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A Survey of Third-Generation Simulation 
Techniques 

Invited Paper 

Abrtmct-We  present a rwiew of recznt  work on circuit simulation 
techniques which are “third generation” in that  they go beyond the 
Sparse Gauss Elimination, Newton  Iterrtion, Stiff Implicit  time inte- 
gration appmach  which  mark secondgeneration circuit  simulators such 
as SPICE-II ud ASTAP-II. Thitd generation simulators such as MOTIS, 
DIANA, and SPLICE have rejected one or more of these principal 
features in their quest  for size and speed capabilities commensurate 
with  the  requirements of the W I  en. We attempt to present a uni- 
f d  treatinent of the vpriow and  disparate types of third generation 
simulators b a d  on the concepts of l.rge9ale decomposition  theory. 
Inprrticul.rweaulldescn’bemdcl.ssifysimuhtorsinterrrmofthe 
role played  by certain matrix forms in their formulation, namely 
Bordered Block Diagonal (BBD), Bordered Block TrLagulnr (BBT), ud 

I .  INTRODUCTION 
Bordered Lower Trianguh (BLT). 

c IRCUIT SIMULATION,  which matured  in the 1970’s 
[ 1 I-[ 31, has established itself as a significant design aid 
and a significant cost item as well, in most large inte- 

grated circuit (IC) design houses. This fact is reflected by the 
presence in  such houses of  large mainframe computers dedi- 
cated solely to circuit  simulation. 

The spectacular  growth  in  the scale, measured in device 
count, of  IC’s being  designed in the VLSI microelectronics era 
has started and intensified  a search for  “third  generation” 
methods of circuit- simulation. Similar developments have 
stimulated  the same kind of research in  other disciplines such 
as electrical power distribution, chemical engineering plants, 
logic design,  and operations research. The  common  theme is 
that  the  systems being  designed take too much cpu time 
and/or  too much storage for economically realistic  simulation 
support  for  the design effort. As a  result,  the search is on  for 
alternatives to circuit  simulators that were once considered 
revolutionary  111-[3], but are now regarded as “standard.” 
This paper is devoted to a  tutorial review  of “third-generation” 
simulators and simulation  techniques [4]-[ 171, i.e., simulators 
and techniques which, in  their  quest  for larger  scale capabili- 
ties, have departed radically from  the  approach  defined in 
[11-[31. 

A  similqly  motivated  paper has recently  appeared [ 181. The 
present  paper  differs  in  two respects. First, De Man [ 181 dealt 
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exclusively with IC simulators and emphasized functionality, 
whereas the present paper has a more interdisciplinary scope 
and emphasizes algorithmic  techniques.  Second, the present 
paper  attempts  a  unified  treatment of the various disparate 
simulator  types based on  the  concept of decomposition of 
large-scale systems. Specifically we shall classify and describe 
the  various  “thirdgeneration”  simulators  in  terms of the role 
played by certain  matrix  forms  in  their  formulation, namely 
(cf. Fig. 1) 

Bordered Block  Diagonal  (BBD) 
Bordered Block Triangular (BBT) 
Bordered Lower Triangular (BLT) 
Block  Diagonal (BD) 
Block Triangular (BT) 
Lower Triangular (LT). 

Note that  the BD and BT forms  are just BBD and BBT forms 
without  a  border, and that  the LT form is just  the BT form 
with  unit block sizes. It is common, however, when referring 
to the BT form, to assume that  the diagonal blocks  are  irre- 
ducible, that is, cannot by themselves be decomposed by  row 
and column permutation into a BT subform. 

We have chosen decomposition as a  theme because the 
modules of a decomposed system may  be treated individually 
in special ways. For  example, if storage is limited,  sequential 
treatment of the individual  modules  permits  much larger sys- 
tems to be simulated. Also the modular approach  permits  ad- 
vantage to be taken of machines with parallel architectures. 
Further,  the modular  approach is well suited  for  the  exploita- 
tion of “latency,” 1 131, [ 151, i.e.,  avoiding the  expense of 
simulating modules which are not active at a given point in the 
simulation. 

The plan of the  paper shall be as follows. First,  the  introduc- 
tion shall be completed by a brief sketch of what we mean by 
“standard” circuit simulation.  Then, we begin the  technical 
discussion in Section I1 with  a desqiption and classification of 
decomposition  methods  for  linear,  nonlinear, and dynamic 
systems. We continue in-S&tion. I11 with  a discussion of 
algorithms  for  identifying  &-appropriate  topological  decom- 
position of a large system (for  those cases  where the decompo- 
sition is not  functional, i.e., specified in advance by a hier- 
archical input language). 

In Section IV we describe the  steps  taken  in some simulators 
to exploit  a given topological  decomposition. This section 
begins with  a discussion of node-tearing vems branch-tearing 
[ lo], an issue which remains to be settled  after  a  topological 
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decomposition has been determined. Then various data 
structures and numerical solution techniques are described 
which form  the basis  of some important third generation 
simulators [71, [ l o ] ,   [ l l l ,  [161,  [171. In SectionV we treat 
“temporal” decomposition methods (sometimes called “relaxa- 
tion  methods” or “indirect”  methods [ 19]), thereby reviewing 
the line of research started by the celebrated MOTIS simulator 
[4], and continued  through the development of  SPLICE and 
DIANA [51, [6]. 

