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with zero and pole locations shown in Fig. 9 there exist 
three characteristic circles with parameters: 

1) p = 0, r = 1, E = 1 (circle of type I). 
2) p = 2/3, r = ti /3, E = - 1 (circle of type II). 
3) p = 3/2, r = \/5 /2, l = 1 (circle of type I). 
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Sparsity Considerations in Network 
Solution by Tearing 
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A&met-Network solution by tearing consists of partitioniug the 
network into subnetworks, solving each subnetwork separately, and then 
combining the subnetwork solutions to obtaiu the solution of the entire 
network. III this paper it is shown that all recently propused sparse math 
algmUhms for network solution by tearing belong tu a set of algurithms 
which is derived by applying block matrix elimination to a partitioned 
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system of network equatious. The computational requirements of the 
algorithms are determiued and compared. Equation spar&y is considered 
at all levels iu the solution prucess. Iuparhdar,thestNcturesoftbe 
equations at the subnetwork level as well as the interconnection level are 
aaalyr.edindetail. 

I. INTRODUCTION 

T HE SOLUTION of networks by tearing is an ap- 
proach by which part of a given network is tom away 

so that the remaining subnetwork or subnetworks can be 
analyzed independently. The solutions of the latter are 
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then combined with that of the torn-away part in order to 
obtain the solution of the entire network. This approach, 
also known as “diakoptics” or piecewise analysis, was 
introduced by Kron [1] and expanded upon by many 
others to analyze power systems [2], electrical networks 
[3], and structural and other large-scale systems [4], to 
mention a few. Unfortunately, in its original form the 
method required the explicit computation of inverses of 
the submatrices that represented the individual sub- 
networks. As a result, any sparsity that might exist in the 
subnetwork equations could not be exploited. Recently, 
however, network analysis by tearing using sparse matrix 
solution techniques has been the subject of many investi- 
gations [5]-[ 151. 

From the algebraic point of view tearing can be consid- 
ered to be a partitioning of the network equations in a 
special way. Thus we shall use the terms “partitioning” 
and “tearing” interchangeably. Tearing is not restricted to 
linear networks. It can also be applied to the analysis of 
nonlinear resistive [lo] as well as dynamic networks [ 121, 
[ 151, [ 161. The use of tearing, however, has been ques- 
tioned as to whether computations could be saved if 
sparse matrix techniques were instead employed to solve 
the network as a whole without tearing [ 111. Nevertheless, 
there are a number of situations where tearing becomes 
advantageous or even necessary. This is true, for example, 
when a network is so large that its equations cannot be 
stored on an available computer even though sparse 
matrix solution techniques are being used. Tearing and 
overlay schemes thus become a necessity. Tearing tech- 
niques can also be employed in cases where the network 
consists of repetitive identical subnetworks so that the 
equations of only one such subnetwork need to be stored 
and solved. In addition, tearing allows parallel processing 
and the use of “latency” concepts [12] in finding the 
network solution. 

.There are many ways of tearing a network. In this 
paper our main concern. is not with finding the most 
efficient way of tearing a given network, but rather with 
finding the most efficient way of solving the network 
equations once a partitioning pattern has been chosen. A 
number of sparse matrix algorithms have been proposed 
[5]-[11], [13]. The question is which one of these algo- 
rithms is more efficient than the others in a given case. In 
[ 181, George studied three algorithms for solving parti- 
tioned systems of equations. It turns out that all recently 
proposed tearing algorithms are included in these algo- 
rithms. In this paper we study these algorithms when they 
are applied to network solution by tearing. In addition, 
some variations on George’s algorithms which were not 
included in [ 181 are derived and studied. It is shown that 
the structure of the subnetwork equations plays an im- 
portant role in determining the computational complexity 
of the algorithms and in determining which algorithm is 
most efficient when applied to the solution of the sub- 
network equations. 

In the next section we review the formulation of the 
network equations in partitioned form and comment upon 
the structure of the various submatrices. In Section III we 

The computational requirements of the algorithms are 
investigated in Section IV. The structure of the comection 
equation, which provides the link between the solution of 
the tom subnetworks and the solution of the entire 
network, is’ discussed in Section V. An example to 
illustrate the various solution algorithms is discussed in 
detail in Section VI. 

II. NETWORK EQUATIONS IN PARTITIONED FORM 

Consider a linear network Iv which is to be analyzed by 
tearing. .Let the network equations be formulated using 
the modified nodal approach [19]. Tearing can then be 
viewed as a problem of partitioning or ordering the 
network equations in a way such that the associated 
network equations have either a bordered-block-diagonal 
or bordered-block-triangular structure. In this paper we 
consider the case where the equations have a bordered- 
block-diagonal form. From the network point of view, 
tearing can be accomplished by either removing a set of 
branches [11] or a set of nodes [ 141. If the tearing set 
consists of branches, such that there is no coupling neither 
among the tom subnetworks nor between the subnetworks 
and the tearing branches, the partitioned equations will 
have the following form [11]: 

--------+----~~ 
-yy -yz . . . 

