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Abstract-A piecewise  procedure ded dialsopties is described. 
An overview of the  theory is presented, and a summary of the ap- 
plications  that  have been carried out to  date in the  power  industry 
has been included. This paper is not a mere recaphaltion, but  con- 
tainn a number of new ideas which  have  not been pnsented previ- 
ously. Only relevant  mathematics  have been includ-ed,  and  deriva- 
tions or detailed  mathematical  presentations that appear elsewhere 
have been referenced.  The  paper starts with a historical review  in 
which the classic problem through which dhkoptice was conceived is 
presented.  The tearing cases considered  include-torn subdivisions 
radially attached as well as torn  subdivisions not attached. Only the 
mest basic cases are  considered  for  brevity  and  clarity of presenta- 
tion 

T 
INTRODUCTION 

H E  BASIC IDEA of diakoptics  is  to  solve a large  sys- 
tem  by  breaking  or  tearing it  apart  into  smaller  sub- 
systems; to first  solve  the  individual  parts,  and  then  to 

combine  and modify the  solutions of the  torn parts to yield 
the  solution of the original untorn problem. The  result of the 
procedure  is  identical  to  one  that would have been obtained if 
the  system  had been solved as one. 

Consider Fig. 1 which may  represent a large power system. 
The solution,  through  diakoptics,  is  obtained by tearing  the 
system  apart  and  to  solve  each  part  separately ( A ,  B ,  C, and 
0) with no contribution  from  the neighboring parts consid- 
ered. The  contribution to the total solution,  due to the  inter- 
connections of the  torn  parts,  is considered separately. 

The  torn  parts or subdivisions  often occur quite  naturally, 
and  thus also the  corresponding lines of tear, as for example, 
the  boundaries  between power  companies. 

The uses of diakoptics  are  at  least twofold: in  the  first  ap- 
plication,  larger  systems  can be solved efficiently by  the use of 
diakoptics  on a given computer  thanaould  otherwise be possi- 
ble by processing the  torn  parts  through  the  computer  serially. 
The second application  employs a multiplicity of computers 
which essentially  operate  in parallel, and  thus  provide  more 
speed of execution  than  by  the use of a single  computer.  The 
computers  can be physically next to each  other,  thus  forming 
a cluster of cqmputers,  or  they  can be miles apart.  Each  com- 
puter  in  the  latter  application  can  work  on  the  solution of a 
given part.  In  the  case of Fig. 1, four  computers would  be em- 
ployed. Extra  computational  capability  is  required  to calcu- 
late the  contribution  to  the  total  solution  due  to  the  intercon- 
nections of the  torn  parts, which can be provided  by  the  com- 
puters working on  the  torn parts, or by  extra  computers pro- 
vided for that  purpose. A summary of specific applications 
with  corresponding  references  is  presented  in  the  paper. 

Both  applications  above  involve  conventional  computers, 
which operate more or less serially.  Future  computers  may 
well have parallel computing  capability,  similar  to  the  second 
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Fig. 1. System torn into four parta. 

application,  in which case we can  expect  larger  problems  to be 
solved  with  greater speeds by  the use of diakoptics  than  by 
solving  the problem by  conventional  methods. 

HISTORICAL REVIEW 
The word diakoptics  comes  from  the  Greek  words  “kopto” 

meaning to break or to  tear  apart,  and  “dia” which  reinforces 
the word to follow as the English  word “very.”  Diakoptics 
was  conceived by  the  late  Gabriel  Kron  in  the  early 1950’s, 
with  the word diakoptics coined by  the  late  Prof.  Stanley of 
the  Department of Philosophy of Union College, Schenectady, 
N. Y. [I], [2]. As in  many  other discoveries, diakoptics  was 
found  unintentionally  when solving an engineering  problem. 

The problem  was how to  obtain  the total losses of a large 
interconnected power system, given the loss models of the 
individual power companies.  Consider Fig.  2 as an  example; 
i t  represents an  interconnected power system  consisting of 
three  individual power companies ( A ,  B, and C). The  lines 
between the  companies  represent  interconnecting  tie lines. 
The models by which the real losses (PL) of the  individual 
companies  can be calculated  take  the  form of a square  matrix, 
and  each  one  is of order  equal  to  the  number of generators 
contained  in  the  area  plus  the  number of ties that connect  the 
area  to  the  rest of the  system. 

The losses of area A ,  for example,  are given by 

PLA = P/BAAP’ (1) 

where PA is  the power vector of area A and  contains  generator 
and  load powers Pod and  tie power PA; t stands for transpose 
in (1) and BAA represents  the loss model of area A .  

The composite  matrix of the loss models of all three  areas 
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for  Fig. 2 is as follows: 

. Pa - 

G A ,  GB, GC represent  generator  and  load axes, and T A ,   T B ,  
T C  represent tie axes of the  areas. 

The losses of the  total  system  similar  to (1) are 

Pr. = P t a B d P ,  a, @ = 1 , 2  * * . (3) 

Note  that (3) can  only be executed if the tie powers (PA, 
pB, PTC), representing flows between the  areas  in  Fig. 2 are 
known. But these flows are generally not known,  which is  the 
crux of the classic  diakoptics  problem: specifically, the prob- 
lem is how to  obtain  the  total  solution of a system,  such as 
that  in Fig. 2, from  the  solution of its  parts.  Note  that (2) can 
be interpreted  to  represent  the  solution of the  torn  system in 
Fig. 3; (2) represents  the  solution of the  system  in Fig. 2 
which  is shown as torn  into  three parts or  areas. The problem 
then  is how to change  or modify the  area  or  torn  solutions of 
Fig. 3 so that  they  apply  to  the  untorn original  problem  in 
Fig. 2. 

