
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-28, NO. 4, APRIL 198 1  271  

Avoiding Zero Pivots in the Mod ified  Noda l 
Approach 
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Abstract-The modified nodal approach has been widely used for for- 
mulating network equations. Although this approach is quite general, 
zero-diagonal elements may  exist in the network matrix. When sparse 
matrix techniques with diugomd pivoting are used to solve these equations, 
extreme care should be taken so as not to choose a zero-valued pivot. In 
this paper it is shown that under certain conditions all previously published 
methods have the potential of generating zero-diagonal pivots, regardless of 
element values in the network A simple partitioning and ordering strategy 
is then presented which guarantees that no zero-valued pivots will be 
generated for any choice of diagonal pivots. The method has been imple- 
mented and well tested and various illustrative examples are inchtded. 

I. INTRODUCTION 

T  HE MODIFIED nodal approach [l] has been used 
in many computer-aided circuit analysis programs [2]- 

[5] for formulating circuit equations. It is well known that 
although this approach is quite general, zero-diagonal ele- 
ments may exist in. the network matrix. This occurs, for 
example, when the circuit contains voltage sources, short- 
circuits, inductors at zero frequency (dc solution) and some 
types of controlled sources such as current-controlled 
sources. When sparse matrix techniques with diagonal 
pivoting are used for solving these types of circuit equa- 
tions, extreme care should be taken so as not to choose a 
zero-valued pivot. Various methods have been proposed 
for avoiding pivoting on these zero-diagonal entries. One 
method involves rearranging and/or combining rows and 
columns in order to obtain nonzero diagonal elements [l]. 
Other methods involve ordering the rows and columns with 
zero-diagonal entries last, in the hope that they will be 
filled before becoming candidates for pivoting [2], [3]. We  
show, however, that even if all the zero-diagonal elements 
which exist in the network matrix at the formulation stage 
are avoided or filled during the elimination stage, it is 
possible, under certain conditions, to generate zero-diagonal 
elements during the Gaussian elimination process regard- 
less of the values of the circuit elements. 

From the numerical point of view, it is well known that 
the solution process will not fail during the solution of 
linear equations by Gaussian elimination provided that the 
pivots are all nonzero; however, this will be true only if the 
leading principal minors are all nonzero [6]. It follows then 
that Gaussian elimination will not fail for any diagonal 
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pivoting provided that the leading principal minors for any 
diagonal pivoting are all nonzero. In this regard, we intro- 
duce the following definition. 

Definition: A matrix M  has property F  if the leading 
principal minors of M  for any diagonal pivoting are all 
nonzero. 

Although the above definition seems to be somewhat 
restrictive since a matrix may be factorizable even if it does 
not have property F  it does, however, give complete flexi- 
bility in the choice of the diagonal pivot without running 
the risk of generating a zero pivot during the Gaussian 
elimination process. As a result, equation reordering for 
sparsity considerations can be carried out’ without any 
restrictions on the order of the variables. 

In Section II, we investigate the conditions and derive 
theorems for when the network matrix in a modified nodal 
formulations will or will not have property F. We  then 
present a method of partitioning the network variables and 
performing initial block row interchange in order to pro- 
duce a network matrix with property F, regardless of 
element values in the network. Implementation of our 
method resulted in a modified version of SPICE2 [2]. 
Using this modified program, many examples which caused 
computational problems in the original version due to 
pivoting on zero-diagonal elements were successfully 
analyzed. Furthermore, our results show that in many cases 
the number of fills produced by our ordering strategy is 
much less than that produced by previous ordering strate- 
gies, resulting in lower computational cost, and at the same 
time, more accurate solutions. Some of these examples and 
results are discussed in Section III. Appendices are in- 
cluded which give details of the network variable partition- 
ing algorithm and proofs of theorems and results presented 
in the paper. 

