
An Overview of Algorithms in Gnucap
Albert T. Davis

Idaho State University
Pocatello, Idaho

Email: aldavis@ieee.org

Alslroel-This paper will present an overview of the algo-
rithms in Gnucap. Gnucap is a mixed-signal circuit simulator.

Algorithms to he presented include event driven analog simu-
lation, the use of queues to accelerate simulation of large circuits,
implicit mixed-mode simulation, where the simulator automates
the interface between analog and digital portions of the circuit.

These algorithms provide equivalent accuracy to Spice with
significant speedup for snme classes of circuits, including large
mostly passive circuits with a few active devices, and large mixed-
mode circuits with latency.

An overview of work in progress will also he given. This
includes cached model evaluation, which will exploit hierarchy
and duplication in the circuit, and true multi-rate simulation.

1. ANALOG SIMULATION
The analog simulation is based on the LU decomposition, as

in SPICE and many others. In mixed mode simulation, some
parts of the circuit do not naturally fit this model. Some of the
variables needed for this method may not exist, or may exist
only in a different form. To address this issue, we will begin
with this common form then extend it to fit the cases where
only parts of the matrix change and only parts of the matrix
exist. It will be used as a framework for the other methods,
which will adapt dynamically.

11. LOGIC SIMULATION

In developing the logic simulation algorithms, there are

I) Logic is considered to he an abstraction of a subset of
the analog domain. The digital signals are abstractions
of the analog signals: voltage and resistance.

2) The form chosen, both the internal data structures and
the netlist description, must fit in a primarily analog
simulator.

3) The logic algorithms employed use the same techniques
as traditional logic simulators, in hopes that for purely
logic circuits, the "mixed simulation will not result in
a significant penalty in time or space. This goal was not
quite met. Since the analog model also exists, there is
a significant cost in space,. slightly worse than a fully
analog simulator.

The algorithms for logic simulation are similar to those used
in most logic simulators. They are clearly inadequate when
race conditions exist and when the input voltage does not fit
the logic model. The problems are used as indicators to switch
to analog mode.

These abstractions work when all signals are proper, that is
when there are no race or spike conditions. In race conditions

several goals to be considered.

signals anive at a gate at different times that are not suffi-
ciently different to he considered independently. The second
transition may anive after the first by a time that is less than
the propagation delay of the gate.

111. MIXED SIMULATION

The essence of mixed-mode simulation is that two or differ-
ent types of simulation can be applied in the same circuit. This
section discusses the data structures and decision algorithms
to combine logic and circuit simulation.

A. Data Structures

The value at any node can be either continuous (voltage)
or discrete (logic state). In addition, other information could
also be useful at each node.

Both analog and digital values can exist at any node. A node
can be either analog with digital derived from it, or digital with
an analog approximation derived from it.

The admittance (Jacobean) matrix exists conceptually for
all parts of the circuit, assuming that it may be all analog.
For parts of the circuit that are simulated as digital, the
corresponding parts of the matrix are not used and may be
omitted. The matrix is allocated by suhcircuit blocks, with the
allocation for the hopefully digital blocks deferred until they
are needed. Thus LU decomposition can be turned on and off
for blocks of the matrix dynamically.

B. Choice of methods
Given that both analog and digital modes exist it is nec-

essary to choose which mode to apply where. Usually the
user does specify by asking for digital elements, but is often
wrong and must be corrected. Analog elements will necessarily
need analog simulation. Logic elements apparently need logic
simulation, but this is not always true. Race conditions and
poorly shaped signals can make logic simulation misleading.
It is possible that a logic device was misused deliberately by
the user. Two examples of this are making an oscillator out
of two gates, and using a gate as an amplifier. The decision
of which mode to use is made for each logic element, at run
time, based on a set of rules.

The rules for deciding which mode to use are based on
some assumptions. Both analog and digital information are
available at any node, but only the information that is needed
will actually be calculated. The conversion will be made on
request. If the result of a conversion is suspect, it will be
tagged for analog simulation. If any input or combination has

360
0-7803-7972-1103/$17.00 c 2003 IEEE

mailto:aldavis@ieee.org

a questionable state, the block will be simulated as analog,
resulting in analog outputs. A logic block with analog inputs
will be simulated as digital only if the input logic states can
easily be determined from the voltages. A logic block with
digital inputs from a different logic family will be simulated as
if its inputs were analog. The decisions are based on a simple
information that requires a minimum of storage: voltage, slope,
and transition count since a bad transition.

C. Conversions

Voltage signals are transformed to logic signals by thresh-
olding, roughly as in SAMSON[6][7]. For improper signals
this simple conversion leads to illegal logic signal transitions.
Slow transitions, illegal transitions and voltages outside the
proper range for the type of circuit indicate to simulate that
gate as analog. Once a conversion has been rejected, the signal
will still be tested for validity as a digital signal. The signal
will be accepted as digital after a number of clean transitions

Logic mode means that the logic function for the block
is evaluated directly. Circuit mode means that the subcircuit
representing the block is evaluated.