I t  should be  clear that  the  interconnections  between  the 
subdivisions  are  not  represented in (2) and modeling  is there- 
fore  required.  This  is precisely what  Kron  accomplished 
through a series of contour  (open-  and  closed-path)  trans- 
formations which  define the  interconnections  and  link  the 
subdivisions [2],  [SI. 

The preceding  problem  in the 1950’s, in which a total  solu- 
tion was obtained  from  the  solution of its  parts,  triggered  re- 
search  starting in the 1950’s to  the  present [3]-[38]. 

This  author  had a close  association  with  Kron  for  over a 
decade,  starting  in  the  late 1950’s, and  with  Kron’s  encourage- 
ment,  evolved a theory  underlying  diakoptics which can be 

Fig. 3. In- power system tam into three parts. 

called the ‘Contour  Theory of Networks.” I t  u t i l i p s  open- 
and  closed-path  contours  and  equation  structures of currents 
and voltages  associated  with the  contours.  The  closed-path 
or mesh contours  are well known to  engineers  from the  time 
of Maxwell, but  not  the  open-path  contours.  The  latter  are 
the more  correct  duals of the Maxwell  mesh contours,  and 
trace  out a network  such  that  the  conventional  junction  pairs 
of network  theory  define  its  endpoints;  there  are as many 
independent open paths as there  are  junction pairs in a net- 
work.  A  nonsingular  transformation  matrix,  which  is a branch 
to  contour  matrix defined by  the  contours,  is  central to  the 
theory.  A  detailed  presentation of the  theory is given in [SI. 

REVIEW OF MATERIAL COVERED 
This  paper  in  the  main will review two  tearing cases as 

follows [21]: 
1) torn  subdivisions  radially  attached; 
2) torn  subdivisions  not  attached. 

In  the first case, the lines of tear  must be such that the 
subdivisions  form a radial  network when the  interconnecting 
branches  are  removed.  Fig. 4 illustrates  this  case. 

A  special but  important case of subdivisions  radially at- 
tached is the case  where all subdivisions  emanate  from a single 
common  bus  which  often  is  ground  as  shown  in  Fig. 5. 

The second tearing  case  is  one  where  the  torn  subdivisions 
are  not  attached, which  is the case  previously  illustrated in 
Fig. 3. The classic problem  previously  discussed  is  in the 
second  category,  and  the  solution to  the problem will be out- 
lined at the conclusion of the  material of the second tearing 
case. 

A  synopsis of the  pertinent  theory  in  each case  is  first 
presented, followed by  the piecewise algorithm. The  theory  is 
important, since it  illustrates  what  the  algorithms  are  accom- 
plishing, and defines the  elements used in  the  algorithms. 
Applications of the  algorithms  are  summarized at the  end of 
the paper.  For the  treatment of the  dual cases, the  reader is 
referred to [l], [SI, and [12]. 

TORN SUBDIVISIONS RADIALLY  ATTACHED 
Subdivision Level 

An example  network of the  type shown  in  Fig. 5 with single 
bus  common will be  used for illustration  and  appears  in  Fig. 6. 
The material  equally  applies  to  the  case  with  multiple  com- 
mon  buses illustrated  in  Fig. 4 except  where  ipecifically  noted. 
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Fig. 4. (a) Network with linea d tear indicated. (b) Subdivisions 
radially attached-multiple common bueea. 

Fig, 5. (a) Network with lines of tear indicated. (b) Subdivisiona 
radially attached-single common bus. 

The  junction  pair  voltages for the  example  network  are 
shown  in Fig. 6, and  they all take  the  same  form as emanating 
or spanning  the  system  from  the single common  bus to all 
other buses. In  general,  the  junction  pairs  can  span  the  sub- 
divisions  in  any  manner desired  (tree-like manner). 

The relationship  between  the  junction  pair  voltages  and 
the  injected  currents will first  be  expressed through a nodal 
admittance  matrix formed for  each  subdivision which can be 

Fig. 6. Torn aubdivisions. 

directly  constructed from the  branch  admittances.  The com- 
posite of all the  subdivision  admittance  matrices will be 
called P. 

T 

' A '  B' . . ?  L 

L 

Note  from (4) that  mutual  coupling is assumed  absent 
between  branches belonging to different  subdivisions [3]. 

YLL in (4) is a submatrix which represents  the  intersubdi- 
vision branches ( b l ,  b2, b3, b4). in  the  example,  and  is a 
branch  admittance  matrix.  Equation (4) will be denoted 

J' = YV,. ( 5 )  

Voltage  vectors EA, ,   Ep ,  - , represent  junction-pair (open- 
path)  voltages.  In  the  example case 

 EA^ = (EuY &A, EaA) 

E p  = ( E I B ,   E ~ B ,   E I B )  

&, = ( E m  E2c). (6)  

Current  vectors P ' ,  P', - . , represent  junction-pair (open- 
path)  currents,  they  have been represented as two compo- 
nents: 1) those  due  to  external  current  sources f, and 2) those 
due  to  the  interconnection of the  subdivisions IT' 

In  the  example case in Fig. 6 
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The  inverse of ( 5 )  is 

v, = z 2 .  
In  expanded  form, (8) appears as 

L 1- + p .  
L 

Zm represents  the  solution of the  subdivisions in the  absence 
of their  interconnections,  since  with IT' zero, (9) directly 
yields the  subdivision voltages. ZTT will play a key role 
throughout  this  development,  and is analogous  to  the B, of 
the classic  problem in (2). 