II. FACTORIZABILITY PROPERTIES OF THE MODIFIED 
NODAL EQUATIONS 

Consider a linear (or linearized) network which is con- 
nected; suppose that the branch constitutive equations of 
the network are given in the following form: 

i, = G,u, +H,i, +s, 

u* =I& +z,i, +s,. 0) 

Equation (1) is very general in the sense that it includes 
almost all types of element characteristics used in network 
analysis. Let the topological equations (KCL and KVL) of . 
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Fig. 1. (a). A network with a cutset of branches whose currents are 
network variables (see Example 1). (b). The graph G, of the current 
branches. 

the network be partitioned as follows: 

[A, A,] i’ =o [ 1 12 

whereA=[A, A21 is the (reduced) incidence matrix, i=[i, 
i,]r and u=[n, v2]r are the branch currents and voltages, 
respectively, and v,, is the vector of note-to-datum voltages. 
Superscript T indicates the transpose. 

Eliminating i,, v,, and v, in (l), (2), and (3), we get the 
modified nodal equations: 

WI4 
A;-H,AT 

“‘“;“2] [ ;]=[ -y]. (4) 

In (4) 2, may contain zero-diagonal elements such as 
when voltage sources, inductors at zero frequency, and 
certain types of controlled sources exist in the network. In 

, this case when diagonal pivoting is used, extreme care 
should be taken so as not to choose a zero-valued pivot. In 
some ordering strategies [2], [3], the components of i, 
which correspond to the zero-diagonal entries of Z, are 
ordered last in the hope that these zero entries will be.filled 
before they are chosen as pivots. Although this approach 
avoids pivoting on a zero-diagonal element in Z,, ,it may, 
however, create a zero-valued leading principal minor in 
A,G,AT which will cause the Gaussian elimination process 
to fail. The following example illustrates this case. 

Example 1. Consider the network in Fig. l(a) which 
contains a cutset of branches whose currents are network 
variables in a modified nodal formulation. The network 
matrix in a dc analysis procedure is as follows: 

EL 0. 0 1 0 
0 gb -gb P ’ 

0 -gb gb -1-p 0 . (9 
1 0 -1 0 0 

-0 1 0 0 o- 

(a) * 

0 
Y-----l Go ? 

Fig, 2. (a). A network with a loop of branches whose currents are 
network variables (see Example 2). (b). Graph G, of the current branches. 

It is obvious that the matrix in (5) contains a singular 
principal submatrix. 

The above observation can be stated in the form of a 
theorem. 

Theorem 1. Given a linear network having a cutset of 
branches whose currents are declared as network variables 
in a modified nodal formulation, the network matrix will 
not have property F regardless of element values in the 
network. 

Proof: In (2) let b, represent the branches in the first 
partition and b, the branches in the second partition. Since 
b, contains a cutset and the network is connected, b, 
cannot contain a tree. Hence, A, is not of full rank. It 
follows that A,G,AT in (3) is singular, regardless of the 
values in G, . ?I 

The following is a network interpretation of Theorem 1: 
By ordering i, last, floating subnetworks are created when 
b, contains a cutset. The admittance matrices of these 
floating subnetworks which form principal submatrices in 
the network matrix are singular. 

Another approach for avoiding pivoting on the zero- 
diagonal entries of Z, is to interchange the rows in Z, 
containing zero-diagonal entries with the rows of the ‘re- 
spective’ nodal equations.’ This approach has been briefly 
mentioned in [l]. It turns out, however, that under certain 
conditions, interchanging rows of Z, with the rows of the 
respective nodal equations will create zero-valued principal 
minors, .as stated in the following theorem. 

Theorem 2. If a linear network has a loop of branches 
whose currents are declared as network variables in the 
modified nodal formulation, and if the reference node is 
not contained in the loop, then there is a one-to-one 
correspondence between the rows in Z, corresponding to 
the branches in the loop and the nodes in the loop which 
are contained in the reduced incidence matrix. Further- 
more, if these rows in Z, are interchanged with the rows of 
their respective node equations, and if there is no coupling 

’ Each row of Z, is associated with a branch whose constitutive relation 
forms that row. A “respective” node of a row of Z, is one of the nodes of 
the associated branch (see also Appendix A on the selection of respective 
nodes). 
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among the voltages of the branches in the loop then the 
resultant network matrix will not have property F  regard- 
less of the element values in the network. n  

The proof of the theorem is included in Appendix C. 
The following example illustrates Theorem 2. 

