(u,x,y)-l and by 
Lipschitz continuity of Dx,YH, there exists y > 0 and L > 0, 
such that for all (~‘,x’,y’), (u2,x2,y2)~51, 

II D,,H(~‘J’,Y’)-’ - D,,H(u~J~,Y~)-‘II 

= ~~Dx,YH(ul,xl,yl)-l(D~,YH(d~l~~l) 

- D,,H(u~,x~,~~))D,,H(~~J~,Y~)-‘~I 

< JlD,,H(rr’,x’,y’)-‘II lIQ,y~(~‘~~l~~l) 

- Dx,YH(u2,x2,y2)ll l l~~,y~~~2~~2~~2~-111 

<y2Ll((u1,x1,Y1)-(~2,~2~Y2~ll (3.8) 

and the proof is completed. 

C. An Example 

q 

Consider a subnetwork S (Fig. 2(a) connected to the 
rest of the network at nodes A, B, and C. Node B is 
chosen as reference node. The output vector consists of v, 
and vc, the inputs are iA and ic. A macromodel is shown 
in Fig. 2(b), where the algebraic equations are represented 
by circuit elements, i.e., by two controlled sources. 
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IV. A MULTILEVIELNEWTONALGORITHMFOR 
MACROMODULARNETWORKS 

A. The Algorithm 

For the sake of simplicity, assume that there is only one 
subnetwork S in 9Z which is described by its macro- 
model. Let the equations describing the behavior of GJt at 
time t, be written as 

F(u,G,(u),w)=8 (4.1) 
where w E RP is the vector of network variables in 9Z not 
interacting with S, F: R” X R” x RP+Ro+P and G,: R”+ 
R” is the macromodel of S(t,). Newton’s algorithm ap- 
plied to (4.1) consists of the following scheme: 

(D,F(u,G,(u),w)+D,~(:(u,G,(u),w) 

* DGy(u)JW(u, G,(u), w))( ,“:) 

+F(u,qu),w)=e. (4.2) 

Thus to apply Newton’s method we need to evaluate 
G,(u) and DG,(u). Acc.ording to Definition 3.1, the mac- 
romodel G,(u) is implicitly determined by the nonlinear 
system 

H(~, x,y) = 8. (4.3) 
To evaluate G,(h), we can use a second Newton process 
on (4.3) which yields 

Dx,,J% X,Y> 
( 1 

;; +H(u,x,y)=8. (4.4) 

This second Newton process is at a lower level since u is 
determined from (4.2) and held fixed in (4.4). Now, if (4.3) 
is solved precisely, then the error in the evaluation of the 
macromodel and its derivative is zero and when these are 
used in (4.2), we have a true Newton iteration with local 
quadratic convergence. However, if the macromodel and 
its derivative are not determined precisely, then the ques- 
tion of quadratic convergence is open. The idea we pro- 
pose to retain local quadratic convergence in the presence 
of error is as follows. It would seem to make no sense to 
solve (4.3) to a higher precision than the current iteration 
for (4.1) and it would only seem necessary to tighten the 
convergence control for (4.4) at the same rate (4.2) is 
converging. Hence, iteration (4.4) is stopped whenever 

II@x&)II < lI@wWl12~ (4.5) 

To distinguish this from the true Newton process (4.2) 
when (4.3) is solved precisely, we call our process a 
multilevel Newton iteration. In the algorithm, G,““” and 
D BpPGy denote, respectively, the computed approximations 
of G, and of DGy. 

MultiLevel Newton Algorithm (MLNA) Algorithm 4.1: 
Parameter: 7’ E N + . 
Data: u’ERO, w’ER~, x~,~ER”,~~,~ER~. 
Step 0: Initialization. Set i = 0. 
Step 1: Initialization of the lower level Newton algo- 

rithm. Set k = 0. 

Step 2: Compute (~~~~+‘,y~~~+‘)=(x~~~,y~~~)+(Ax, 
Ay) by solving 

Dx,yH(~i,~iTk,yi9k) 
( 1 

;; + H(ui,Xi,k,yi*k) = 8. 