In Section VI, we further discuss some of the techniques of 
temporal  decomposition, specifically describing the related 
concepts of latency [ 101, [ 131, event scheduling [ 121, [ 141, 
[151,andmixedmodesimulation[4~]-[7],[11]. 

We begin our discussion of standard simulation by  assuming 
that  the system being simulated is described by a set of 
differential-algebraic equations 

f(i ,  x ,   t )  = 0 (1) 

A very broad class of physical systems can be described in the 
form  (1).  “Standard” simulation is characterized for our 
present purposes by inclusion of all of the following algorithmic 
techniques for solving (1): 

1) replacement of i by an astable or stiffly-stable [20]  or 
backward difference [ 2  1  ] formula which is a  function of 

2) automatic  control of the time step h and differentiation 

3) solution of the resulting nonlinear system by a  quadrati- 

4) solution of the linear algebraic equations involved in  each 

In  the approach of [ 201, [21], the  time derivative of the 

4 t h  

order K so as to insure accuracy of the solution, 

cally convergent Newton’s method, 

Newton step by sparse Gaussian elimination. 

vector x is approximated  at  time  point t,+l by 

where K is the approximation order of the differentiation 
formula, h E ( t , + l  - t , ) , ~ ~ + ~  is the computed value of 

1, and X(K, n )  Z b l  a k ~ , + ~ - k / a , , .  Note that in 
“standard” simulation, the same order K and time step h is 
used for every component of i. The a~ are chosen so that  the 
solution is a polynomial of degree R passing through the last 
n + 1  time points. 

With the substitution (2), equation (1) can be expressed in 
the form 

which is a system of nonlinear algebraic equations which 
must be  solved at every time  step t n + l ,  n = 1, 2, . * - , for  the 
updated vector x,+1. 

The truncation  error is controlled in standard simulators by 
monitoring 

where xP( t ,+ , )  is the value predicted for x , + ~  by passing a 
polynomial of order K through the most recent K + 1  time 
points, up  to and including x,. Because of the stability 
properties of (2)  the time  step h is controlled by accuracy re- 
quirements  rather than by the stability of the difference equa- 
tions (2). This would not be the c8se if simpler “explicit” 
formulas such as the “forward Euler” formula were employed, 
which avoid the solution of (3) at each time  step but require 
extremely small time  steps if the system equations are “stiff” 

(i.e., the Jacobian matrix exhibits widely separated eigenvalues 
at the operating points of interest). 

One of the prime motivations for  the development of sparse 
matrix technology [ 221, [ 231  was to solve the linear equations 
which arose when (3) was solved by Newton’s method. 

According to the preceding algorithmic technique 2, the 
solution to (3) is obtained  in  standard simulators by  using the 
Newton’s algorithm 

x,+1 +x, 
For u = O ,  l;.. 

0 

Begin 

x;:’, + x i + l  + A x  
if  6”’ I IIx;;: - II < E Then STOP;  Else 
End ( 5 )  

The important feature of this algorithm is its quadratic con- 
vergence [ 191. Ignoring roundoff errors, if the uth iteration 
incurs a suitably small error, say, lo*, then the  error at the 
( u  + 1)th iteration will be, approximately, the previous error 
squared, i.e., = lo-*. 

This ensures that  (3) will be  solved accurately, which is pre- 
requisite to realizing the stability properties of (2) which in 
turn is required in order for the time step to be controlled by 
engineering accuracy rather than by expensive stability re- 
quirements. We will return to this key point  in Section v, 
when we discuss MOTIS [4], which departed radically from 
the  standard wisdom of the preceding algorithmic techniques 
1-3, yet succeeded by restricting the  type of network which 
could be simulated. 

ag/ax(x;+l ,  W ,  n) ,  t ,+l)  Ax = - g ( ~ ; + ~ ,  %K, n ) ,  tn+l) 

11. SYSTEM DECOMPOSITION 
Nonstandard simulators can be meaningfully classified  by 

the decomposition techniques employed. A particular tech- 
nique can be functionally and/or topologically motivated, and 
can  be applied to any of the three main  levels of circuit 
simulation, namely the time level, nonlinear equation level, or 
the linear equation level. There are two principal points  of 
departure from the “standard” simulation approach which 
may  be taken  at  each of these three levels, namely, “tearing” 
decomposition and “temporal” decomposition. The tech- 
niques we shall classify as “tearing” aim to retain the con- 
vergence and stability properties of the  “standard”  approach. 
In contrast, the techniques classified  as “temporal” are related 
to  the so-called “relaxation” or “indirect”  methods, and are 
characterized by completely different convergence and stabil- 
ity properties. In this section we discuss the  two decomposi- 
tion levels at the linear level, and briefly introduce them at  the 
nonlinear equation level and time level. 