A,T A, s-0 

(1) 
where Mi is an m, x m, (nonsingular) matrix, xi an myec- 
tor containing the node-to-global-datum voltages together 
with a subset of subnetwork branch currents and yi is the 
vector of sources in Ni* Y0 and Yoi each contains at most 
one nonzero column. Ai is a topological matrix which 
contains exactly bti nonzero columns and nti nonzero rows, 
where bzi is the number of tearing branches incident with 
Ni at n,i nodes other than the local-datum node. Y, is a 
diagonal matrix and 2, is the impedance matrix of the 
tearing branches; v, is the vector of voltages at the local- 
datum nodes and it is the vector of currents through the 
tearing branches. The reason the local-datum nodes have 
been tom away and numbered last is that 1111: Y,, - 

If the tearing set consists of node voltages only, such 
that no coupling exists neither among the tom sub- 
networks nor between the subnetworks and the tearing 
nodes,’ the network equations will have the following 

‘Note that as long as there is no coupling among the subnetworks 
themselves, it is possible to have coupling between the subnetworks and 
the tearing variables (U and i, in the case of BT and v, in the case of 
NT) and 1) and 2) wodd still have bordered-block-diagonal forms. This 
coupling, however, would add extra branches to the connection network 
which is discussed in Section V. For simplicity, it is assumed here that no 

present the basic solution algorithms and their variations. coupling exists between the subnetworks and the tearing set. 
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TABLE1 
BASICFAC~OIUZATIONPROCEDURES 

F, I F1 F3 

form [14], [15]: 

-Yz 
---------- 

T; . . . cc : iT 

XI Yl 
x2 Y2 

= 

xk 

UC 

yk 

k 

(2). 

where Y;., and YCi each now contains exactly n,, nonzero 
columns, where n,, is the number of tearing nodes con- 
nected to subnetwork Ni; v, is the set of voltages at the 
tom nodes. Note that in (2) if the entire network equation 
is nonsingular, YCC - Xf= i YC;rMi- ’ yi, will also be nonsingu- 
lar. For easy reference we denote the partitioned form in 
(1) as branch-tearing (BT) and in (2) as node-tearing 
(NT). Also, the vertical and the horizontal border sub- 
matrices in (1). and (2) will be denoted by Pi and Q, 
respectively; i.e., Pi = [ I& Ai] or = U, and Qj = [ Yoi Ai] or 
= Y,,. 

III. SOLUTION ALGORITHMS 

Let systems (1) and (2) be written in the form: 

(3) 

System (3) may be solved using one of three different 
factorizations which are denoted by %,, F2, and $, re- 
spectively, [ 181, and given in Table I, where V= L - ‘P, 
v= cl-‘V, WT= QTU-‘, WT= WTL-‘, and IEidentity 
matrix. In all three factorization procedures above 

LJJ,=R-QTU-‘L-‘P. (4) 

The difference lies in the order in which QTZJ-‘L-‘P is 
computed. There are two variations in executing factoriza- 
tion 4 and %s which are now given. 

Factorization Variations 

(1) If v is not required other than ic the factorization 
procedure T2, then only those rows of V corresponding to 
the nonzero _columns of QT are required in order to 
calculate Q ‘V=q T( U - ‘L - ‘P); denote this variation in 
executing22 as T2. 

(2) If W is not required other than in the factorization 
procedure %s, then only those columns of w’ correspond- 
ing to the nonzero rows of P are required in order to 
calculate wTP= (Q TU - ‘L - ‘)P; denote this variation in 
executing %a as %a. 

TABLE11 
BASICSUBSTITUTIONPROCEDURES 

1 
step SI 5 S3 

1 La = y ~a=y, ub-a Y=Y _- - _- _ - - 

2 p = WT, = QTb 
- - H __ 

~=PJpy 
_ - 

TABLE III 
VAIUATIONSONSIJBSTITUTIONPROCEDURES 

t step Variations Associated Factorization 
t 

ST :2 2 = QT(U-la) 
- - - i Fl’ F2 I 

I I i 
5’ 1 :4 

11=4 __ 
-l (PZ) / F,, F3 

S” 2 
I 

y = QTNJ -1,) 
_ ___ 

4 = L-1 (PZ) 
Ft. 

21 _ __ 

q 7, 

5 
: 4 

z2=u_ __ 
-l (VZ) FI. 72 

12=u_ _ __ -IL-l (PZ) Fl’ 72, F3 

5 :2 y = WT(L-ly) 
_ --_ FI’ T3 

s*’ 3 : 2 “i = QT(U -1L-ly) - ---- Fl’ F2> 73 

I , I I 

Associated with the three basic factorizations given in 
Table I are three different substitution procedures denoted 
by S,, S,, and S, [18] and given in Table II. Note that 
Steps 1, 2, 4, 5, and 6 in Table II are performed at the 
subnetwork level while Step 3 is performed at the inter- 
connection level. There are variations in the execution of 
the substitution procedures at the subnetwork level which 
are discussed below. 