Step 3: If Il(Ax,Ay)ll >T~, set k= k+l, compute 
H(u~,x~,~,~~*~), Dx,yH(~i,xipk,yi*k) and go to Step 2. Else 
continue. 

Step 4: Exit from inner loop. Set (~~+‘,~,y~+‘,~)= 
(x i,k+l 

,Y iPk+‘), G~pp(ui)=yi+‘~o and compute DappGy(ui) 
from 

Step 5: Set (ui+‘,wi+‘)=(ui,~i)+(Au,Aw) by solv- 
ing 

Step 6: Set ri+’ = min{r’, I](Au,Aw)(12}, i= i+ 1 and 
go to Step 1. cl 

Remark 4.2: The initial data u”, w”, x0,‘, yo7’ are ob- 
tained by formula of the form (2.6). 0 

Remark 4.3: When used to integrate (2.1), MLNA 
stops when Il(Au,Aw)ll <T), where n is a positive real 
number. This number must be chosen so that the error 
made is not larger than the local truncation error of the 
integration rule used. q 

Remark 4.4: The equations describing the network 
S(t,J, H(u, x,y) = 0 can be formulated by any analysis 
method (e.g., nodal analysis, modified nodal analysis [33], 
tableau analysis [3]) irrespective of the method chosen to 
formulate the equations for the rest of the network. In 
principle, we may also use an integration formula for the 
subnetwork S which is different from the one used for the 
rest of the network. In particular a zeroth:order integra- 
tion method could be used if this satisfies the error 
criteria. The condition under which a zeroth-order method 
is accepted is called latency and is the subject of the next 
section. 0 

Remark 4.5: In the practical implementation of 
MLNA, we perform the LU decomposition of 
Dx,YH(u, x,y) and the back substitution for x and y in 
symbolic form. This step needs to be performed only once 
per analysis. It can speed up the computation in the inner 
loop of MLNA, since now, Step 2 involves only function 
evaluations to obtain the entries of .the LU factors and the 
coefficients for the backward substitution. q 

Remark 4.6: The evaluation of DapPGy(ui) can be 
easily performed by using the following algorithm. 

Evaluation of D aPpGy(ui) Algorithm 4.2 
Step 1: Solve the following (I systems of linear alge- 
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braic equations 

0, Dx,y~(ui,xi+l~O,yi+~~O)T~= I 
( 1  0 

for the (a f a) X u matrix M, where 1, is the (IX (I identity 
matrix and 0, is the s X u null matrix. 

Step 2: Compute 
Dwqui)= _~~D~~(ui,xi+l,O,yi+l~O). 17 

Note that Step 1 requires only a partial forward elimina- 
tion and a complete backward substitution for each of the 
u systems, since the LU factorization of D&?(ui, 
x i+ 1.0 9Y i”*c) is available from Step 2 of MLNA. cl 

Remark 4.7: It is quite straightforward to derive 
MLNA for any number of macromodels. The only diffi- 
culties are the rather complicated notation and bookkeep- 
ing involved. cl 

Remark 4.8: If the network contains several identical 
copies of a  subnetwork, then the use of a  macromodel to 
describe this subnetwork is particularly convenient. In this 
case, the symbolic LU decomposit ion of D,,#(u,x,y) 
and the symbolic back substitution for x and y can be 
performed only once independently on how many copies 
of the subnetwork are present in %. cl 

Remark 4.9: The application of MLNA does not re- 
quire any particular structure of the Jacobian of the 
circuit equations. Tearing methods [23]-[32] do require a 
bordered block diagonal form or a bordered block trian- 
gular form of the Jacobian of the circuit equations. q 

B. Convergence Properties of MLNA 

As previously pointed out, MLNA is a Newton- 
Raphson algorithm with errors in the computation of I: 
and of DF. In the Appendix we prove the following local 
convergence result. 