A .  Decomposition of Linear Systems 
Assume that  the system to be solved is of the  form 

A x  = b,  x ,  b ER”. (6) 
When  we take the tearing approach, we regard the task of 

solving ( 6 )  efficiently, i.e., quickly (by exploiting parallel 
processing or latency) or with small storage, as equivalent to 
finding permutation matrices P and Q such that  the permuted 
system 

29= 8 (7a 1 

,$=B+CR* (7c) 

2 E P A Q   a E Q x   8 E P b  (7b) 

can  be  solved  by optimally exploiting the block structure 
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1 r- 1 
Fig. 2. Matrix decomposition. 

A= L + D + U 

(c) ( 4  

Fig. 1 .  Triangular matrix structures. (a) BBD. @) BBT. (c)  BD. (d) BT. 

Fig. 3. Gauss-Seidel decomposition. 

of the "torn" matrix B. Thf is, when the original matrix A 
is permuted into  the form A ,  which is BBD or BBT, the de- 
composition permits the reduced matrix B to assume the BBD 
form of Fig. l(c),  or BBT form of Fig. l(d). The structure of 
the outer product CRT is illustrated in  Fig. 2(b). As  we shall 
discuss  in detail in Shection  111, the matrix CRT can  be thought 
of  as "torn" from A ,  leaving  in its place the reduced matrix B. 
Tearing is formally equivalent to solving (7a) by applying the 
Sherman-Morrison-Woodbury formula [ 241, 

x^ = B-'8 - B-' ( ~ ( Z Q  + RTB-' C)-'RT) B-' 8. (8) 

It is not customary to solve (8) with explicit inverses. Instead, 
the procedure, or a variant of it, is usually employed. First, 
the block matrix B and an intermediate m-atrix Q are factorized, 
Le., 

B + L U  

Q =(zQ + R ~ u - '  L-'c) 
Q'LQUQ. (9 )  

Once these LU factorizations are done, the solution is com- 
pleted by the back substitutions 

y t B-' f E u-' L-' 8 
+ Q - ~ R T ~  = U G ' L G ~ R T ~  

Ay + U-'L-' Cz 

x + y -  AY. (10) 
Thus "tearing" the matrix C from A permits an initial ap- 
proximation, i.e., y,  to be computed by solving the system 
yith  the structured matrix B .  At the expense of factoring  a 
smaller matrix Q, and performing an extra back substitution 
with L and U, the solution x is completed by subtracting the 
correction  term Ay from  the  approximation y. 

With  regard to efficiency we can make some general 
observations. 

1) Since B has the structure of either BBD or BBT, 
can be obtained blockwise. This is also true 

for  the product of B-' with various other terms  in (8), which 
is the key point. This enables the block operations to be 
carried out concurrently to increase execution speed or serially 
to extend storage capability. 

B-' E u-' L-' 

2) The rectangular matrix R ,  owing to  its composition 
(Fig. 2(b)) as a zero matrix catenated  with an identity  matrix, 
operates sobly as a  selector, i.e., multiplication with  this 
matrix requires no numerical operations. 

3) Given that  the LU factors of B are available (with  the 
appropriate block structure of course), then various economies 
can be obtained by clever association of B-' E U-'L-' . For 
example, the  quantity B-'C can be computed either as 
U-'(L-'C) or (U-'L-')C. The most economical choice de- 
pends on  the sparsity and block structure of the "tear" 
matrix C. George [25], [ 261,  Hajj [271, and Guardabassi 
and Sangiovanni [ 501, have studied this association technique 
carefully and demonstrated the advantages which can  be 
attained. 

4) If the size of the border (number of columns in C) is 
small, the factorization and back substitutions of Q are cheap. 

Various third-generation circuit simulation techniques based 
on  this  approach are discussed in Sections I11 and IV. 

An alternative approach to solving (6) is based on  the idea of 
"temporal" decomposition. The terms "relaxation methods" 
and "indirect methods" are sometimes used to describe the 
same process. In this  approach, LU factorization is replaced 
by an iterative sweep through the equations of (7a), using the 
following procedure or a variant of it. Instead of obtaining the 
LU factorization of b, we simply partition d into  the form 

b+P+f,+PI (1  1) 

where 2 and are strictly (i.e., with zero diagonal) lower and 
strictly upper triangular matrices and f, is a diagonal matrix, 
as illustrated in Fig. 3. Then (7a) is  solved by iteratively 
calling 

Procedure Gauss-Seidel  sweep  (GSS) [ 191 : 

F o r v = 1 , 2 ,  ..., 
Begin 
For i =  1,2, .  , . ,n 

Begin 
x;+' =ID 7; ( b  - Pix"+' - %,x") 
End 

gu+1 f l l X U + l  - x" II 
End. 
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Here Pi and Qi stand for  the  ith row of the triangular matrices 
2 and 3, and u stands for  the  iteration counter.  The  iteration 
stops when SU+l z IIxU+l - xu 11 is suitably small.  Since it is 
easily shown that 

=II(Z+!$-1p)!$-'Q116u =llM116u. (12b) 

it can be seen that this solution process has the following 
properties: 

1)  the iteration converges for any  initial value of x if and 
only if all the eigenvalues  of M have modulus  strictly less 
than 1; 

2)  the iteration converges in  one  step if the rows  and 
columns of A are permuted so that is identically zero, 
in this case P and Q exist  such that C is identically zero  in 
(7), so that (8) and (1 2) are equivalent; 

3) speed of  convergence is improved if A is permuted into 
nearly lower triangular form; 

4) convergence depends,  in general, on the numerical proper- 
ties of 2, !$, and U. Convergence is typically rapid for 
the first few iterations,  and  then gets progressively slower; 
the  asymptotic rate of convergence is linear. 