Equations (4) and (9) represent  the model of the  network 
but  with  the  subdivisions  not  interconnected. An equivalent 
network  can be generated  from (9 ) ,  as shown  in Fig. 7, by 
interpreting  the  diagonal  elements of ZTT as self-impedances 
through which the  open  paths flow, and  the off-diagonal ele- 
ments as electromagnetic  mutuals between the  constructed 
branches.  The  mutuals  have  not been  explicitly shown  in 
Fig. 7. 

2, in (9) need not be computationGly  obtained  from yk 

by  inversion.  Matrix  building  techniques  can be employed if 
desired,  or  other  suitable  methods. . I t  must be emphasized 
that 2, as such  is  not  even  required for solving  the  network 
problem, as will be further  elaborated  upon. 

In  (4) and (9) the  subdivisions were given the  index T and 
the  intersubdivision  the  index L. The reason for  these indices 
is  readily  apparent  from Figs. 6 and 7. The procedure of con- 
structing Y" is equivalent  to  eliminating  the loops in  the  sub- 
divisions, so that  the  subdivisions  have been reduced to  an 
equivalent  tree  form. Because the  torn  subdivisions  are 
radially hinged in  this  tearing case, the  compound  tree  formed 
by all the  subdivisions  is  also a tree of the  total  connected 
network.  These  branches  therefore  bear  the  index T.  

The  only  remaining loops in  the  system  are  formed  due to 
the  subdivision  interconnecting  branches,  also called inter- 
subdivision  branches;  these  latter  branches  therefore bear the 
index L. 

The  important  point  to  note'is  that  the  subdivision  junc- 
tion  pairs  span  the  entire  connected  network  and, when 
solved, also represent  the  solution of the  total  interconnected 
network.  The  junction-pair  (open-path)  voltages  are defined 
as E T ;  and  are  illustrated  in Fig. 7: 

( E A * ,   E B t ,  ' * ' ). ( 10) 

ET excludes VL.   EA^, E B f ,  . * , are defined in (6). 

illustrated  in Fig. 7: 
Junction-pair  (open-path)  currents  are defined as (p+P') 

IT = ( F A ,  I T B ,  * * ) (11) 

F' (FA', F B '  . . . ). (12) 

IT and P' exclude JL. I T A ,  I T B ,  and ITA',  ITB' are defined 
in (7). 

Notice that  the  solution of the  subdivisions  can  readily be 

Fig. 7. Equivalent  repreentations of subdivisions, torn 
subdivisions radially attached (r) . 

obtained  by  various  computational  methods  from (4) or di- 
rectly  from (9) if p' in (12) is  known.  From (9) 

ET = ZTTIT + ZnF'. (13) 

The  equivalent  operation  to  that in (13) can be realized  by 
employing  elimination  techniques  or  triangular  factorization 
techniques  upon (4). The  problem of course is that IT' is 
unknown. 

Currents p' are  similar to tie powers in  the classic prob- 
lem.  Their  determination will be considered at the  next com- 
putational level or levels. 

A Note on Generality 
The selected  junction  pairs  in  the  subdivisions, as in  Fig. 6, 

are  arbitrary  and  can  take  any  form so long as they  span  the 
buses of the  subdivision  in a tree-like manner (see [SI, pp. 
251-255). The  particular reference frame  shown  in Fig. 7 is 
an  especially useful one  where all equivalent  branches  emanate 
from a single common bus. 

The excitation considered in  the original network  can con- 
sist of voltage  sources  in series with  each  branch,  current 
sources  across  each  branch,  and  current  sources a c r m  all 
junction pairs. All these  sources  are  equivalenced  into  one set 
of junction  pair  currents (see [3], p. 216). 

Intersubdivision h e 1  
The problem to be solved. is  the  determination of the  cur- 

rents  created  due  to  the  cut (P'), and  their  contribution  to 
the  solution o f  the  total  interconnected  system. 

The  method  to  be  presented  is based upon  the  network 
composed of the  equivalent  branches  shown  in Fig. 7. These 
branches  can be viewed as forming a new primitive  system 
shown  in Fig. 8(a) which, upon  interconnection, yields the 
connected  network  shown  in  Fig.  8(b).  This new network  is 
identical  to  that  in  Fig. 7 but  with all the  subdivisions  inter- 
connected.  The new network  pictured  in Fig. 8(a)  is defined 
by (9) except for notation as shown 

_--__--_-_ _---  
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Fig. 8. (a) Newly created primitive network. (b) Network 
equivalent of original netwofk. 

where VT normally  includes  voltage sources 

VT = a%' + eT* (15) 

In  this case all voltage  sources  in  the  subdivisions  have been 
converted  to  current  sources as indicated  earlier,  and  therefore 
~=O.&hasbeendefinedin(lO),andFTn(ll).F'in(12)is 
equal  to aT in (14), and is defined to be due to other  than ex- 
ternal sources. 

The change  from  the  injected  currents f' to  network  cur- 
rents aT corresponds  to  the  change  from  torn  subdivisions  in 
Fig. 7 to the  interconnected  network  in Fig. 8. 

Current  sources  are  not  assumed  to be present  in  the  inter- 
subdivision  branches for .convenience of this paper ( I L = O ) ,  
aad therefore JL in (14) is solely due  to iL. The presence of IL 
sources  is considered in [SI. 