Substitution Variations 

In all three substitution procedures Step 3 is identical, 
and Steps 1 and 6 combined look the same. The main 
difference lies in Steps 2 and 4. Variations in executing 
these steps are set out in Table III. As can be seen from 
the third column of this table, the variations can be used 
with more than one substitution procedure. It is important 
to note that in these variations v and w do not explicitly 
appear; they are only required in factorizations T2 and ‘%a 
where they are used to calculate Q’V and wTP. Thus 
when substitution variations are used in conjunction with 
either %” or “a, only those rows of v or w that corre- 
spond to the nonzero rows of Q or P are required and one 
only needs to use the factorization variations gZ or %a. 

Remark 

9, + S, has been used in [6]-[8], [IO], and [ 111, and as 
proved in [20] 9, + S, is equivalent to step-by-step solu- 
tion of the equations. ‘& + s, has been used in [5], [13], 
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[15], and [21]; g2 + S,** in [9]; S i+ * has been considered in 
[18] and [20]; Sz* and S:* have been mentioned, but not 
investigated, in [ 181. The remaining variations appear not 
to have been considered elsewhere. 

IV. COMPUTATIONAL REQUIREMENTS 

Before we calculate the computational requirements of 
the solution procedures; we-first give some definitions and 
for easy reference some lemmas which were proved in [ 181 
and [20]. 

Let the symbol 1.1 denote the number of nonzero ele- 
ments in a vector or a matrix. M(j) and M(j.) the jth 
column and the jth row of a matrix M, respectively. For 
any triangular m x m matrix T, T’ is defined to be T- I if 
T has a diagonal of ones; otherwise T’= T. Consider a 
subset p of the rows of T, with the first (last) row being 
row r when T is upper (lower) triangular. Let T be an 
rX m submatrix which consists of the first r rows of T 
when T is lower triangular or the last m - r + 1 rows when 
T is upper triangular. Define II(p) to be the set of indexes 
which is constructed as follows: Let II”(p) be the set of 
indexes of the nonzero columns of the p rows of f, II’(p) 
the set of-indexes of the nonzero columns of the II’(p) 
rows of T, Iii+‘(p) the set of indexes of the nonzero 
columns of the r’(p) rows of f, and so on until IIk+‘(p)= 
IIk(p) = II(p). We consider the number of long operations 
(multiplications and divisions) to be the basis for de- 
termining the computational complexity of an algorithm. 
In practice, however, other factors, such as storage, coding 
and programming complexities, should also be taken into 
consideration. Let C(.) denote the amount of computation 
required by a given procedure. 

Lemma 4.1 [20] 

The number of operations required to factorize an 
m x m nonsingular matrix A4 into the product LU is 

a = $j IL’(.j)l 1 U’(j.)l. 
j=l 

Lemma 4.2 [20] 

If A4 is numerically symmetric, we can factorize M= 
UTDU, where D is a diagonal matrix, and the number of 
operations required in the factorization process is 

(11’= 5 (IU’(j.)l+3)lU’(j.)l/2. 
j=l 

Lemma 4.3 [18] 

Let A, B, and C be given matrices with A = BC. The 
number of operations required to compute A from B and 
C is 

WBC) = i IW>l I C(i-)I 
j=l 

where n is the number of columns in B. If A is known to 
be numerically symmetric and B(ij) #O+C(ij) #O, then 

(4 

Fig. 1. (a) An upper triangular system of equations. (b) A lower 
triangular system of equations. 

the number of operations required to compute A satisfies 

WfC) ( 5 IB(.j)l(lC(j.)l+ 1)/2. 
j=l 

If A = BTB, then 

t9”(BTB)= 2 IB(j.)I(IB(j.)l+ 1)/2. 
j=l 

Lemma 4.4 [18] 

Let T be an m ‘X m nonsingular triangular matrix with 
TX= Y. The number of operations required to compute X 
from T and Y is 

e(TX) = x IT’WI Ix(i.)l. 
j=l 

In addition, the following lemma is proven here. 

Lemma 4.5 

Let T be a nonsingular m x m triangular matrix with 
TX= Y where X and Y are m x m matrices. Let X, be a 
subset of the rows of X and p the corresponding set of 
rows of T, with the first (last) row being row r when T is 
upper (lower) triangular. The number of operations re- 
quired to compute X,, from T and Y is 

@(TX,)= 2 ( 2 jEWp) kEn(p) IT’(ti)l)lX(j.)l. 