Example 2. Consider the network in Fig. 2(a) which 
contains a loop of branches whose currents are declared as 
network variable in a modified nodal formulation. The 
network matrix of the modified nodal equations in a 
transient analysis simulation using a backward Euler for- 
mula with time step h is as follows: 

*I *2 03 04 il 12 i, i, 

g, I 1 -1 
I 

0 , -1 1 
g3 I 1  

I 
g4 I -1 1 

--------__ r----------- 
1  -1 L I -- 

h  
1 -1 I 0  

I 

l, I 
-r, 0 

-1 1 I - r2 

273 

assumption no loops of only voltage sources, inductors and 
zero-valued resistors exist in the circuit. It is well known 
that the link resistors do not form any cutsets [7]. 

The network branch currents are then partitioned into 
three subsets: i, is the set of currents in the branches of the 
tree (or forest) of G,, i, is the set of currents in the links of 
G, and i, the currents in the remaining branches of the 
network. The node voltages are partitioned into two sub- 
set: v,,, consists of the “positive” node voltages of the nodes 
of the tree (or forest) of G,, with the exception of one node 
for each tree in the forest, which could be considered as a 
reference node for the tree. Note that v”, and i, have the 
same dimension. (An algorithm for assigning v”, is given in 
Appendix A.) v,,~ is formed by the remaining node voltages 
in the network. W ith this partitioning, the KCL and KVL 
equations can be written as follows: 

-69 
n, 
n2 

Note that due to the cutset formed by i, and i, at node 2, 
the admittance submatrix in (6) is singular. Interchanging 
the rows corresponding to the currents with the rows of the 
respective node voltages, we get 

VI 
. . 

*2 03 *4 ‘I 12 13 14 

1 -1 
’ L -- 
I h 

1 -1 I 0  
1 I 

I 
-rm 0 

-1 1 I 
---------_ 

g, 

T--------? 

I 1 -1 
0 ’ -1 1 

g3 I 1 
g, I -1 1 

(7) 

It can be easily seen that the upper 4 X 4 submatrix, as well 
as the lower 4X 4 submatrix, are singular. Thus (7) does 
not have property F  as predicted by Theorem 2. 

The method proposed and investigated in this paper is a 
modification of the method considered in Theorem 2. 
Assume for the moment that the network does not include 

.any coupled elements and that it contains neither cutsets of 
current sources and capacitors nor loops of voltage sources, 
inductors and zero-valued resistors (a zero-valued resistor 
can also be considered as a voltage source with value 0). 
Let a  graph G, (possibly disconnected) be first constructed 
to include those branches in the network whose currents 
have been declared as network variables, with all the other 
branches removed (i.e., open-circuited). If G, contains 
loops, then a tree (or forest) is chosen, with only finite- 
valued resistors as links. This is always possible since by 

bl b2 b3 

All Al2 Al3 

A2, A22 A23 
=o (8) 

(9) 

Let the branch constitutive equations be expressed as fol- 
lows: 

0, =Z,i, +s, 

i, = G,q +s2 

v3 =z313 +s,. (10) 

Remark 1. (a) A,, in (8) is square and nonsingular with 
+ 1 on the diagonal and 0 and - l’s off the diagonal. (b) 
A,, has rank n2 since the b, branches contain only links of 
the b, tree branches. (c) Z, in (10) is a diagonal matrix 
with possibly zeros on the diagonal; while G, and Z, are 
diagonal matrices with positive nonzero entries on the 
diagonal. 

Eliminating i,, v,, u,, and v, in (8), (9), and (lo), we get 
the modified nodal equations: 

-4 AT’ 4’ 0 i, 

All A,dV$ A,,G2&2 A,3 v,,, 

A,’ A22G2Aii A22G,A;2 A23 42 

0 AC A& -Z, i, 

Sl 

I 1  -A,*% = 
I --A 22.92 -- -1. 