The primitive  in Fig. 8(a) will next be transformed to the 
network  in Fig. 8(b). A transformation  matrix  can be estab- 
lished  by  means of Fig. 8(b) which relates  the  path  currents 
defined in Fig. 8(b) to those of the  branch  currents  in  the 
primitive. 

P = C.J' (1 7) 

where Jr are  the  currents  in  the  primitive  and J' &re the  path 
currents  shown  in Fig. 8(b).  The  latter  consist of open-path 
currents Io  and closed path  currents io. Incfhis particular case 
(unit  tree  and  unit  link),  the  paths  have been chosen in a par- 
ticular  simple  manner so that Io= f .  For a discussion of more 
general  paths [3] should be consulted. 

C., is a transformation  matrix which is  illustrated  in (18) 
below. The  dot  indicates  that s is  the second index  rather  than 
the first, and  that  the  matrix  is  thus r Xs. The  transpose of 
C.a is C:', illustrating  that  it  is  an sXr matrix. The  dot  nota- 
tion  is covered in  detail  in [SI. 

Equation (17) in  expanded  form is 

0 C 

when transforming (14) by means of C.a, the following equa7 
tions  result 

where V,= C..' Vr and Z,,= C,*7Z,.J'.,. Equation (19) in ex- 
panded  form  and also writing  the expressions of all sub- 
matrices  is 

where ec= l o . L e ~  and E ,  is usually  zero. 
Z., takes  the following form 

A B . . .  C 

A 

1 

ZSs' . 

C 

21 consists of the  submatrices of the  torn  areas A ,  B ,  , in 
(9) as indicated. ZI, Z,, and 2, are  submatrices  that reflect the 
interconnection  of  the  subdivisions,  and  they  can be  con- 
structed  from 21 as shown  previously [3], [21]. 

Note that ZJOand Ztie represent ZmF and Z n f '  in (13), 
respectively. 

With e, and I!" known  in (20), io and ET can be solved 
from (20) 

e, = Z,I" + z,ic. (22) 

Solving  for ic from (22) 

i c  = Z,-*(e. - ZJ.). (23) 

Solving  for ET from (20) 

ET = Z I P  + Ztic. (24) 

Factmized Solutions of (20) 
The  solution of (20) can also be obtained  without  forming 

2 2  and 21. The factorized  solution  is given in  Table I along 
with  the  network models  which are  required.  The  derivation 
of the  factorization,  is  presented in detail  in [3, table 12.5, 
p. 2431. 

Notice that  the  algorithm  covers  the  case whose primitive 
is given in (14). Voltage  sources ( eL)  are  only  assumed  present 
in  link  branches  and  current  sources (f) are  limited  to  the 
tree branches. 

Note  that  step 1 represents  the  solution of the  subdi- 
visions. Steps 2 through 4 compute  the  net  voltages  in  the 
intersubdivision  network which is  the  equivalent of the origi- 
nal network  pictured  for  the  example case in  Fig.  8(b).  Step 5 
computes  the  closed-path  currents  and  the  resulting  injected 
currents ST. Since aT= IT', from (16), step 7 represents ZmP' 
in (13) which is  the  contribution  due  to  the  interconnection. 

Matrix C?., is  obviously  important  in  the  execution of the 
piecewise algorithm  in  Table  I. I t  is not  explicitly  required. 
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TABLE I 
FACTOESZSD S~LUTSON-TORN SUBDIVISION RADIALLY ATTACEED 

For  the  example  case  in  Fig.  8(b),  where all subdivisions 
emanate  from a common  reference, e., simply  assigns  signs 
to  currents ie as seen  from  the  example  case  in  Fig.  8(b). 

1A -Iu’ 
2A 

P C ’  2 c  

P C ’  1 c  

IaB‘ 3 B  

ISB’ 2 B  

IIB’ 1B 

P A ’  3A 

I=’ 
1A 

2A 

3A 

1B 

2 B  

3 B  

1 c  

2 c  

- - 

c l  c2  c3  c4 

1 

- 1  

- 1  

- 1  

1 

1 

1 

- 1  

In a more  general  case, a combination of closed-paths  currents 
comprises  each  component of P ’ [ 3 ] .  

Step 3 ,  as proven  elsewhere [ S I ,  represents  the  negative of 
the  voltages  across  the  torn  subdivisions  labelled EL(’) 

& ( O )  = - C c . T V T ( O ) .  (25) 

Equation (25 )  is general and  thus  step 4 in Table  I  can be 
written 

e,. = e, + EL(o) .  (26) 

The algorithm  in  Table  I  can be  simplified to  the following 
steps 

1) Obtain  solution of torn  subdivisions  excluding  tie  cur- 

2)  e, = Ic.LeL. 
3 )  Compute  voltages  across  torn  subdivisions (EL(@)) given 

rents  to  other  subdivisions (V=(O) = ZmP). 

intersubdivision  (CUT)  branch  sign  convention. 

4) e,. = e, + E L ( o ) .  

5) Compute  closed-path  currents (ic= Z4-1e,,). 
6) Convert  closed-path  currents (ic) to  injected  tie  cur- 

7) Obtain  voltage  contributions in subdivisions due  to  tie 

8) Total  voltage  solution is the  sum of the voltages  ob- 

rents. P i e n  (P’) by  assigning  signs. 

currents P’. ( VT(1)  = ZmP‘). 

tained  in  steps 1) and 7). (VT= V T ( O ) +  Vr(1)). 

Simplified  factorized  solution-torn subdivisions  radially at- 
tached;  steps 3 )  and 6) assume  subdivisions of the  form  shown 
in  Fig.  8(b)  and  the  paths as shown. 