The advantage of this  procedure is that  at each  iteration  only 
a triangular system of equations has to be solved.  Moreover, 
the  improvement of the speed of convergence  can be achieved 
by a vestige  of sparse matrix  technology, i.e., the  permutation 
of A into a form which is nearly triangular. The disadvantage 
of this procedure is its weak  convergence. In some  cases, if 
convergence is achieved, it is only linear. That is, if M has  an 
eigenvalue of modulus  near to  1,  it may take many iterations 
to reduce the error by an  order of magnitude. In a simulation 
context, this can lead to inaccurate  solution of (3) and the 
concommitant  forfeiture of the stability  properties of (2). 
On the  other  hand, in many applications, A is diagonally 
dominant and symmetric on physical grounds. In this case, the 
eigenvalues of M have modulus  strictly less than 1 and con- 
vergence  is guaranteed. 

B.  Decomposition of Nonlinear  Systems 
Tearing decomposition at the nonlinear equation level is 

achieved in some third  generation simulators by one of the 
following two approaches. The first approach solves the 
original system (1) by a Newton's method (e.g., equation (5) 
or a variant),  and relies on the decomposition  methods de- 
scribed earlier for linear systems. The  SLATE  program [ l l ] ,  
being developed at  the University of Illinois for IC simulation 
utilizes this  approach, as does the chemical engineering  simula- 
tion program  of  Westerberg and Bema [ 161. The second ap- 
proach decomposes the system at  the nonlinear level  by 
introducing  additional  iteration  loops into  the original New- 
ton's method.  The multilevel Newton  method [ 171, used in 
IBM's  MACRO  IC simulator, which utilizes this  approach, is 
discussed in Section IV later. A different  example of the  latter 
approach is the complementary pivoting algorithm [28], 
employed  in the piecewise linear IC simulator  reported  by 
van  Bokhoven [ 91. 

Other  thirdgeneration  simulators utilize temporal decom- 
position by solving the original system (1) with a nonlinear 
relaxation  technique [ 191. The MOTIS  program [4], uses a 
nonlinear Gauss-Jacobi method, while the SPLICE  program 
uses a nonlinear Gauss-Seidel-Newton iteration. These tech- 
niques are discussed in  detail  in Section V. 

C .  Dynamic  System  Decomposition 
By dynamical system decomposition we  mean the indepen- 

dent time-domain  analysis of the subcircuits of a given circuit. 
Most  large  IC exhibit  temporal sparseness or latency [ 181, 

i.e., most of the subcircuits are inactive most of the time. 
Logic simulation [ 131-[  151 exploits this fact  by using event 
scheduling and selective trace algorithms, which are possible 
due to the inherent delay unidirectional transmission charac- 
teristic of most of the logic gate models and to  the absence of 
local feedback paths. Selective trace algorithms process logic 
gates only when they  are active,  i.e.,  when their  internal vari- 
ables or their  inputs change. An impressive  saving in simula- 
tion  time can  be obtained in cases  where the restrictions 
imposed on the logic gate models prevent the numerical stabil- 
ity problems associated with "stiff" systems. In standard 
simulation selective trace algorithms cannot be applied since 
feedback paths are of importance  and  consequently the inte- 
gration algorithms constrain all the variables  of the circuit to 
use the same step size,  necessarily the smallest one required to 
maintain truncation  errors within limits. 

Simulators such as  SPLICE [ 51, MACRO [ 171,  and SAM- 
SON [7] achieve decoupling of the subnetworks and  allow 
each subnetwork to follow its time  trajectory at a self-tailored 
pace.  These simulators assume that  the subnetwork block 
structure is specified by  the user in the  input language. This 
permits the possibility of  choosing different time steps  for 
each subnetwork, allowing the sluggish subcircuits to take large 
steps independently of the rapidly changing subnetworks. 
Therefore, each subnetwork has to be scheduled for analysis 
at different time points and synchronization problems arise. 
MACRO and SAMSON process a subnetwork (i.e.,  solve the 
corresponding discretized equations) scheduled for analysis at 
a time  point by extrapolating the variables  associated with 
other  subnetworks  interacting  with the subnetwork to be 
analyzed. 

Scheduling algorithms are nontrivial: SPLICE,  MACRO, and 
SAMSON  use different strategies. In Section VI a prototype 
scheduling algorithm will be  discussed together  with a more 
detailed analysis of latency. 