Theorem 4.10: Let (2, I;) be such that F(:(ri, G,(G), 6) = 8. 
Assume that 

1) F  is Lipschitz continuously differentiable; 
2) J(ti, S)- ’ exists, where 

+D,F(~(u,G,(u),~)DG,(u),D,F(u,G,(u),~)); 

3) Assumptions 3.3 and 3.4 hold; 
4) foralli,u’EU; 
5) for all i, (~‘*~,y’~~) are such that the inner Newton 

loop converges. 
Then, there exists 6 >0 such that for all (u’, ~9 E 

B((fi, G), a), u” E U; for all 7’ E [0,6], MLNA converges to 
(2, G) with root convergence order greater than or equal to 
two. Cl 

Remark 4.11: If we choose to drive r of MLNA to zero 
as fast as [I(Au,Aw)(l or even independently of Il(Au,Aw)][, 
we can still prove convergence of MLNA but not 
quadratic convergence. To achieve quadratic convergence, 
it is crucial to drive r to zero as fast as ]](Au,Aw)]]~. The 
strategy followed in driving the error to zero is similar to 
the one presented in [ 191, [20] for optimization algorithms. 

Cl 

Remark 4.12: MLNA can be seen as a relaxation 
method. In fact, when we enter the inner Newton loop for 
each macromodel, we hold fixed all the external variables 
interacting with that macromodel. However, MLNA 
achieves quadratic convergence, while usual relaxation 
methods achieve only linear convergence. Cl 

Remafk 4.13: It may happen that for some ui, xi.‘,yi,’ 
the inner loop does not converge during the analysis at 
time t, + i. To  improve convergence of the inner loop, we 
may halve the step size, compute x and y at the inter- 
mediate time point so obtained and use these as initial 
guesses for t,+,. When the step size is halved, u’ at the 

.intermediate time point is computed by interpolating a 
polynomial of kth degree through un,un-,; * * ,unmk. 
Therefore, the analysis at the intermediate time point is 
performed only for the macromodel which does not con- 
verge at time t,+ , and not for the entire network. cl 

V. LATENCY 

Suppose that the network to analyze consists of many 
repetitive subnetworks, possibly described by macromod- 
els. In many cases, such as in the digital network analysis 
case, at any one time most of the subnetworks are inactive 
or latent, i.e., the value of their electrical variables remain 
constant. Moreover, each subnetwork is latent for most of 
the time. These considerations have led to the develop- 
ment of efficient logic simulators (e.g., see [15]). We  now 
show how it is possible to exploit latency in the solution of 
(2.1). If at any time t,, the value of the variables of a  
subnetwork is found to be constant, then obviously no 
function or Jacobian evaluations are needed to find the 
value of the subnetwork variables at all the subsequent 
time steps until a  change in the input variables of the 
subnetwork occurs. It has been reported 1161 that up to 80 
percent of computer time for the circuit simulation pro- 
gram SPICE is spent in the evaluation of Fn+ , in (2.4) and 
of its Jacobian. We  believe that this situation is typical for 
the most sophisticated circuit analysis programs. There- 
fore, the use of latency can achieve significant savings in 
computer time. In order to apply latency, we need a test 
to detect if a  subnetwork S is latent at time t,,. Note that 
the integration of (2.1) for a  latent subnetwork is done 
simply by setting 

2 n+1=GJ* (5.1) 

Now (5.1) can be considered as a particular integration 
method, a zeroth-order method! In fact, (5.1) is exact for a  
zero degree polynomial. The local truncation error of this 
method cannot be computed by means of (2.8) since the 
zeroth-order method is an explicit method. However, it 
can be easily obtained. By (5.1) and by definition of local 
truncation error, we have 

Zr(tn+l)-=~,n+l=Zr(tn+*)-zt,” 

=z,(t,+J-ZAfJ. 