(11) 
83 

It is obvious that (11) may contain zero-valued principal 
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minors since Z, may have zero-diagonal elements. Inter- 
changing the rows corresponding to i, with the rows corre- 
sponding to v,,, in (1 l), we get All Al2G2ATZ Al2G2AT2 A13 i, 

-z, AT’ 4, 0 4’ 

A,’ A22G2AT2 A22G2A;2 A23 Lh2 

0 43 AC3 -Z, i, 

-A,2s2 

Sl XZ 

---A 22s2 
. (14 

_ s3 

Theorem 3. For any positive diagonal matrices G, and 
Z, the matrix in (12) will have property F. H 

The proof is included in Appendix C. Note that the 
theorem can also be considered as a theorem on the 
existence of a  solution to the network equations since it 
guarantees that the determinant of the network matrix is 
nonzero. To illustrate the theorem we reconsider Examples 
1 and 2. Referring to the circuit in Fig. l(a) which is the 
one used in Example 1, the graph G, of the circuit is shown 
in Fig. l(b). Nodes 1 and 2 are chosen as the nodes of the 
trees in G,. The modified nodal matrix with the circuit 
variables partitioned as in (11) is as follows: 

‘I i2 VI *2 *3 

0 0 1 0 -1 
0 00 1 0 
1 0 &I 0 0 

P 1 o gb -gb 

-1-p 0 0 -gb gb 

. (13) 

Interchanging the rows corresponding to v, and v2 (the 
nodes of G,) with the rows of i, and i,, we get the 
following matrix: 

‘I ‘2 VI *2 03 

1 0 g, 0  0 

P 1 o gb -gb (14 
0 0 1 0 -1 
0 00 1 0 

-1-p 0 0 -gb gb _ 

which has property F. 
Consider now the circuit shown in Fig. 2(a) which has 

been analyzed in Example 2. The graph G, of the circuit is 
shown in Fig. 2(b), where i,, i,, and i, are the currents in 
the tree branches of G,, and i, is the current in the link. 
Interchanging the rows corresponding to i,, i,, and i, with 
the rows of their respective node voltages v,, v2, and v3 in 

I T  n ...... 
Fig. 3. A network with controlled sources which results in a zero-valued 
pivot for specific values of controlled source parameters (see Example 3). 

: 
(6) we get the following matrix: 

*I *2 *3 *4 ‘I 12 ‘3 ‘4 

1 -1 
I L -- 

-II 
h  

84 I 

0 
-rm 0 
-1 

---------- l------------ 
g, I 1 -1 

0 I-1 1 

L g3 
I 

I 
-1 1 I 

1 

- ‘2 

(15) 

which has property F  for all positive values of g,, g,, g,, r2, 
and r,,,. Note that the matrix need not be arranged as in 
(11) before the row interchange is carried out. 

The zero-valued principal minors that have been avoided 
in Theorem 3 are caused mainly by two factors: (a) zero- 
valued entries in Z, due to element values, and (b) topo- 
logical reasons (loops and cutsets of current variables) that 
create zero-valued principal minors regardless of element 
types and values. These zero-valued principal minors are 
avoided by performing row interchanges. However, con- 
trolled sources are not included in Theorem 3. When 
controlled sources exist in the network the matrix in (12) 
may contain zero-valued principal minors for specific ele- 
ment values, as shown in the following example. However, 
this situation only occurs for carefully chosen element 
connections and values, and it is very unlikely that it will 
occur in the simulation of practical circuits. 

Example 3. Consider the network in Fig. 3  which con- 
tains controlled sources. Following the ordering techniques 
proposed in Theorem 3, the matrix below is obtained after 
the row interchange has been carried out: 

‘I 12 *I *2 03 

I -; -a 0 1 -1 0 o-1 0 1 -1 0 1 1 -1 0 0 2 10 -1 -1 0 3_ 

(16) 

the matrix in (16) has property F  except when (Y= 1. 
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Fig. 4. Circuit used in Example 4. 