Proof II(p) consists of the set of indexes indicating 
those rows of X (and also of T) that are needed to 
compute X,. By applying Lemma 4.4 the above result 
follows, but only if those rows and columns of T which 
correspond to II(p) are considered. 

Examples on how to compute II(p) and B( TX,) in given 
situations follow. Consider the solution of TX = y, where x 
and y are vectors and T is a 9 X 9 upper triangular matrix 
with ones on the diagonal, as shown in Fig. l(a). Suppose 
xP = [x2, x3], then p = [2,31, II’(p) = [2,3,6,81, n’(p) = 
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[2,3,6,8,9] = II’(p) = II(p). Therefore, x6, xs, and xg should 
be determined before one could solve for x2 and xs. The 
number of operations required to compute x2 and x3 (and 
at the same time x6, xs, and x9) is equal to the number of 
nonzero off-diagonal elements in rows II(p) of T, or, 
equivalently, it is equal to the number of nonzero off-diag- 
onal elements in columns II(p) of T whose indices belong 
to the set II(p); namely, 0( Txp)= 1 -t 1 + 1+2= 5 opera- 
tions. Note that if some of the components of x corre- 
sponding to II(p) are zero, &TX,) would be further re- 
duced, according to Lemma 4.5. Suppose that T is now a 
lower triangular matrix as shown in Fig. l(b), and it is 
required to compute xP =[x,,x?]. It follows that p=[7,6], 
n’(p) = [7,6,5,3,2] = II’(p) = II@). Therefore, x2,x-,, and xg 
should be determined before one could solve for xs and 
x7. The number of operations required to solve for xg and 
x7 is then 8(Tx,)=3+3+2+2+ l= 11 operations. 

Note that if T is upper triangular, 

If T is lower triangular, 

‘J(Tx,) ( jl (& Ir’(ki)l)lx(i-)I 

< ($, lT’(i.)l)n. 

It should be noted that careful programming is necessary 
in order to implement the above lemmas. Such programs, 
however, are not difficult to develop [23]. 

The computational requirements of the solution proce- 
dures are now considered at both the subnetwork level, 
investigated below, and the interconnection level, which is’ 
dealt with in the next section. 

The Subnetwork L,evel 
Using Lemmas 4.1-4.5, the number of operations re- 

quired to solve the subnetwork equations by each of the 
factorization and substitution procedures is given in 
Tables IV and V. Subscript i is dropped for the sake of 
clarity; superscript * refers to numerically symmetric 
matrices; v,, and w,, refer to the subsets of the rows of v 
and w which correspond to the nonzero rows of Q and P, 
respectively; and b, is the set of components of b which 
correspond to the nonzero rows of Q. 

Remarks 
In Tables IV and V the number of operations given is 

that required for NT. If BT is used, the number of 
operations given in the tables could be reduced since the 
nonzero columns of Ai contain + 1 only and YO$Wi-‘Y, = 
0. Furthermore, in BT, when two or more tearing 
branches are incident with the same node in a sub- 

TABLE IV 
NIJMEXEROPOPERATIONSREQUIREDINTHE VARIOUS 

FACTORIZATIONPROCEDURES 

~ 

6 a + B(LV) l ecu7 1 + WIT7 ) -- m-P - -P 

5 
a + 8 (uTw) + e(LTG ) + e(PTi ) - - - -P - -P 

/ +q 1, 0s l ec:y, + ev+ 

G 
as + B(LV) * 3(UV) + q(QT9) 

F: 
as -i + 3(u WI + acr., WI + eStpTtj) --T- 

- - - - _ - -- 
s a= l B(LV) + B(u_i& 1 + dS(PTP ) 

-- , - -P 

s 
2 + a(uTwj + 'a(~~(4 1 + eS(PTt7 1 - - - -P - -D 

TABLE V 
NUMEZEROFOPERATIONSREQUIREDINTHE VARIOUS 

SussmvnoN FROCEDURES 

lroceduce Number of Opelatlons 

a(La) + 9(WT,) + 9lVZ) + 3(UXl _- _ _ __ __ 

9(&a, + OUJJ,) + E(Q%,) + e cyz) + O(UXl 

a(La) l 9d,) + 3CPZ) + 3(h1, + O(Vf) _- _ - __ 

$(La) + 3(Ub ) + 9(Q*b ) + O(Pz) l O(Lz I + 9iUX) __ .-D _ 2 -_ --I __ 

sz 

33 

S;' 

a(La) + a(Ubl + 9(QTb) + "(!:I -- __ _ _ 

O(La) + B(Ub) l 9(PTb) + 9Wf + 3('Jf2, -_ __ _ _ 

et+ + 3(Ub) + 3(aTb_, + e(P_t) + 3’441, + 4UJZ.z) __ 

s 
3 

5 

S;’ 