By the mean value theorem [14, p. 681, we have 

kr,(tn+ 1) - zAt,Jl = Pr(t*)lh = G+ 0 (h2) 

(5.2) 

(5.3) 
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. 

where t* E [t,, + i, t,,] and 1SA 2 li,(tJh. Since (2.1) is not in satisfies the tests of Definition 5.3 at tn+,, then no inner 
canonical state equation form, i,(t) can be estimated by 
finite differences as 

Newton loop is needed, and GYn(u,) is set equal to 
G,“-,(u,,-,). Moreover, DGYn(u,J is set equal to 

l&k)l=l=r,n - =r,n-ll/hl* (5.4) DGr.Jun - 1). ’ q 
Therefore, a zeroth-order method should be. used Remark 5.5: The investigation of MLNA with the use 
whenever EA computed by means of the approximation in of latency has shown that the solution by means of 
(5.4) is less than or equal to the local truncation error first-order backward differentiation formulas with the 
prescribed by the user on z,. However, since a zeroth- conservative approximation 5.2 should be as accurate as 
order method is an explicit method which involves no the error controls used. We analyzed a simple inverter 
evaluation of i,(t) once it has been applied, there is no circuit with one bipolar device model. A macromodel is 
feedback to correct an error which may grow larger than created for the bipolar device model by means of the 
expected. Hence, it is safe to be conservative in the internal Newton loop of MLNA. We also analyzed the 
evaluation of the local truncation error for a zeroth-order network by means of a standard Newton algorithm. The 
method. Two possible ways of being conservative are results obtained showed savings between the analysis per- 
expressed by the following formulas for approximating formed using MLNA and the one performed using the 

l4(4Jl* standard Newton algorithm. 
Conservative approxim.ation 5.1 

VI. CONCLUDINGREMARKS 
MJl= max lzr,n-j+I-zr,n-jl/hja j=),...j Macromodels by themselves offer an improvement over 

the usual tableau and nodal methods in circuit with multi- 
Conservative approximation 5.2 ple copies of similar subcircuits. Combined with a multi- 

l4(4Jl= max Iz, n-zr =-j 
( j=l,...J ’ ’ I/ $, ‘i)* 

level Newton process, macromodels effectively decompose 
the network into smaller systems which can be analyzed 
separately. We have shown how this can be done with- 

In both formulas j” is an integer larger than or equal to 1. out affecting the usual quadratic rate of convergence of 
Whenj= 1, both formulas coincide with (5.4). Other con- Newton’s method. 
servative approximations for E,’ can be invented by in- With such a decomposition, it is then possible to treat 
troducing approximations to higher order derivatives of each subcircuit as an entity in itself. Thus one can use 
z,(t). different time steps, different methods of numerical in- 

As previously pointed out, once the zeroth-order tegration, etc., on each subcircuit. Of particular interest is 
method is applied we have no feedback and we may the possibility of using a zeroth-order numerical method 
continue to use it even when the value of the variables in when it can be determined not to affect the accuracy. 
the network to be analyzed starts changing due to a Such a subcircuit is said to be latent. Numerical computa- 
variation in the input. Therefore, we set as another condi- tions are saved in processing a latent subcircuit since the 
tion for the application of the zeroth-order method that zeroth-order method keeps all variables constant. Thus 
the inputs remain almost constant. The conditions under 
which a zeroth-order method is accepted are called latency 

the same solution y, = G,,“(u,,) and Jacobian DGYm(u,,) can 
be reused in the upper level Newton iteration without 

and the network which satisfies these conditions is said to recomputation. 
be latent. 

Definition 5.3: Let S be a time invariant nonlinear sub- APPENDIX 

network of a network %. Let u(t) E R” be the vector of The proof of Theorem 4.10 is based on the following 
inputs, x(t) E R s, the vector of internal variables, and main result. 
y(t) E R”, the vector of outputs of S at time t. S is said to Newton Perturbation Theorem: Consider the sequence 
be latent at time t,,+ , if {vi} generated by the Newton perturbed process 

l) Yn+]-j, xn+l-j2 j= l,* * . ,$ obtained by the integra- 
tion methods used at previous 1’ steps, are such that the v i+l=t)i_j(vi,~i)-‘~(vi,lri) 