TABLE I 

NOdO 12131415 16 I 

III. IMPLEMENTATION 

The implementation of the method proposed in Theorem 
3 has resulted in a modified version of SPICE2 [2]. In this 
modified version the “positive” nodes of the branches of G, 
of a  given circuit are first determined using the algorithm 
given in Appendix A. The network matrix is constructed 
using the element stamps as in [l]. The row interchange 
proposed in (12) is done by a simple change in the pointer 
system; no physical exchange of row entries is made. The 
sparse matrix reordering is then carried out using the 
Markowitz criterion [8] with diagonal pivoting. 

Examples which caused computational problems in the 
original version of the program due to pivoting on zero 
diagonal elements were successfully analyzed using this 
modified version.* Furthermore, the results we obtained 
show that in many cases the number of fills produced by 
our ordering strategy is far lower than that produced by 
previous ordering strategies, resulting in less computational 
cost, and at the same time, more accurate solutions. We  
present here a small selection of the examples analyzed by 
the modified version and compare the results with those 
obtained by the original version. 

Example 4. The circuit shown in Fig. 4  was analyzed 
using both the original and the modified SPICE2 program. 
The results of the dc analysis are shown in Table I. 

In this circuit the diode is reverse biased. The equivalent 
resistance used in SPICE2 for this diode is 0.721 X lo’* a, 
as a result the computed i, in SPICE2 is 2.324X lo-‘* A, 
instead of the correct value, which should be 0.0 A. This 
inaccuracy in computing i, makes v5 = - 1.6760 V and 
v, = 1675.9999 V instead of 0.0 V. 

Example 5. The two circuits shown in Fig. 5(a) and (b) 
were also analyzed using both the original and the mod- 
ified versions of SPICE2. The CPU times required by the 

* By the original version of SPICE2 we mean the version of vintage 
1975. More recent versions of SPICE avoid the computational problems 
which could be caused by pivoting on zero-diagonal elements by checking 
the value of the pivot during the solution process and repivoting if 
necessary [ 121. 

(4 

Fig. 5. (a), (b) Circuits used in Example 5(a) and (b). SPICE2 transistor 
parameter values are: VTO=O.S, BETA=0.5, GAMMAz0.5,  CGS= 
O.lP,CGD=O.lP, CGB=O.lP,CBD=O.lP, CBS=O.lP. 

3 1 I, 2 i2 4 i4 
xxoxoxo 
xxlxoxo 
01000@0 
XXIXlXO 
0001@@0 
XXBX@Xl 
000001@ J 

(4 

il iz i4 1 2 4 3 
-looxxxx 

0 1 0.x x x x 
001xxxx 
0001000 
0000100 
0000010 
oooxxxxJ 

(b) 

Fig. 6. (a) Structure of the network matrix for the circuit in Fig. 5(a) as 
formulated by the original version of SPICE2 (8 indicates a fill). @) 
Structure of the network matrix for the circuit in Fig. 5(a) as for- 
mulated by the modified version of SPICE2. 

TABLE II 

equation solving subroutines in both programs for both 
circuits are given in Table II. 

The difference in the number of operations between 
modified SPICE2 and the original SPICE2 in Table II can 
be explained as follows: In the original SPICE2, the matrix 
formulated by the modified nodal approach for the circuit 
in Fig. 5(a) is as shown in Fig. 6(a). It can be seen that 
although the number of off-diagonal elements of the rows 
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and columns corresponding to i,, i,, and i, is small, they 
are not chosen as pivots until their corresponding zero- 
diagonal entries are filled. This delay causes the number of 
fills to increase greatly. In. our approach, the matrix for- 
mulated for the circuit in Fig. 5(a) is as shown in Fig. 6(b). 
It can be seen that the number of fills is now zero, and 
consequently, the number of operations is reduces. 

IV. DISCU’SSION 

In this paper we have investigated the factorizability 
properties of the modified nodal equations used in network 
analysis. We derived conditions for which the equation 
matrix is or is not factorizable for any diagonal pivot 
selection. We then presented a strategy for partitioning the 
network variables and performing initial block row inter- 
change which resulted in a matrix ((12)) factorizable for 
any diagonal pivoting (Theorem 3) provided the element 
values are positive and no coupled elements exist in the 
network. When negative valued elements and coupled ele- 
ments exist in the network, the result still applies for almost 
all values for the rest of the elements. 