Fig. 9. Equivalent representation of subdivisions, torn subdivisions 
not attached (r). (RA, R B ,  RC represent reference buees.) 

Multilevel Thew y 
The preceding  tearing  algorithms  have  considered the 

interconnections i n  a power system at two  levels: 1) the  sub- 
division  level  for  recognizing the  interconnections  within  the 
subdivisions  (index 0) and 2)  the  intersubdivision level for 
recognizing the  interconnections of the subdivisions  them- 
selves  (index 1). The previous  work  can be generalized  from 
two  levels to  any  number of computing levels (0, 1, 2 , 3  - ) 

The contours  that were  utilized  above were unit  tree  and 
unit  link.  The  reader  is  referred  to [ 3 ]  where  algorithms  for 
the case with a more  general  form of the  primitive  (coupling 
between  tree and link are considered)  is  given, and where 
more  general  excitations  and  more  general  contours are 
assumed. 

131, [221. 

TORN SUBDIVISIONS NOT ATTACHED 

Let  us now  consider the network in Fig. 3,  but where the 
torn  subdivisions  are  not  attached. 

An example  case is that  in Fig. 6 with  the  exception that  
areas A ,  B ,  C would not be grounded;  with  branches (Bl, B 2 ,  
B3 ,  B4) removed, the subdivisions  are  not attached. 

We  again  start  the piecewise analysis  with  the  subdivision 
solutions,  which will not be repeated  here  since  the  material 
presented  for the  radially  attached  case  is  equally  valid  for 
the  not  attached case.  Equations (5) and (8), or in  expanded 
form, (4), (9), and (14) apply.  Equation (14) will be restated 

p T  

L 
LL + CL 

T-refer to  the  subdivision  branches which in this case are 
not  connected; L-refer to  the  intersubdivision  branches. 
Note  that ZTT in (14) is block  diagonal  as  shown in (9). 

The major  exception of this  case,  vis a vis the previous,  is 
that  the  junction pairs ( T )  of the subdivisions  no  longer  are 
sufficient to describe the  total  interconnected  network. 

We will illustrate  the  theoretical  development by the 
example  in  Fig. 9. I t  represents  the  equivalent  branches of the 
subdivisions  similar to  Fig. 7,  with  the  exception that  the  torn 
subdivisions  are  no  longer  radially attached when branches 
(B1 . . B6) are  removed.  Note  that  two  other  junction  pairs 
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Fig. 10. Contours drawn upon (interconnecting) the system. 

are  required  to  span  the  total  network.  In  the  example  in 
Fig. 9, the  subdivisions all have  the  same  form as emanating 
from a common subdivision  bus  by  having chosen junction 
pairs of that  form  within  the subdivisions. The  material 
equally  applies  to  the case where  junction pairs have  a differ- 
ent form. 

In  the  subsection  to follow, transformations will be pre- 
sented  that will radially  attach  the  subdivisions [2]. The ties 
between  the  torn  subdivisions (B1 * B6) can be looked 
upon as representing a primitive  system of the  interchange 
network, which in the  example of Fig. 9  consists of six 
branches.  The topology of the  interchange  primitive  has so far 
not been recognized but will be  considered  in the  consecutive 
transformations  introduced here. 

The first transformation recognizes the  connection be- 
tween  adjacent  subdivisions.  This is accomplished by defining 
a new set of currents ( P )  comprised of sum  and  circulating 
currents  illustrated in  Fig. 10. The  number of sum  and  circu- 
lating  variables (S+ CM) exactly  equals  the  number of inter- 
subdivision  branches (L) 

L = S + C M .  (27) 

The  number of sums  equals  the  number of adjacent  intercon- 
nections. The  transformation  equations for transforming  the 
contour  currents J1 in  Fig. 10 to  primitive  currents Jr can be 
written  from  Fig. 10, and for a general network  takes  the 
following form 

or 

For a detailed  example, [2] should be consulted.  Note  that 
S stands for sum; C M  stands for circulating; o refers to  open 
path which are  unit  tree  [3] here  which means that each open 
path  traces  out  one  and  only  one  tree  branch. 

Note  that  the  equations of the  Lth row in (28) as well as 
in  later  steps  are  not  required if the  system is torn at   the 
boundary buses with  the  area  tie buses included in the  tree 

- SUM BRANCHES _- CIRCULATIYO  CURRENT 

Fig. 11. Primitive interchange (sum) network 1. 

designation (0 [23]. The inclusion of the L rows  allows tear- 
ing  through  branches as Bl-B6 in  Fig. 10 which are  not a part 
of the  area  subdivisions,  and  represents  a  somewhat more 
general tearing case. 

After  the  transformation of voltage V,(Vl= Cl.rV,) and 
Z,(Zll= C1.rZ,c+.l) and  or  admittances (P) the following 
equations  result 

VI = Zld'. ( 2 9 4  

Expanding (29a) 

"cn - i IQf 

&M is zero from Kirchhoff's law, es and QM are  active  voltage 
sources,  which due  to  the  absence of voltage  sources in the 
tree  branches,  are ( e s  = C s . L e L ,  QM = C c M . L e L )  [2]. 

Es are  junction  pair  voltages which represent  the ex- 
tremities of the  open  paths.  For  the  example  case.in  Fig. 10 
and  the  current  directions  chosen, row 1 of Es is (ERB-  ERA),  
row 2 is (ERA - ERC),  and row 3 is (ERC - ERB). 