While the time  decomposition discussed above is achieved 
by decoupling the  subnetworks at  the linear (SAMSON) or 
nonlinear (SPLICE and MACRO) equation level, a new iterative 
technique related to relaxation  decomposition has been very 
recently introduced [7b] by Ruehli et al. In this  method,  the 
circuit equations are decoupled at  the  ordinary differential 
equations level before they are actually discretized. We shall 
refer to this  method as the waveform relaxation decoupling 
(WRD) method.  The WRD is better explained describing its 
application to a circuit described  by its  state  equations: 

x = f(x, t ) ,  x(0) = xg. (12c) 

WRD Procedure: 
Foru=  1 ,2 ;** ,  

Begin 
For i = 1,2, , n  

Begin 
solve from t = 0 to t = T ,  

End 
$+I  = fi($+l, - . , xi"-:', xy+1, xi";;"X;),  xy+l(o) = x;. 

gu+' max  max 1xu+l ( t )  - x"(t) I 
End. 

i t  
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The iteration  stops when 6”’ is suitably small. Note that 
each component of the decomposition is processed for the 
entire  time evolution individually and in  a fixed sequence. The 
components which drive the component being processed, as 
well  as the  component which load this component, are 
handled by storing the temporal waveforms computed  for 
those components on their most recent iteration. Then, when 
it is required to know how these components drive or load the 
component being processed, the necessary information can be 
obtained by interpolation on  the stored waveforms  of the ad- 
jacent components. 

The preceding example shows the algorithm applied point- 
wise. Block  WRD methods can also be  derived in analogy with 
block relaxation methods  for the solution of linear and non- 
linear algebraic systems of equations. The blocks may  be 
either be specified 4 priori, or determined algorithmically. The 
latter alternative is an open problem, perhaps amenable to ap- 
proaches like those described in Section 111. 

In contrast to  the conditions described above for  the con- 
vergence of relaxation methods  for linear and nonlinear sys- 
tems of equations, the conditions  for the convergence of the 
WRD method are quite mild. Remarkably, Lelarasmee [7c] 
has shown that convergence of the WRD method is guaranteed 
for any arbitrary piecewise continuous set of initial waveforms. 
Convergence will of course be linear like other relaxation 
methods. For circuits which cannot be described explicitly 
by state equations of the forms  (12c), Lelarasmee [7c] has 
given conditions  under which the procedure converges.  Im- 
portantly, it is possible to show that for MOS circuits with  a 
grounded capacitor at each node, convergence is guaranteed 
for any arbitrary piecewise continuous set of initial waveforms 
for the node voltages of the circuit. 

111. BLOCK DECOMPOSITION-ALGORITHMS 
AND &PLICATIONS 

In some of the literature on circuit simulation [SI-[ 71 , [ 101 , 
hierarchical decomposition is customarily identified directly 
by the “block diagram” implied by the nested models and 
subcircuits of the input description, as illustrated in  Fig.  4. In 
this example some elements, e.g., resistors, diodes etc., are 
given explicitly in Fig. 4(a), while others, such as the large 
differential amplifier element, represent an entire circuit 
block, in  this case that of Fig. 4(b). The transistor symbols of 
Fig. 4(b) are, in turn, symbols for  the Ebers-Moll  BJT model 
of  Fig. 4(c). 

If the block structure is not specified (I priori, one must use 
an algorithm for determining an appropriate structure, such as 
the  structure illustrated in  Fig. 4(d). The appropriate  structure 
is often defined in  terms of the so-called dependency matrix of 
the system. The dependency matrix of a given (linear or non- 
linear) system, denoted by A ,  is defined by 

Aii = I 0, if equation i independent of variable j 

I ,  i ,  j = 1, 2, * , n ,  otherwise. 

Note that  the dependency matrix of a linear system represents 
the zero-nonzero pattern of the coefficient matrix and that 
the dependency matrix of a nonlinear system that of its 
Jacobian matrix. The important  structures which appear in 
the literature to date are BBD,  BBT,  BLT,  as defined in  Sec- 
tion I. As defined earlier, the problem of obtaining the desired 
structure is that of finding permutation matrices P and Q such 
that PAQ has the appropriate block structure. By appropriate, 

we mean that  the blocks are not too large, and the overall 
computational cost of solving the decomposed system is within 
specified limits. Two significant parameters of the decomposi- 
tion are nmm, the size of the largest block, and q(PAQ),  the 
size  of the border. We observe, in general, that  the computa- 
tional complexity of  solving the decomposed system is mainly 
related to q(PAQ), and the ability to solve the decomposed 
iystem with Limited storage and/or with parallel processing is 
strictly related to nmm. Following [29b],  the problem of ob- 
taining the best decomposition may  be stated in abstract terms 
as follows: 

subject to 

ni < nmm, i = 1,2,  * * - , m(PAQ), 

Here m(PAQ) stands  for the number of blocks in the 
decomposition. 

We shall discuss the BBD,  BBT, and BLT cases in turn. 
However, we first note  that  the preceding optimization prob- 
lem is NP complete in each case. Thus our discussion of the 
cases will emphasize heuristic algorithms which are believed to 
produce near optimal  solutions of (1 3). 