In (12) the leading principal submatrix, A,, contains 
+ l’s on the diagonal and 0 and - l’s off the diagonal. If i, 
is eliminated first, then only row additions are involved 
and no multiplications or divisions are necessary (see Ap- 
pendix B). Similarly, if Z, =O and both i, and 9, are 
eliminated first, only row additions are involved. Note that 
for Theorem 3 to apply it is not necessary to have all the 
tree branches of G, included in Z,. It is possible to have Z, 
include only those branches in G, that contribute zero- 
diagonal entries provided that they do not form loops, and 
the remaining branches can be included in Z, as long as 
these branches do not form cutsets. 

Although by initially performing row interchange (which 
is equivalent to off-diagonal pivoting), the network matrix 
loses some of its symmetry, this, however, is not a draw- 
back. In fact we have observed, in many of the examples 
we have analyzed, that by using this initial off-diagonal 
pivoting, the number of fills is much lower than that 
produced by strictly diagonal pivoting. 

Our method has been implemented in a modified version 
of SPICE2 with little change to the program. A simple 
subroutine was added to assign i, and 9, as described in 
Appendix A, and the block row interchange needed in (12) 
was accomplished by a simple change in the pointer sys- 
tem. 

Finally, it should be pointed out that if one uses nodal 
analysis, rather than the modified nodal analysis, one could 
prove diagonal dominance, and hence property F, when 
the network contains positive-valued uncoupled resistors 
only [7]. When coupled or negative-valued elements are 
allowed, it is then possible that for certain sets of element 
values numerical instability may occur. The safest way to 
guard against such numerical instability in the most gen- 
eral case is to perform (partial or complete) pivoting during 
the solution process of the equations. This approach, how- 

ever, would be rather costly in circuit analysis, especially 
when sparse matrix techniques are being used, since the 
pivot order may have to be changed at every iteration. Our 
purpose in this paper has been to develop a method of 
ordering the circuit variables and the equations at a pre- 
processing stage from graphical considerations only, 
without a knowledge of the actual values of the elements in 
the circuit. The aim is to prevent the creation of and 
pivoting on zero-diagonal elements which would otherwise 
be created for any element values. 

APPENDIX A 

Positive Node Selection Algorithm 

Let p be a vector of dimension n, where n is the number 
of ungrounded nodes in a given network. Let pj be the 
number of branches whose currents belong to i, in (10) and 
are incident at nodej. Note that pi can be zero or a positive 
integer. In the following steps, whenever node j of a 
current branch is chosen as positive, pj is reduced to zero 
and pk at its “negative” node k is reduced by one. 

(1) The ungrounded nodes of all grounded current 
branches belonging to i, are selected as positive first. 

‘(2) If pk of node k of a current branch is one, then node 
k is selected positive for that particular current. branch. If 
more than one node have their pk values equal to one and 
if some of these nodes do not have a conductance (i.e., a 
resistance whose current is not a circuit variable) connected 
to them, then one of these nodes is chosen positive first. 
Otherwise, any one of the nodes that has its pk value equal 
to one is chosen positive. 

Step (2) is repeated until all the branches corresponding 
to i, have been processed. Note that up to this point there 
is always at least one node whose pk value is one. This is 
because the branches corresponding to i, do not form 
loops. Note also that the number of positive nodes is equal 
to the number of elements in i,. The polarities of the 
currents in the current branches are associated with the 
positive node assignments. 

APPENDIX B 

Let G, be the directed graph of a tree or a forest. Let one 
node in each tree of the forest be designated as a reference 
node. Let Ad be the reduced incidence matrix of Gd with the 
nodes and branches arranged in such’ a way that A, has 
+ l’s on the diagonal (Appendix A describes one way of 
assigning the nodes and the directions in the branches so 
that A, has + l’s on its diagonal). It is clear that A, is 
square and nonsingular. 