(A.11 

truncation error computed according to an appropriate where VER”, LER”, 3: R”XR”dR”, and .f(v,h)E 
conservative estimate (e.g., by means of 5.1 or 5.2) Ei for R nX”. Assume that 
all components of x and y is less than or equal to the local 1) F(v*,e)=ei 
truncation error specified by the user, 2) j(v, 0) = DF(v, 0); 

2) maxj,, ,... j.lus(tn+l) - us(tn-j)l <es, s = 1, f * . , (I, 3) &*,8)-l exists; 
wherej* is a positive integer and c~ Rz is an error vector 4) for all i, Ilh’lj <qllv’--~‘-‘)~~, q>O; 
supplied by the user. 0 5) there exists S >0 such that for all v E B(v*,6), 

Remark 5.4: Latency can be used very effectively in &v, .)-‘&v, .) is well defined and Lipschitz on B,,(&S), 
conjunction with MLNA. In particular if a subnetwork where &,(&a) 4 {hlll hll <S}. 
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Then there exists s^ >0 such that for all V’E B(v*,$),, 
h”E B,@,6^), {vi} converges to v* with root convergence 
order greater than or equal to two. 

Proof: By (A.l) and assumption 5, for all vi E 
B(V*,&), hkB,(&a), 

By Assumptions 1, 2, 3, and Theorem 10.2.2, j14, p. 3121, 
we have that there exists 6’>0, 6’ <6, and (Y >0 such that 
for all vi E B(v*, S’), 

Ilv*--u’+~(d,e)~(v’,e)~~ <(Y)[v*-v~~. (A.3) 

Therefore, by Assumptions 4 and 5, we have that for all 
vi E fqu*,q, 

Ily*-v i+‘(J ~allu*-v’~~2+~lIu’-v~-*~~4 
<cu((u*-v’~~~+~~~(~~ v*- vi(14+ l(v*-vq4). 

(A4 
Let ](u* - viii, l/v* -vi-l ]I <6” <6’. Then there exists y > 
l/2 such that 

Ilo*-v i+lll <y(l(v*-~~l(~+llu*-v’-~~~~). (A.5) 

It is easily demonstrated by induction that 

jlv*-vi+n 1) < & (2yS y Q (2yS y*“. (A.61 

Hence, 

liFr+zp )lv* - vi+n]]2-n < 2y6”. (A-7) 

Thus if 6’” is chosen so that 2~6” < 1, then according to 
[ 14, pp. 287-2931, the sequence {vi} converges to v* with 
root convergence order greater than or equal to two. 
Therefore, the sequence will converge to v* if u? is chosen 
so that Ilo*-v’(I, ]I v* - u”ll<8 “, i.e., if v”, v’ E B(v*S “) is 
the interior of B(u*, 6  “). Since 

))d - v”l( = ~~.&uO,hO)-‘~(vO,hO)~~ 64.8) 
by Assumptions 1 and 5, there exists ~$<a”/2 such that 
for all v” E B(v*, g), ho E B&l, 8) 

J~u1-v0~~=~~.f(v0,h0)-‘~(u0,h0)(J<S”/2. (A.9) 
Therefore, for all v” E &u*, s^), ho E B,(& 8) 

lb+- v*/ < Ip-v”ll+Ilvo-v*Il <6”/2+s1<s” 
(A.10) 

and the proof is completed. cl 
Remark A.1: Several Newton perturbation results have 

been obtained in the literature (e.g., see [14], [21], [22]). 
Most of these results are related to Newton processes 
where the Jacobian is computed approximately. To the 

best of our knowledge, there is no result available when 
not only the Jacobian but also the function P is computed 
with approximations. 0  

In order to apply the theorem above, we set 

vi & (ui,wi), hi g  GayUi)- qui), hi= hj 

[ I 4f 

h; ii G,“P”(ui) - GJui), /$ &i G,“pFfui)- G,(u’) 

&&hi) p  F(ui,G;PP(ui),wi)=F(ui,Gy(ui)+~,wi) 

and 

.i(vi,hi) g  (DUF(~i,Gy(~i)+hj,~i) 

+ DGF(ui,Gy(ui)++vi) 

~A(u’,h’),D,F(u’,G,(u’)+hj,w’)) 

where A(u’,h’) f DappGy(ui) is the result of the computa- 
tion of Algorithm 4.2. By these definitions, it is clear that 
assumptions 1 and 2 of the Newton perturbation theorem 
are satisfied. Assumption 3 is equivalent to Assumption 2 
of Theorem 4.10. Hence, we only need to show that the. 
assumptions of Theorem 4.10 imply Assumptions 4 and 5 
of the Newton perturbation theorem. 