A .  BBD Decomposition 
We now discuss some algorithms for determining a BBD 

structure for a given dependency matrix. One such method 
[ 301 provides heuristics for determining blocks of nearly equal 
size,  while minimizing the number of variables in the border. 
This method has been implemented in  a program which has 
been used  in power simulation [ 321 , [ 331 and in parallelization 
of computer architectures. In this algorithm, P 1 Q T ,  where 
the superscript denotes transpose. The algorithm operates on 
the following piinciple. Assume that  the dependency matrix 
A is structurally symmetric, and is represented by an undi- 
rected graph G, in  which the nodes are in one-to-one corre- 
spondence with the variables (or equations) of the original 
system and the branches are in one-to-one correspondence 
with nonzero elements of the matrix. Let Z stand for  a set of 
nodes which are candidates to form  a block of the decomposi- 
tion. Let S stand for a set of nodes of G which we call the 
separator of Z with respect to  the graph G. Let W stand for 
the remainder of G, i.e., the part separated from Z by S. By 
definition, the sets 2, S, and W ,  are disjoint. The algorithm of 
[ 301 determines a sequence of nodes of G which  are added to 
Z .  For each node in this sequence, the cardinality of Z is 
incremented by 1. After each addition the separator S is up- 
dated. The algorithm monitors IS I as the sequence is extended, 
thus obtaining the so-called “contour” of the sequence. Let 
2, denote the  ith candidate block in the sequence, and as- 
sumed the sequence is of length k, where IZk I = nmm. Then 
Z ,  is selected as a block of the decomposition from the candi- 
date blocks Zi  which satisfy 

~ s a r g m i n  {ISli lanm,GIZiI< nmm} (14) 

where IS, I, is the cardinality of the corresponding separator 
of the block Z,, and where a is a parameter ranging between 
0 and 1. 

The above process is illustrated in Fig. 5 .  Fig. 5(a) shows the 
linear growth of lZfl as a  function of i .  Fig. 5(b) shows the 
corresponding contour plot of ISi I for the case that  the block 
is selected by the constraint in  (13). The horizontal lines, 
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I C  

parameterized by OL and nmax, determine  the set of i which large parts of the graph C. This process is illustrated in 
satisfy (14). In Fig. 5(b), the separator of minimum cardinal- Fig.  5(c), which shows a contour plot which exhibits  a strong 
ity S, occurs at  the extreme right. minimum of ISi 1 at i = p. 

The algorithm may also select a "natural" block of the The success of the algorithm depends on the heuristics 
decomposition if it discovers a small separator between two chosen for initializing and extending the sequence. The 
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Fig. 5 .  Contours of block size  and separator size. 

heuristic for extending the sequence is to select the node  for 
which the increase in IS1 incurred by the selection is mini- 
mized. Note that  the “increase” is usually negative as the 
contour begins to identify  a  “natural” cluster. Thus  this 
algorithm can be categorized as a “greedy algorithm,” in the 
sense of Edmonds and Lawler [ 331. 

The preceding algorithm has been applied in the example of 
Fig. 6. The rows of the matrix of  Fig. 6(b) represent the 
equations describing the 30.bus electrical power distribution 
system shown in Fig. 6(a). The columns represent the 
(complex) power variables of the system. The row and 
column labels represent the permutations required to place 
the matrix into BBD form. The variables 4, 20,  24, and 27 are 
identified as the border variables of the decomposition. The 
symbol “x” represents the dependency of row (equation) on 
column (variable). The heavier lines represent the partitioning 
of the diagonal block variables. 

Another powerful technique, which is related to  the above 
algorithm, is called “nested dissection,” and is due to George 
[ 251, [ 261. This technique can be used for decomposition 
purposes as  well  as for  the. conventional purpose of ordering 
the rows and columns of a sparse matrix in order to achieve an 
economical LU factorization. In the decomposition context, 
the algorithm may  be thought of as follows. Let Z,  S, and W 
be defined as  above. Again consider a sequence Zi, i= 1,2, - - - . 
In the case  of nested dissection, the initial objective is to 
determine i such that 

lzil IWiI. (15) 

Once this objective has been attained, the algorithm is re- 
cursively applied to  the subgraphs corresponding to Z and W 
instead of the original graph G. A significant difference be- 
tween this algorithm and the BBD algorithm described earlier 
is that here the sequence is extended not with a single node 
but  with the entire set H C W, where His a subset of the set of 
nodes ADJ(S), which we shall henceforth define as the set of 
all nodes adjacent to one or more nodes in S. If the recursive 

“outer  loop” of this algorithm is applied k times, the algorithm 
will have dissected the original graph into 2k blocks, Le., sub- 
graphs.  However,  in contrast to  the previous algorithm, the 
blocks produced by nested dissection decrease in size from 
top  to  bottom of the BBD. This is due to  the removal of the 
separator sets from the blocks. 

The remarkable thing about  the nested dissection technique 
is that when used  as an ordering algorithm, it produces 
proven optimal multiplication counts  for  point Gaussian 
elimination for dependency matrices corresponding to  or 
related to  the Laplacian operator  in  two or three dimensions. 
It is widely  believed that nested dissection produces near- 
optimal results for any system whose dependency matrix is 
characterized by a twodimensional graph, e.g., a two- 
dimensional array (not necessarily regular) of logic circuits. 