Lemma B.1. For any diagonal pivoting the LU factors 
A, contain, 0, + 1 and -1 entries only, with the diagonal 
entries of both L and U being + l’s and the off-diagonal 
entries being 0 or - 1’s. 

Proof: It is obvious that A, itself contains 0, + 1, or 
- 1 entries only. Let A, be formulated with current i, 

, 
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chosen as the first pivot where i, flows in branch b,, which nodal equations: 
is connected between nodes i and j. After row and column 
interchange the first row and column A., will have the c 4,G,4’ 4,G,4, 
following form: 4,‘+‘:, &G,A;, AXHI 

j AT2 -Hz -z2 

where node j is assumed to be in Gd; otherwise column one 
would be all zeros below the diagonal. Note that entry 
aij=O because Gd does not have any loops and ali i= 
2,3; . . ,n are either zero or - 1. Pivoting on a,, amounts 
simply to adding row 1 to row j. Since adding any two 
rows in the incidence matrix of a  directed graph produces a 
row with 0, + 1, or - 1  entries, row j will then contain 0 
and -1’s with + 1 on the diagonal. Let the submatrix 
generated by pivoting on a,, be denoted by ad. ad can be 
considered as the incidence matrix of a  directed graph c?, 
where Gd is derived from Gd by removing branch b, and 
merging node 1 with node j [9]. Thus ad has the same 
properties as A,, and pivoting on its first diagonal entry 
will produce a submatrix with ones on the diagonal and 0 
and - l’s elsewhere. This proves the lemma. 

APPENDIX C 

Proof of Theorem 2 

W ithout loss of generality, let all the branches b, whose 
currents are declared as network variables form one loop. 
Since we have assumed that the reference node is not 
contained in the loop, then from Appendix A there is a 
respective node for each branch in the loop. Let the nodes 
of the loop be denoted by n, and the remaining nodes of 
the network by nz. Partitioning the KCL and KVL equa- 
tions, we get 

b, b2 

Interchanging the rows corresponding to i, with the rows 
of ql, in (C.4) we get 

42 

[, 

-Hz -z2 V nl 

A2,%4;, &‘%A;, AaH, I[ 1  v n2 

&‘%A:, A,,%‘;, A,,H, +A,2 i2 

-A,,s, 

III 

[ I 

-Az,s, . (C-5) 

s2 

Since A,, is singular, a  zero-valued principal minor exists 
in (C.5). This completes the proof. 

Proof of Theorem 3 

First, we introduce some definitions. Let a  = { 1,2,. * - , p} 
and b= { 1,2;. . ,q} be two sets of integers. Let A(ab) 
denote a submatrix of a  given matrix A which is formed by 
the intersection of the rows and columns of A correspond- 
ing to sets a and b, respectively. A(a) represents a subma- 
trix formed by the rows of A corresponding to set a. 

Consider now the partitioned incidence matrix given in 
(8) in Section II: 

G4,2 ‘043 

A22 -A2,4?42 A23 -A2,4?4,3 1 
(C-6) 

while the branch constitutive equations are given as 
A graph-theoretic interpretation of (C.6) is as follows: 

[A,, A,2 A,,] 

i, =G,q +H,i, +s, represents the incidence matrix of a  subgraph formed by 
q =H2q2 + Z,i, +s,. (C.3) those branches that are incident at nodes n,, where b, is a  

tree.(or a forest) of this subgraph. It follows that 
Note that in (C.1) A,, - -0 since branches b, are incident 
with nodes n, only. In (Cl) n, = b,, and it follows that 1 Z A,‘-+ A,‘&] =[I 42 B,,] 

each column in A ,2 contains exactly two nonzero entries, is a  fundamental cutset matrix of the subgraph [lo]. The 
-t 1  and - 1  and, therefore, A,, is singular. Eliminating i,, submatrix [ Ai Ai,] in (C.6) can be interpreted as the 
u,, and u, from (C.l), (C.2) and (C.3) we get the modified incidence matrix of a  graph formed by removing branches 
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b, from the original network and collapsing nodes n ,. 
Let us now consider the network matrix defined in (12). 