Equation (29b),  in the case  when currents ( I s )  and (IT) 
are  known,  can be  solved directly for ET, Es,  and icM; ECM 
is zero, and es and QM follow from e L .  Equation (29b) can 
likewise  be  solved for  the case where  the reference voltages 
ERA, ERB, ERC, and  thus Es are known instead of Is.  Since I s  
and  the  reference  voltages  are usually not  known,  except in 
the  two-area case, additional  transformations  are  required  to 
produce  equations  with  variables which are  known.  The 
variables desired are  the  area  net  interchange  currents which 
are area-excess currents;  they will be designated  by  the  symbol 
IEk,  where E stands for subdivision excess out of each  area, 
and is generally known. 

Before  the  transformation, a network  representing (29b) 
has  to be constructed. As in the case of preceding equations, 
(29b) can be interpreted  in  network  form  as  shown  in  Fig. 11. 
ZTT  nor Zs of (29b) have been shown  in detail  in  Fig. 11 but 
only  the  network  equivalents of the Zb submatrix. As indi- 
cated  previously,  the  equivalent  network  branches lie along 
the  junction pairs  (open paths)  selected;  thus Zs for the  exam- 
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Fa. 12. Contours drawn upon (iterconneaing) the 
interchange network. 

ple  case  consists of three  branches as indicated,  and  form a 
closed path.  The  sum  branches  can be interpreted  to  represent 
a primitive  interchange  network,  in  that  the  interconnection 
of the  sum  branches  themselves  has  not been  recognized.  A 
transformation  matrix  can be  defined in which the  tree ( r )  
and  the (CM)  variables  remain  unchanged,  but  where  the  sum 
branches  are  transformed  to  contour  variables.  The  open-path 
variables of the  interchange  network  are  the IEk currents  de- 
fined above  and  are  generally.known;  they  are  shown  in  Fig. 
12. The closed-path  currents of the  interchange  network  are 
called sneak  currents (i?), and  they  circulate  in  the meshes 
formed  by the  sums.  In  the  particular case shown  in Fig. 11, 
there  are  three  sum  branches  with  one mesh or closed path 
formed. The primitive  interchange  network  can be  considered 
to  be  an  ordinary  network  with  the areas representing nodes. 
The  number of sum  branches  are  thus  equal  to  the  number of 
interchange  plus  the  number of sneak flows: 

number of sums (S) = number of interchanges (E&) 
+ number of sneaks ( s N ) .  (30) 

Since  the  interchanges  span  the  areas of the  system 

number of interchanges (EK) = number of areas - 1.  (31) 
In  the example  case  in  Fig. 11, two  independent  interchanges 
and  one  sneak  path  exist, as shown  in  Fig. 12. 

The  transformation  equations  for  interconnecting  the 
primitive  interchange  network  can be obtained  by  expressing 
currents J1 in (29) in  terms of new currents J*, and  can be 
written  from  Fig.  12;  for a general  network,  the  transforma- 
tion  equations  take  the following form 

Equation  (32a)  in  expanded  form is as follows 

We  can,  alternatively,  directly  transform J* in (32a) to  J' in 

(28) by  substituting (32a) into (28a) 

J' = C . l C 1 . P  

the single  matrix C . 2  is defined to  be 

0 . 2  = 0.1c1.2. 

transforms J f  to P and  takes  the following form 

J' = 0.J'. 

C.2 in  expanded  form  is 

where c n = s N + C M .  Numerical  examples of 0 . 2  and of C . 2  

appear  in [2]. 
After  transforming (8) by  means of C.2, or transforming 

(29) through 0 . 1 ,  the following equations  result 

vz = Z2J2. (37) 

V2 transforms  from VI or  from V,, and Zn likewise transforms 
from Zll  or Z,. 

Expanding (37) in  terms of components of Z, and C.2 we 
obtain a set of equations  analogous  to (20) 

where 

(ext  = c E k L L e L ,  and em = C ,  %LC). 

Ec. is  usually zero. (38) is interpreted  in  network  form  in 
Fig. 13. E B t  of (38) in  the  example case consists of differences 
of potential of the area references:  from  Fig. 13, row 1 of Em 
is ( E m -  EBB) and row  2  is (EBc-  ERB). We  notice that  the 
torn  subdivisions  which  are  not  attached  in  Fig.  9  are  again 
radially  attached  and  shown  in  Fig. 13. Thus  the  transforma- 
tions  reintroduced  the  necessary  fictitious  branches  and  there- 
by  satisfying  the  requirement  that  the "open paths of the  total 
network be radially  attached."  Other  fictitious  branches or 
devices  can be used  also to  satisfy  the  "radially  attached" 
criterion,  and  the  above (sum and  interchange)  variables  are 
not  the  only ones that  can be employed. 

Note  the o' designation  in (38). I t  indicates  the  open paths 
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Fig. 13. Interconnected interchange network 2. 

in Fig. 13, which  include  those of the  interchange  network. 
The intersubdivision  network  consists of both  the  circulating 
and  the  sneak  paths  indicated  by  the cn axes. 

Notice, also, that  despite  the  transformations,  the block 
diagonal  form of ZTT has-been maintained.  Sparsity  has  thus 
been kept  intact as represented  by  the  solution of the  torn 
subdivisions. 