4GQ + 3(PZ) + SlLil + 3LUX) _ - _- _- __ 

3iLa) + J(WTa) l e(?z) + E(LZ) + 3(!5) __ _ - _- __ 

9(La) + 3(Ub 1 + 3(QTb J + E(i’f, + 9(L:) + S(;~) __ --1 _ _P __ 

L 

network, ‘the corresponding columns in Ai are either equal 
to or the negative of each other. In this case the size of Ai 
in the factorization procedures can be reduced by tempor- 
arily eliminating the redundant columns of Ai. For BT, 
then, the number of operations in Tables IV and V should 
be reduced as follows: 1) For ‘Z2, F2, %i, and 5; the 
number of operations is reduced by I Yoi], 2) for “a, ‘$, %i, 
and 5; the number of operations is reduced by I y;b], 3) in 
all entries, B(QirE), fl(Pi’@, O(Qirbi), and fl(P,t) are 
reduced to e( Y0yV2i>l e( YzWzi), B( YOy!+), and 8(@(i)), 
respectively, where V2i = Mi- ‘A,, w2T= AiTMii- i, and z(i) 
is the ith component of z. This, of course, does not mean 
that BT requires less computation than NT when solving 
the same system since the formulations in the two cases 
are different [15]. 

Note that e(r2), e(‘?&), C?(‘$J), and e(‘%j) are less than 
W-Q, e@& WQ, and C?(CE-), respectively; however, 
?E2, $, ‘%i, and 9; are needed whenever S, or S, is to be 
used. 
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It is important to note that in any given case the choice 
of the most efficient algorithm depends on both the par- 
ticular problem being solved and on the subnetwork equa- 
tion ordering strategy. A particular ordering strategy may 
favor one algorithm over another. In the following, how- 
ever, we assume.that the same equation order is adopted 
in all the algorithms. In Tables IV and V it can be clearly 
seen that many entries in column two are common to 
many of the algorithms. Thus when comparing the com- 
putational requirements of the algorithms, it is only neces- 
sary to calculate and compare some of the entries in 
column two of these tables. However, with a knowledge of 
the structures of the various subnetwork matrices and 
vectors, some results can be deduced from the tables, 
which eliminates the need for comparing some of the 
algorithms. Since z depends on the solution of the inter- 
connection equation, which is not known at the outset, it 
is assumed to be full. The nonzero components of z,, z2, 
and tj, however, correspond to the nonzero rows of V, V, 
and P, respectively. Let u = IL’] + ] U’]. 

Fact 4.1: Suppose the subnetwork matrix is structurally 
symmetric and in F2 and 9s U and L, respectively, are 
chosen to have diagonals of ones. Then 

1) IPI=IQI, IL’I=IU’I, ]W]=]V], and ]w]=]v] 
2) a%) = wd 
3) e($)= c?(FJ 
4) am= a$7 
5) e(“3.= c?(F2rJ 
Fact 4.2: In all cases: 
1) IhI< PI < I4 ( assuming no-cancellation in Step 5 of 

S, in Table II) 
2) e(s;) > c?(Q) 
3) e(s;*) > e(s;*) 
4) If &?(S,)< CZ(s;)*&?(S:) < C?(S;*) and vice versa 
5) If C?(S,)< k?(S,+)wC?(S~) < C?(S;*) and vice versa. 
Fact 4.3: If all the rows of v are nonzero, then 
1) z2 is full 
2) e<s:> > c?(S;r> 
3) e(s:*) > e(s:*). 
The condition that all the rows of v are nonzero is not 

uncommon; for example, if M  has property ?I’ [ 181, the 
nonzero columns of v would be full. 

Fact 4.4: Suppose y is full, then 
1) a, b, j, 2, $, and x are also full 
2) e(S,)=a+lVI+IWI 
3) ~(~:)=a+I~I+IQI+~(~p) 
4) e(S:)=a+IWI+IPI+e(Lz,) 
5) e(S:*)=u+IPI+LQI+e(Ubp)+6(Lz,) 
6) W$=~+lQI+I~I 
7) e(S,*)=u+IQl+IvI+e(Uz3 
8) ~(S:*)=u+IPl+~QI+O(Lz,)+B(Uz,) 
9) e(s,)=u+lPl+lwl 
10) If the subnetwork matrix is structurally symmetric, 

then b?(S,)= e(S,). 
Fact 4.5: If y is zero, then 
1) a=b=O; y=o; &= -q; xc - q; p= -q 
2) e(s,)=Ivl+e(ux) 
3) e(s:*)=IPI+e(Lz,)+e(ux) 

4) as*)= I V I 
5) e(g)= e(s:)= c?(S,) 
6) k?(S:)= C?(S;)= C?(S;*)= C?(S;*). 