A,, has property F since it is the incidence matrix of a tree 
with + l’s on the diagonal; Z, has property F since it is 
diagonal with nonzero diagonal elements; and A2,G2AT2 
has property F, because A,, is of full rank (see Remark 
l(b) in Section II) and G, is a diagonal matrix with positive 
nonzero diagonal elements [7]. Suppose we now choose any 
principal submatrix of the matrix in (12) and rearrange the 
submatrix as follows: 

Using the Binet-Cauchy theorem,3 the determinant in 
(C. 10) can be shown to be nonzero. 

If b > a, then 

where Z,(aa) is diagonal. Again using the Binet-Cauchy 
theorem, the determinant of the triple product in (C.8) can 
be shown to be nonzero. 

This completes the proof. 

A,'(4 42WG242W 

--?@a) 4lW) 

-42'W A22b)G242(bJ 

0 43W) 

4267w2A;2(cJ 43W) 

A;,@) 0 

A22(4GzA;2(4 A23(Cd) 

A%4 -z3(4 

where a, b, c, and d represent the sets of indexes of the 
rows and columns chosen from the various submatrices of 
(12). 

111 

The determinant of the matrix in (C.7) can be written as PI 

det A,,(aa) det 

I 

Z Z,(ba)&(a.) Z,(ba)4,(ad) 
o 

A;,(4 A;,(cd) I 

.det AT,(bb) 1 A%b) d&t [-Z,(dd)] 1 (C.8) 
0 Z 

It is obvious that 
det A,,(aa)#O 

and 

det A:,@) 
[ 

A;@‘) +o 
0 1 ‘I . 

Suppose bca, thenZ,(ba)=[Z,(bb) : 01, where Z,(bb) is 
diagonal. It follows that 

[Z,(bahz(a.) Z,(ba)4,(ad)] 

= [Z,(bb)&b) Z,(bb)&(bd)]- (C.9) 
Substituting (C.9) in (C.8), we get 

Z,(b+ “‘6”“’ ’ [ I 

(C-7) 

]31 

141 

[51 

[61 

[71 

PI 

191 
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Frequency-Domain Considerations o f LSV 
Digital F ilte rs 

NIAN-CHYI HUANG, STUDENT MEMBER, IEEE, AND J. K. AGGARWAL, FELLOW, IEEE 

Abstract-The present paper develops a framework for the analysis and 
synthesis of linear shift-variant (LSV) digital filters in ,tie frequency 
domain. First, LSV digital filters are theoretically modeled by the succes- 
sive use of linear shift-invariant (LSI) filters. On the basis of the model, we 
present an interpretation of shift-variant spectral modification or filtering. 
Further, shift-variant digital filtering is discussed in relation to the notions 
of the short-time spectrum and the generalized frequency function. In 
addition, we propose an efficient implementation procedure which reduces 
the number of filter coefficients and the amount of computation. The 
effectiveness of LSV digital filters in processing time-varying signals is 
demonstrated by experimental verification. 

I. INTRODUCTION 

L INEAR shift-invariant (LSI) digital filters have be- 
come important tools in a multitude of diverse fields 

of science and technology. Often, the use of LSI digital 
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filters is insufficient to process various kinds of signals. In 
seismic data processing, for example, linear shift-variant 
(LSV) digital filters have been extensively used [l]-[4]. 
Thus it is of practical and theoretical interest to study LSV 
digital filters [ l]-[7]. 

Two of the most important applications of digital filters 
are system identification and modeling [8] and spectral 
modification [9]. In system identification, the objective is to 
find some parameters such as impulse responses and coeffi- 
cients of difference equations to simulate the characteris- 
tics of practical systems. The representation of the system 
in terms of an LSI digital filter follows directly from the 
assumed stationarity of the system. In many applications, 
however, LSV digital filters may offer a  more accurate 
representation of the system because of the presence of 
nonstationary components in some practical systems. As 
an example, LSV digital filters have been used to model the 
vocal tract in a speech analysis and synthesis system [lo]. 

Alternatively, the objective of spectral modification or 
filtering is directed toward removing interference such as 
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