Modifications in the  above  transformation  equations  can 
be  made. In [23], for  example, the  above  transformations 
have been made  with  no  Lth  axes  present  in (14),  (28), and 
(36) due  to  the  fact  that  the  tearing  in [23] was conducted a t  
company  corporate  boundaries  with no  link  branches  present. 
The present  treatment  allows  tearing  through  branches as 
well as buses as mentioned  previously.  Subdivision  branches 
traced  out  by  contours  in  the  intersubdivision  interconnection 
process and  present  in  the  primitive (Zn) in (9) were not 
retained  in  succeeding  reference  frames 1 and 2 (211 and ZB) 
in  the work  in [23] because  no  applied  currents were present 
at the  extremeties of those  particular  branches;  they  have 
been retained  throughout  the  transformation  here  to  allow 
currents  to be present at the  extremities of these  branches as 
shown  in  Fig. 9. 

Equation (38) can be sohed for ET, EEL, and i“ with  ap- 
plied currents IT and IR known, and all voltage  sources eL 
known.  Interchange  currents IEk can be calculated  from IT 
and IB;  this  is  the  common case. Alternatfvely, (38) can be 
solved  for the case  where  the  reference  voltages, and  thus &kt 

are known  instead of IB and IEk. 

A Note of Generality 
Note  that lT.o appears  in  all  transformations  in  this  text, 

which indicates that  the  contours  in  the  primitive  (unit  tree) 
are  maintained  in  the  interconnected  system;  this  is  not a re- 
quirement.  Contours  in  the  interconnected  system  can be  dif- 
ferent  from  those  in  the  primitive (14), in  which  case a b., is 
required  in place of the lT., as shown  in [SI; the piecewise 
algorithms  in  Tables I and 11, in  that case,  would be preceded 
by a transformation  which  transforms  the  open-path  currents 
to  primitive  currents  by  means of the C... 
Factmized Solution of (38) 

The solution of (38) can be obtained  without  requiring  the 
2 8  and ZI submatrices. The factorized  solution  is  given  in 
Table  I1  along  with  the  network models  which are required. 
The  derivation is presented in detail  in [2] and will not  be 
reproduced  here. 

TABLE I1 
FACTORIZED SOLUTION-TOILN SUBDIVISION NOT ATTACHED 

The  Csubmatrices  in  Table I1 are  those  in (36). Numerical 
examples of the C submatrices  appear  in [2]. Z m  is as shown 
in (9), and  represents  the  subdivision  solution,  and’the 
(ZrZ,) cluster  is  that  in (38). 

Step 1 in  Table  I1  represents  the solution of the  subdi- 
visions  with  no contributions of other subdivisions  considered. 
Steps 2 through 4 compute  the  net  voltages  in  the  intersub- 
division  network  represented  by the 2s submatrix.  Notice  the 
contribution of the  interchange  network  to e& in  step 4. 
Step 5 computes  the  closed-path  currents i” which  consists 
of icM and P currents,  pictured  in  the  example  case  in  Fig. 13. 
Step 6 computes  the  injected  currents, which in  thiscase  are 
comprised of both  interchange  and  circulating  currents.  Step 7 
calculates  the  voltages  contributions to  each  subdivision due 
to  its  interconnection  with  other  subdivisions;  and  step 8 rep- 
resents  the  total  solution.  Step 9 is not required but  may be 
calculated  for  other uses [2]. 

I t  should  be  emphasized that  the  steps  in  the factorized 
solutions  in  Tables I and  I1  for  practical  applications  are 
carried out  implicitly,  since  elimination  or  triangular  factor- 
ization  techniques,  and  sparsity  programming  are  employed. 

The  important  point  to  note  is  that  tearing  with  “subdi- 
visions not  attached”  only  represents a minor  modification of 
the  “radially  attached  case” as seen by  comparing  Table  I1 
with  Table  I.  Note  also  that  the  cluster ZSZ, in  Table  I1 is 
of the  same  order as that of 21 in  Table  I. 

In  the preceding  procedure the  stepwise process  recognizes 
all the  interconnections at one  time, i.e., by  means of (1) level. 
The interconnections  can  also be  recognized by  means of a 
multiplicity (n) of levels as shown  in [3] and [22]. The  steps 
themselves  can  be  lengthened  or  combined if desired,  depend- 
ing  upon  the  application  under  consideration 

Modifications in  the  algorithms  can  readily be  made. The 
steps  can be dramatically  shortened in the piecewise  algo- 
rithms  by using a tie model instead of the Z r Z g  cluster; a tie 
model  called an ‘interarea  matrix”  can be generated as de- 
scribed in [23] which  explicitly  expresses all the tie currents 
created  in  the  tearing  operation as a function of all the  applied 
currents (P) and  the  interchange  currents IBk.  The solution 
algorithm to produce  voltages  similar to  those  in  Table I1 but 
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Fig. 14. Interrelatiosmhipe ktarren reference frames. 

using  the  interarea  matrix would  proceed in  two s t e p :  1) all 
tie currents  are calculated directly  from  the  interarea  current 
model and  the  currents  given,  and 2) each  subdivision  is 
solved  from the applied  currents  and  the  tie  currents  just 
calculated. The solution  represents  the  entire  system  solution, 
since  the isolated or torn  subdivisions  are solved simulta- 
neously; given  all the  currents  applied,  including  those  from 
the  neighboring  subdivisions. 

The solution  to  the classic loss problem follows as outlined 
in 1) and 2) above  with  the  exception that powers are used 
instead of currents. In  1) tie powers (FA, PB, - - ) are cal- 
culated  from  the  interarea power model [23] and  the powers 
given, and 2),  (3) can be solved  for  the  total losses of the 
system. 

RELATIONSHIPS BETWEEN REFERENCE FRAMES 
Four reference frames  have so far been employed  for  the 

total interconnected  network:  the  primitive reference frame 
(r), torn  subdivisions  radially  attached (s), torn  subdivisions 
not  attached (l), (2). 