The nested dissection process is illustrated in Fig.  7. In Fig. 
7(a), the graph G of the dependency matrix of the finite dif- 
ference equations of the Laplacian operator discretized on a 
9 X 9 grid is given. The process begins by heuristically select- 
ing a “seed,” which for  our example is chosen to be the node 
in the middle of the left  boundary of the graph. We initialize 
Z, to consist of this seed, and set S1 = ADJ(Z,). The se- 
quence is extended as described above. The cardinality of Zi 
is noted at the  left of Fig. 7(a). A block of the decomposition 
is selected when condition (1 5 )  is satisfied. The nested dissec- 
tion process then continues recursively, dividing each currently 
largest block in the decomposition into two approximately 
equal parts. The success of the algorithm depends on  the 
shape of the grid graph and on  the heuristic selection of the 
seed node. For  the example of Fig. 7(a), this process leads to 
the graph decomposition of Fig. 7(b), where the symbols 
S,, p = 1, 2, * * label the separators chosen at each stage of 
the recursion. 

This technique has had spectacular success  in the area of 
semiconductor device simulation [ 341, [35]. Most sparse 
matrices which arise in  this application area have nonzero 
patterns which are variants of the well-known Sdiagonal  pat- 
tern of the Laplacian operator  in  two dimensions. Fig. 8(a) 
illustrated the Laplacian matrix of 16 unknowns, correspond- 
ing to a  4 X 4 grid graph. Fig. 8(b) shows the result of apply- 
ing nested dissection. Note that  the nesteddissection strategy 
leads to diagonal blocks of the BBD form which decrease in 
size from  top to bottom, in  contrast to the uniform block 
sizes produced by the first algorithm discussed in  this section. 
Still, the nesteddissection  technique has been proven to give a 
multiplication count for  this  nonzero pattern  [36], which is 
asymptotically optimal  for arbitrarily large  grid graphs, George 
[26d] has also published a “one-way” version of nested dissec- 
tion which does tend to produce uniform block sizes. 

The application of the technique to VLSI-size networks re- 
mains a promising avenue for  future exploration. 

B .  BBT Decomposition 
The alternative decompositions addressed by (1 3) yield the 

BBT and BLT forms, Actually, either of the algorithms de- 
scribed above for  the BBD case could be appropriately modi- 
fied to operate  on the bipartite graph in the unsymmetric case 
to produce such a form. The key modification would be to 
identify the separator set exclusively with the “right” (i.e., 
column) nodes of the bipartite graph. The selection and 
exploitation of the resulting block structure appears to be an- 
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Fig. 6. AEP bus test system bus code diagram. 

other promising avenue for  future research. 
There is, however, a  substantial  literature  pertaining to the 

selection of a BLT structure, which is a special case of the BBT 
for which nmax = 1. This case has important  applications and 
has been extensively studied. To start  with we define an 
assignment as a  set of distinct  row and column  index pairs 
(ri, ci), such  that # 0, i = 1, 2, * * , n. That is, the 
assignment permutes A into a  matrix  with  a  nonzero diagonal. 

We can divide algorithms  for  obtaining  a BLT into two 
classes: 1) those  operating on a  fixed assignment (i.e., P E QT, 
which means that  the assignment itself is not exploited as a 
degree  of freedom  in minimizing the size  of the  border), and 
2) those which exploit the assignment for  this  purpose. 
In the first  category  are  algorithms by Roth [ 371, Hellerman 

and Rarick  1381, Kevorkian [391,  [401, Cheung and Kuh [411, 
Guardabassi 1421, and Smith and Walford [ 431. In this case 
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Fig. 7. (a)  Selection of f m t  separator. (b) Separator sequence (first 

5 only). 

the optimization problem (1 3) is equivalent to the problem of 
minimizing the cardinality of the essential (feedback) vertex 
set for directed graphs. The algorithms of Roth, Cheung and 
Kuh, and Smith and Walford  were motivated by logic simula- 
tion and logic  “design for testability” [37], applications in 
which it was desired to find a way  in which the minimal set of 
registers could convert a sequential logic circuit into an equiva- 
lent combinational form. The algorithm of Kevorkian was 
used to simulate the design of a chemical plant. The algorithm 
of Hellerman and Rarick was used for  updating the basis for a 
linear programming package. This latter algorithm is, there- 
fore, important  in piecewise linear circuit simulators such as 
those reported by Katzenelsen [ 441, Kuh [ 451, and Von Bok- 
hoven [ 9 ] .  Due to  the importance of these applications, we 
offer a brief discussion of some of the algorithmic techniques 
used to obtain an effective bordered triangular form. 

The problem addressed by algorithms in this category is 
NP-complete. Therefore, algorithms which seek to find the 
exact optimum will have exponentially bounded computa- 
tional complexity. The Hellerman-Rarick algorithm, proposed 
for linear programming applications, proceeds heuristically to 
find a nearly optimal BLT form. 

The other algorithms in  this category deal with the directed 
graph representation of the dependency matrix. All proceed 
by reducing the size  of the given graph by transformations 
which do not affect the cardinality of the minimum essential 
set. After the graphs have been thus reduced to a minimal 
size, the minimum essential set itself is determined by a branch 
and bound algorithm. Thus the exact minimum is obtained, 
rather than an approximation. However, all these algorithms 
are, consequently, exponentially bounded. 