Proposition A.2: Under the assumptions of Theorem 
4.10, there exist 6* > 0 and 77 > 0 such that for all 7’~ 
tw*1, 

(Jh’ll 2  (JG*PP(u’)- G(u’)ll <~~Iv’-v’-‘~(~. 

Proof: By Step 4 of MLNA, since the inner loop 
converges by hypothesis, 

Il(xi,Eyi.~)-(xi,~-*,yi.E-*)ll <min{~0,1)vi-vDi-1~~2} 

(A. 11) 

where k is the index of the inner iteration when the lower 
Newton loop stops. By the Newton-Mysovskii theorem 
[14, p. 4121, there exist 6*, 77 >0 such that for all 7’~ 
P, s*1, 

[(hill = II GaPP(ui) - G(u’)ll 

<?J((v’-tq? (A.12) 

0 

The next step consists of proving that there exists 6* >s^ 
>0 such that for all u  EB(v*,$), .@v, .)-‘&v, .) is well 
defined and Lipschitz on B#,S). To prove this, we-only 
need to prove that F(v, *) is Lipschitz in 5 and that J(v, a) 
is well defined and Lipschitz on Bh(B,S). The first fact 
follows immediately from the assumption that F  is 
Lipschitz continuously differentiable. To prove that 
J(v, *)-I is well defined and Lipschitz we need the follow- 
ing lemma. 
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Lemma A.3: Under the assumptions of Theorem 4.10, 
there exists. S’> 0, such. that j(u, -) is well defined and 
Lipschitz in h on B,,(B,&‘). 

Proof By definition of j(v, h) and by Assumption 1 
of Theorem 4.10, we only need to show that there exists 
.6’ > 0 such that A(u, h) is well defined and Lipschitz in h 
on B,,(0,6’). By Assumptions 3.3 and 3.4, by a result in 
[14,2.3.3, p. 461, following the second part of the proof of 
Proposition 3.5, this result can be easily established. 17 

Proposition A.4: Under the assumptions of Theorem 
4.10, there exists 6’ > 6* > 0 such that for all u E B(u*, a*), 
for all h E B,,(8,6*), J(u, h)-’ is well defined and Lipschitz 
in h. 

Proof: Since by Assumption 2 of Theorem 4.10, 
.&u*,B)- * exists, the proof follows from a result in [14, 
2.3.3, p. 461. cl 

It is now trivial to apply the Newton perturbation 
theorem and prove Theorem 4.10. 
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Abstmct-New tedmiques for the effident simulation of large-scale 
integrated MOS drcuits are desuihed. ‘Obese tedmiqoes have hcen imple- 
mented in the computer program SPLICE which combines drcgic thins 
and logic analyzes in a sfngie padsage. The use of SOR-Newton methods 
pennIts aU three forms of analysis to be performed sfmult~eously, while 
event-contro~ is used to enhance execution speed. l&e mornumce of 
SPLICE for the simulation of large NM0.9 drcuits is also described. 
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I. INTRODUCTION 

A NUMBER of simulation techniques are available 
for the analysis of electronic circuits. For small 

circuits where analog voltage levels are critical to circuit 
performance, or where tightly coupled feedback loops 
exist, a  circuit simulator such as SPICES [l] can accurately 
predict circuit performance. As the size of the circuit 
increases, the cost and memory requirements ‘of such an 
analysis become prohibitive. Fortunately, a  large fraction 
of a  typical LSI system is digital in nature. For this 
reason, certain simplifications may be made during the 
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