Transformations exist, as derived  in [2], for passing from 
any of the  four reference frames  to  any  other.  One of the  prac- 
tical  results that   are realized is  that  the (ZrZ , )  cluster  in 
Table  I1  can be formed  from  the Z4 of Table I. Since Z4 is 
readily  constructed [SI, the (ZsZa) cluster  can  also  be  readily 
formed. 

The  four reference frames  are  shown as circles in Fig. 14 
as well as the  transformations  between  the reference frames 
which serve as roads  between  them.  Note that  the following 
four  transformation  matrices  have been previously defined in 
the  text: C., in (17), whose inverse  is A*.r; CJ in (28), whose 
inverse  is A1.r; Cl.2 in (32), whose inverse  is AZJ; Cn2 in (35’), 
whose inverse  is Az.r. Equation (34) demonstrates  the use of 
Fig. 14. 

c.* = Cr.lC1.2. (34) 

We  can  determine C., in (28) and C.2 in (36) from C., or 
vice versa by means of Fig. 14 as follows [2] 

c.1 = C‘.,C*.l (39) 

and 

cr.2 = C’.,C‘.2 (40) 
or C., can likewise  be determined  from CJ, or from C.*. 

The  author [2] derived  the  above  relationships,  and  others, 
and  shows  that  the  form of P . 2  is 

CfZ 

Za   i n  (38) can be expressed in  terms of Z,, in (21) as follows 

0 

222 = 

cn 

where z1-24 are  the  submatrices of (38) and e.& Cc.., and 
their  transposes  are  those’ of C*.* in (41). 

A major  result  represented  by (42) is that the (Z,Z,) 
cluster  has been expressed in  terms of Z4. 

The  solution  procedure  with ‘subdivisions not  attached,” 
can proceed from  the  subdivision  solutions (Zm) and Z4, 
which are  the  network models for  the ‘radially attached  case” 
in  Table  I.  The  cluster (ZrZa) in  Table  I1  for  the ‘not at- 
tached” case is  next  calculated,  and  the  network models for 
the  stepwise  procedure  in  Table  I1  thus  obtained.  Note tha t  
the (ZrZs) cluster  can be built  by  building  rules [SI,  [21] 
from Z4 rather  than  by  carrying  out  the  explicit  matrix  opera- 
tions  above. 

APPLICATIONS 
Applications of the  above  theory  to power systems this 

author  has  undertaken will be indicated  here  and  in  the refer- 
ences and  encornpais  steady-state power system  problems 
(load flow and  fault),  transient  stability  problems, as well as 
control  and  dispatch problems. The  fundamentals of these 
topics  are covered separately  in  this issue, and will, therefore, 
not be described  here. 

Application of diakoptics  to -a load flow (Z matrix) was 
first described in a G .  E. Data  Folder [24] in 1964, which 
contains  the  summary of the  linear piecewise algorithm,  the 
building rules of all necessary models, and  the  presentation of 
the piecewise 2 matrix  load flow algorithm  itself;  the  imple- 
mentation of [24] into  program  form was undertaken  by  this 
author  cooperatively  with  engineers  from  Commonwealth 
Edison,  a power company  located  in  the  Chicago  area:  the 
methods  and results appear in [25] and [26]. Application of 
diakoptics  to  another  load flow (Newton-Raphson)  and  to 
stability  are  contained  in [27]. 

Algorithms for three-phase,  single-phase,  etc.,  fault  pro- 
grams  have also been generated [28], and a three-phase 
tearing  program was just  recently  written by a utility  on a 
cooperative  basis  with  this  author. 

The piecewise algorithms  can  either  be  implemented  in 
single or in  multicomputer configurations. A multicomputer 
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Fig. 15. Diagrammatic example of a multicomputer codgumtion 

within each pool. 
fanned by a three-pool region ( A ,  B, and C), with area subdivisions 

configuration  consists of a hierarchy of computers  which  are 
linked to  each  other  by  communication  channels [29], [30]. 
The computers  can  either be physically  next to  each  other, 
thus forming a cluster of computers,  or  -they  can be  miles 
apart. 

The first application of diakoptics  executed  in a multicom- 
puter  configuration  is  the  automatic  generation  control (AGC) 
of power pools and  super pools presently  being  implemented 
in  the  United States. In  that  case, the  multicomputer con- 
figuration  consists of the  dispatch-security  computers of the 
member  companies of the pool, and a central  or pool  com- 
puter at the  next level and so on as shown  in  Fig. 15 for a 
super pool. The application of diakoptics to  power system 
generation  control  and  to power system  dispatch  was first de- 
scribed  in [29] with  detailed  modeling  and  methods of genera- 
tion  control of power pools developed  in [30]-[34]. Power: 
system  dispatch  algorithms  for power  pools contained  in [29] 
were implemented  into  program  form  by  Niagara  Mohawk 
personnel,  a  power  company  located  in upstate New York,  in 
a cooperative  undertaking  with  this  author;  the  methods  and 
results  appear  in [X] and [36]. Piecewise  power system  load 
flow and power  ‘system  stability  can  also be implemented  in 
multicomputer  configurations  by  means of either a cluster of 
computers  or  in  available  dispatch-security  computers as 
shown  in  Fig. 15, and  tests  have been conducted  by  this 
author proving  feasibility [37]. 

CONCLUSIONS 
This paper has provided an overview of the  theory of 

diakoptics  and a summary of the  applications  that  have  been 
carried out  to  date  in  the power  industry. 
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