The logic to circuit conversion used here a ramped source
with resistance, similar to that used in SAMSON[6].

IV. INCREMENTAL MATRIX SOLUTION
Large circuits usually use subcircuits, so we will take

advantage of the ordering that results when global reordering is
not done. A modular network forms a matrix in bordered block
diagonal form. This form permits separate solution of the
blocks (subnetworks), possibly in parallel. Possibly some can
share storage, although that is beyond the scope of this paper.
The network is derived from a composition of subnetworks.
Each block represents a subcircuit, and the border represents
the connections between them. Within a block, a submatrix
has either a bump and spike or bordered block diagonal form,
depending on whether it is made of subcircuits.

This work uses an inverted form of Crout's algorithm[l]. It
calculates L and U directly without storing any intermediate
results. This property enables single elements to be recalcu-
lated as needed.

Ordinarily, these operations are performed in place, so no
memory beyond that already used to store the original matrix
is needed. We chose not to perform factoring in place because
by retaining the original A and b, partial updates and partial
solutions are possible. Since the original matrix is maintained,
only those elements that change need to be rebuilt. The matrix
can be changed by adding the difference between the old and
new values, and flagging those elements as changed.

The simulator may run in either a full mode or an incremen-
tal mode. The first iteration of an analysis is always run in full
mode. Subsequent iterations, including the first iteration of a
subsequent time step, are usually run in incremental mode.

Model evaluation and matrix loading are done in separate
passes. When a model is evaluated, it is queued for loading.
After all models that need to be evaluated have been evaluated,
the load queue is processed to load the matrix.

v. QUEUES AS A BETTER BYPASS

In Spice, devices that have converged to what appears to
be a final value may be bypassed. This still requires scanning
every element on every iteration to check.

In Gnucap, the traditional bypass is replaced by a queue. On
any evaluation, if a device is considered to be not converged, it
is queued for evaluation on the next pass. If it is questionable,
it is put in another queue which will be cbecked again on
the next pass, where it will either be bypassed or evaluated.
Constant components are always bypassed, except for the first
pass. Logic gates are bypassed unless activated by an event.

When the evaluation of a device is bypassed, there can be no
changes in the parameters loaded into the matrix, so it is not
loaded. Combining this with the matrix incremental update,
often large sections of the matrix decomposition can also be
bypassed.

VI. CONCLUSIONS
The method has been shown to be effective in reducing

simulation time for large linear subnetworks such as those
resulting from RLGC models of transmission lines such as
found in interconnect in PC boards and MCM's. It makes little
difference for small nonlinear subnets. Although it did result
in significant improvements in the LU phase of simulation, it
does not hide inefficiencies elsewhere in the system, such as
those resulting from a poor ordering.

It is reasonable to question whether improvements to the LU
phase are significant, because even with traditional algorithms,
the usual analog simulation is dominated by model evaluation,
which would tend to mask any improvements. When most
of the circuit is linear, this is no longer the case and LU
improvements become significant. In mixed-signal simulation,
this partial solution method allows whole blocks to be easily
switched in and out as the simulation progresses. It also
enables the use of queues as a more efficient alternative to
bypass.

REFERENCES
[I] Albert T. Davis. A vector approach to sparse nodal admittance matrices.

In 30th Midwest Symposium on Circuits and System. August 1987.
I21 H. deMan, G. Amout, and P. Reynaert. Mixed-mode circuit simulation

rechniques and their implementation in DIANA. In P. Antognetti, D. 0.
Pederson, and H. de Man, editors, Computer Design Aids for V S 1
Circuits. Maninus Nijhoff Publishers. Dordrecht, The Netherlands, 1980.

[3] James Ellis Kleckner. Advanced mixed-mode simulation techniques. Ph.d.
thesis, University of Califomia, Berkeley, 1984.

141 A. R. Newton. Techniques far the simulation of large-scale integrated
circuits. IEEE Transactions on Circuits ond Systems, CAS-26(9):741-
749, September 1979.

IS] David Overhauser, brahim Had, and Yi-Fan Hsu. Automatic mixed-mode
limine simulation. In Pmc. IEEE ICCAD. ~ a e e s 84-87. 1989. - . _

161 Karem A. Sakallah Mixed simulation of electmnic integrated circuits.
Research Repon CMUCAD-83-10. Camegie-Mellon University, May
1983.

171 &em A. Sakallah and Stephen W. Director. SAMSONI: An event dnven
VLSl circuit simulator. IEEE Transactions on Computer-Aided Design.
CAD-4(4):668-684, October 1985.

181 Resve A. Saleh and A. Richard Newton. Mixed-Mode Simulation. Kluwer
Academic Publishers, Boston, 1990.