V. THEINTERCONNECTIONLEVEL 

On the interconnection level the equation is formed 
according to (3) after the factorization of all the sub- 
network equations has been completed. In BT the inter- 
connection equation is of the following form [ 111: 

[ OHT ;I[ :]=[;I (5) 

where 

2, = -Z, - 2 AiTMi-‘Ai 
i=l 

s-z,- 5 I;]=-Z,-F 
i=l 

G=A,- 5 Y;M;-‘A,=A,- 5 Gi 
i=l i=l 

HT=AtT- i AiTMi-‘qo=AtT- i HiT 
i=l i=l 

while in NT the interconnection equation has the follow- 
ing form: 

fcvc = j, (6) 
where 

= Y,- 2 Ei=Yc-E. 
i=l 

Note that the dimension of the interconnection equation 
in the case of BT is equal to the number of tearing 
branches plus the number of local-datum nodes, whereas 
in NT it is equal to the number of tearing nodes. This 
dimension will be large if the number of tearing branches 
or tearing nodes is large, therefore, any sparsity that might 
exist in the interconnection equation should be exploited. 
To be able to do this the structure of the interconnection 
equation should be determined a priori so that it could be 
coded at the outset for sparse matrix solution, before the 
subnetwork equations are solved. 

Definition 5.1 

Given a graph 9, with b branches and n nodes: 
1) the branch adjacency matrix [9] of 4 is a b X b matrix 

whose ijth entry is nonzero if i =j or if i #j and branches i 
and j share a common node; 

2) the node adjacency matrix of 8 is an n x n matrix 
whose ijth entry is nonzero if i = j or if i #j and nodes i 
and j are connected by a common branch. 

Definition 5.2 [9] 
A BT interconnection network Nb of a branch-tom 

network is a network formed by collapsing all tom sub- 
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Fig. 2. Network N. 

networks into a single node each, with the tearing 
branched becoming the branches of Nb. 

Definition 5.3 

A grounded BT interconnection network N, of a 
branch-torn network is a network formed from Nb by 
connecting the terminals of those tearing branches inci- 
dent with local-datum nodes to the ground rather than to 
the nodes formed by the collapse of the subnetworks. 

Definition 5.4 

An NT interconnection network N, of a node-tom 
network is a network which is formed by removing all 
tom subnetworks and connecting any two tearing nodes 
which were connected by branches to the same sub- 
network with a new branch, which in turn becomes a 
branch of N,. Any branches connecting tearing nodes 
only also become branches of N,,. 

Fact 5.1: In (5) 
1) ‘F has the structure of the branch adjacency matrix 

of Ng; 
2) G and H have the same structure; 
3) G has the structure of A,,[, the incidence matrix of Nb 

with respect to n,, where n, is the set of nodes in Nb that 
was formed by the collapse of subnetworks having local- 
datum nodes. 

Proof 
1) Consider &. = AiTMi- ‘A,; it is symmetric and its non- 

zero entries are located in positions corresponding to the 
nonzero columns of Ai, which in turn correspond to the 
tearing branches incident with Ni at nodes other than the 
local-datum node. Since F= E,f= ii;, 1) follows. 

2) Consider Gi = YOTiWi- ‘A,; it has only one nonzero 
row, row i, the nonzero elements of which correspond to 
the nonzero columns of Ai. Similarly, HiT= AiTMii- ’ yl:, has 
only one nonzero column, column i, which has nonzero 
elements in positions corresponding to the nonzero col- 
umns of Ai. Since G = A, - Et= i Gi and H T= A,T - Zf, *Hi, 
2) follows. 

3) A, has nonzero columns in positions corresponding 
to the torn branches that are incident with local-datum 
nodes. Therefore, from 2) above, each row of G has 
nonzero components in positions corresponding to tearing 
branches incident with Ni at nodes including the local- 
datum node. Hence 3) follows. 

Fact 5.2: Matrix E in (6) has the structure of the node 
adjacency matrix of N,. The proof follows by applying the 

graph theoretic interpretation of Gaussian elimination 
WI. 

Knowing the structure of 2, or of Y, and using the 
above facts, it is then possible to determine the structures 
of z,, G, and H in (5) and of Y, in (6) without the 
necessity of knowing the internal structures of the torn 
subnetworks. Note that ?= in NT does not generally 
contain zeros on its diagonal, while in BT the matrix of 
the interconnection equation may contain zeros on part of 
its diagonal, as shown in (5), where the diagonal entries 
corresponding to the local-datum nodes are zeros. How- 
ever, if the entire network has a solution, the interconnec- 
tion matrix will be nonsingular. If the equation is re- 
ordered, then the zero diagonal elements will be filled at a 
certain stage in the factorization process. In [ 1 I] a method 
is proposed for solving the interconnection equation 
which is essentially equivalent to ordering the local-datum 
node voltages last and thus ensuring that the zero diago- 
nal entries will be filled. Forcing some variables to be 
ordered last, however, may affect the sparsity of the entire 
factorized system of equations. An alternative approach 
which might save on computation is the inclusion of the 
local-datum node voltages as candidates for pivot selec- 
tion as soon as their corresponding zero entries are filled. 
This ordering approach is illustrated in the example in the 
following section. 

VI. EXAMPLE 

An example is given in this section to illustrate the 
differences in the various factorization and substitution 
procedures discussed in the previous sections. Consider 
the network shown in Fig. 2, which is torn into six 
subnetworks first by BT and then by NT. For the sake of 
simplicity it is assumed that no coupling exists among the 
branches and that nodal analysis can be applied at the 
subnetwork levels. Fig. 3(a) and (b) show the structures of 
the partitioned matrices of the entire network equations 
when BT and BT, respectively, are used. Note that in 
subnetwork NZ in Fig. 3(a) column iz in the border sub- 
matrix is the negative of column id because tearing 
branches 2 and 4 are incident with the same node in N2 
but directed opposite to each other with respect to the 
node. The same holds for N, where column i,, is the 
negative of column i, 1. 

In order to illustrate how to compare the computational 
requirements of the various algorithms, we choose the BT 
case and consider the solution of subnetwork N,, which is 
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Fig. 3. Structures of the partitioned matrices of the entire network 
equations. (a) BT case. (b) NT case. F denotes a fill-in. 

shown in Fig. 4(a). The structure of the subnetwork 
matrix is shown in Fig. 4(b), where node 19 is chosen as 
the local-datum node. The subnetwork equations are 
ordered so as to minimize the fillins in the entire sub- 
network equations, not only in LU but also in V and W 
[15] and at the same time to try to increase as much as 
possible the number of zero leading rows in V (or in W) 
[22]. This approach minimizes u + O(LV)+ O( UTW) and 
favors 3, and at the same time increasing the number of 

0 
6) 

23 16 17 21 IS 20 22 13 is i4 is is i, 23 16 17 21 IS 20 22 13 is i4 is is i, 

Y x x x x X 

xxx x x xxx x x 

xx x F x XX X F X 

x X x x x x x X 

x x x x XXFXF XXFXF 

XXXXXF XXXXXF F F 

XXFXFXXFF XXFXFXXFF FX FX 

XXFOFXXFF XXFOFXXFF 

X X F F F F F F F F F F 

X X 

X X 

X X FF FF FF FF F F F F 

X F F X F F F F F F 

(3) 
Fig. 4. (a) Subnetwork N,. (b) Structure of the subnetwork matrix. 

TABLE VI 
N~MBEROFOPERATIONSREQUIREDINFACTORIZING 

SLJBNLTWORKN~ EQUATIONSUSMGVARIOUSFACTORUATION 
hOCEDLlRt?S 

Procedure FI - F, Fz 
NO. of Operations 

I 
) 99 1 114 1 94 1 71 1 187 ] 87 ) 
I I I I I I J 

TABLE VII 
NIJMBEROFOPERATIONSI~EQUIREDFORSOLWNGSU~NETWORK 

N,EQUATIONSUSING VARIOUSSUBSTITU~ON PROCEDURES 

Procedure SI s; 5' I s** I S? s; 2 s3 S" 

Numixc Of y full 53 51 56 54 61 56 59 61 

operations y = _B 23 23 26 26 28 23 26 26 

leading rows of V (or of W) favors ‘%* (or %s), Table VI 
shows the number of operations required to factorize the 
subnetwork equation while Table VII gives the number of 
operations required in the substitution procedures. Note 
that ‘%s is not considered since the subnetwork matrix is 
structurally symmetric. In practice, in order to determine 
which algorithm is most efficient, it is not necessary to 
calculate the total number of operations required by each. 
First of all, it can be easily proven that all the nonzero 
columns of v are full. From Fact 4.3 we can then 
eliminate S2* and S:*. If we consider y to be f$l, then 
from Fact 4.4 e(S,)= e(S,). That leaves S,, ST, ST, and 
SF*, and 5, as candidates for the substitution procedure. 
UsingFact4.4,wefind]Q]+8(Ub,)<]W]<]P]+B(Lz,); 
therefore, 6?(S:)< e(S,), E?(S:*)< ‘Z(S:), and e(S:)_< 
e(S;*). Comparing ST to S,, we find ] VI + 8(Ub,)< I VI, 
therefore, ST requires the least number of operations. The 
corresponding factorization procedures to be considered 
with ST would be 9, and $ or ‘%,* and 9;. Using Table 



HAJJ: SPABXIY CONSIDERATIONS IN NE’IWOBK SOLUTION 365 

XXXXX 
xxxxx 

xxxx 
X x x x x 
X xxxx 
x x xxxx xx 
x x x x x x 

x x X 
x x X x x x 
x x X xxx 

x x xxxxxx 
x x xxxx 

X xxxx 
X xxxx 

w 

Subnetwork 
NOl-Sy- 

N1, % F2 + s;* 

Branch- N2’ 3 FI +S; 

Tear in9 N3, N4 F2 +s; 

Inter. Net 
FI +SI 

Total 

Fig. 5. BT interconnection networks. (a) Nb. @) Ns; structure of the 
BT interconnection equation matrix. (c) Before reordering. (d) After 
reordering. 

Intel. Net 

15 4 iz 14 i, i3 19 is i7 27 i. 38 is i,. i,, 

X X X 

xxxxx 

xx xxx 

XXFXX 

xxxxxx 

xxxx~xxxx 

X XXFXXF 
xxxxxx 
xxxxxx 

X FXXFX X 
xxxxxxxx 

XFXXX 
xxxxxx 

xxxxx 
xxxxx 

(4 

TABLE VIII 
NUMBER OF OPHUTIONS R~QUUWD BY MOST EFFICIENT 

ALGORITHM WHEN SOLVING NETWORK EXAMPLE BY BT AND NT 

I Proceduzes Number of Operations r 

70 ! 

104 

88 

119 

82 

104 

-.-I 

679 

IV we find that 8(@& + 0(Q~~,,) <e( UTW) + 0( WTV) 
and P( VTV) <0( UV,) + P(Q ‘VP). Therefore, one could 
use $& for the numerically unsymmetric case and 9; for 
the symmetric one. 

Table VIII shows the number of operations required by 
the most efficient algorithms for solving each of the sub- 
networks and the interconnection equation when using 
BT or NT; y is assumed to be full. In BT the interconnec- 
tion networks Nb and Ng are shown in Fig. 5(a) and (b), 
respectively. The local-datum nodes chosen are 
{ 14,19,27,38}. The structure of the corresponding inter- 
connection equation matrix before and after reordering is 

Fig. 6. NT interconnection netwhk N.. 

shown in Fig. 5(c) and (d), respectively. In the case of NT 
the interconnection network is shown in Fig. 6, where 
nodes {6,11,13,19,21,22,27,29,35,37} are chosen as the 
set of tearing nodes. The structure of the corresponding 
interconnection equation matrix is given as the lower 
right-hand submatrix of the matrix shown in Fig. 3(b). 

Note that in the NT case the number of operations 
required to solve the entire network is less than that 
required by BT. However, there are cases where BT is 
more desirable. In the above example, for instance, if by 
removing the tearing branches the resulting torn sub- 
networks were identical, then the total amount of com- 
putation could be considerably reduced, while in the same 
example NT would not result in identical subnetworks. 

VIII. DISCUSSION 

In this paper we have shown that all recently proposed 
sparse matrix solution algorithms fornetwork solution by 
tearing belong to a set of algorithms which have been 
derived by applying block matrix elimination to a parti- 
tioned system of network equations. These algorithms 
have previously been studied [18], [20]. In this paper we 
extended them to include some new variations, and then 
applied the algorithms to network solution by tearing in 
cases where the network matrix was assumed to have a 
bordered-block-diagonal structure; i.e., where the torn 
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subnetworks are assumed not to have any coupling among 
each other. When this is the case parallel processing can 
be applied to the solution. As well, the algorithms apply to 
other partitioned systems of equations such as bordered- 
block-triangular systems; in this case, however, parallel 
processing is not as easily applicable. 

By closely considering the structure of the partitioned 
network, sparsity can be exploited at both the subnetwork 
and the interconnection levels in the solution process. On 
the subnetwork level, provided there is no coupling be- 
tween the subnetwork and the remainder of the tearing 
set, the number of nonzero columns in the border sub- 
matrix is equal to the subset of the tearing set incident 
with or connected to the subnetwork. The computational 
requirements of the algorithms are derived in such a way 
that a comparison between the computational efficiencies 
of the algorithms can easily be obtained if the same 
equation order is used in all the algorithms. This leads to 
the conclusion that it is always possible to find an algo- 
rithm which requires computation less than or equal to 
step-by-step solution without tearing, provided the same 
equation order is used. Of course, a different partitioning 
or blocking of the network equations or a different equa- 
tion order may require more or less computation. On the 
subnetwork level the problem of selecting from all possi- 
ble ordering strategies the one which requires the mini- 
mum number of operations’needs further investigation, 

On the interconnection level the structure of the inter- 
connection equation was related to the branch and node 
adjacency matrices of the interconnection network which 
was defined for both BT and NT. Knowing the structure 
of the interconnection equation at the outset enables one 
to use sparse matrix techniques in its solution, especially 
when this equation is a large one. 

In this paper we considered the tearing set to have been 
selected a priori according to certain criteria, such as 
creating identical subnetworks, and/or preserving the 
identities of some subnetworks. In general, the problem 
may be the selection of a tearing set which will result in 
the most efficient tearing algorithm. An algorithm suitable 
for NT has been proposed in [24]. A similar algorithm 
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