Fig. 8. BBD structure from nested  dissection. 

Algorithms in the second category, which attempt  to  opti- 
mize PAQ by heuristically choosing the assignment, have been 
presented by Hellerman and Rarick [461, Sangiovanni and 
Bickart [47], and Jess and Trouborst [ 81. These algorithms 
have a strong potential for use  in circuit simulators imple- 
mented for  on relatively small machines such as minicom- 
puters and desktops. 

The algorithm of Bickart and Sangiovanni operates on  the 
bipartite graph of the dependency matrix, and so is con- 
ceptually based on graph theory. However, we discuss this 
algorithm in terms of both  the dependency matrix and the 
corresponding bipartite graph. The algorithm proceeds by 
selecting a maximal sequence of nonzero pivots from the ir- 
reducible blocks of the dependency matrix. The sequence is 
2xtended by two mechanisms. The main  mechanism is to 
enumerate the rows which have minimum count  in the “un- 
pivoted” portion of the matrix. Among these rows, the 
column of maximum count in the unpivoted portion is se- 
lected, along with a corresponding row  in the “minimal row 
count set.” This heuristic selects the minimum row count be- 
cause a nearly lower triangular form is sought. The maximal 
column count is motivated by a desire to process the hardest 
columns, i.e., the columns which provide the greatest oppor- 
tunity for creating cycles (which would increase q(PAQ)). The 
second mechanism identifies submatrices for which an optimal 
border may  be found by a process of elimination of cycles of 
length two in the corresponding bipartite graph. 

Note that this algorithm creates a BLT  in which the diagonal 
is populated solely by elements which were nonzero in the 
original matrix. This strategy promotes numerical stability, as 
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documented  by  Brayton et  al. [ 481, who  showed that pivoting 
on originally zero valued elements can lead to exact  symbolic 
cancellation. 

Jess and  Trouborst [ 81 have presented  an algorithm which is 
both a variant and  an  extension of the Bickart-Sangiovanni 
algorithm. This algorithm introduces  another degree of free- 
dom to be exploited  in minimizing q(PAQ).  In  their algorithm, 
equations in  the original system  (and,  therefore,  rows of the 
dependency  matrix) which correspond to linear equations  are 
identified.  Then,  equations of this type are subjected to 
Gaussian elimination on originally nonzero pivots to further 
reduce q(PAQ). This approach to simulation also  resembles 
that of Moad [ 491,  who attempted to find an “evaluation 
order”  for  the  equations  and  unknowns. 

IV. EXPLOITING A GIVEN TOPOLOGICAL DECOMPOSITION 
In  this  section, we discuss various ways to exploit a given 

topological decomposition  (such as that provided by the 
methods described in  the previous section). Section IV-A 
treats  the necessary step of selecting the variables  which inter- 
act  between the various hierarchical levels of the decomposi- 
tion.  Section IV-B is devoted to a treatment of a numerical 
method for exploiting  decomposition at  the nonlinear equa- 
tion level to computational advantage while retaining the 
stability and convergence properties of standard  simulation 
methods. 
A.  Selecting  the  Exogenous  Variables of a  Decomposition 

Even if an a  priori “functional” hierarchy is chosen for  the 
decomposition,  one must  still decide which variables in the 
functional block are  “endogenous,”  i.e., interact  only inside 
the  block,  and which are “exogenous,” i.e., interact  with the 
variables at  the  next level of the hierarchy. In electrical net- 
works, for  example,  one  must decide whether the branch 
currents or voltages are chosen to be the  exogenous variables, 
or  the  external  node voltages  of the functional blocks are 
chosen to be exogenous. 

In the block diagram approach, the exogenous variables are 
not determined algorithmically but are selected by  the designer 
of the simulation program. This choice characterizes the  type 
of decomposition actually employed.  For  example, if the 
exogenous  variables are chosen to be the voltage on  the 
nodes external to  the differential amplifier model  in Fig. 4(a), 
the well known case of “node tearing” results [ 51, [ 7 J , [ lo],  
[ 111. On the  other hand, if the exogenous variables are 
chosen to be the  branch  currents, the case of branch tearing is 
selected [ 271. Note that with  either of these approaches, the 
selection of the appropriate  formulation of the network  equa- 
tions is made  after  the tearing is performed,  and remains as a 
degree of freedom to be exploited in obtaining the most 
economical simulation. Hajj [ 271 has studied both branch  and 
node tearing and  pointed out an equivalence between this  type 
of tearing and the block factorization  approach  for solving 
linear algebraic equations (cf. the discussion of (8) in Section 
11-A). In  addition, he enumerated the various types of block 
factorization which are possible  and pointed out  that different 
combinations of block factorization  techniques  are  appropriate 
for  different blocks.  Also, he showed that  for a specific  case, 
using the best technique for each  block,  node tearing was 
slightly superior to branch tearing.  Sangiovanni et  al. [ 291, 
[ 301,  gave a more general result comparing these two methods. 
They proved under  quite mild topological restrictions, that 

node tearing always gives a smaller number of exogenous 
variables in  the decomposed system. The  node tearing ap- 
proach  has been used in the SPLICE  program [5], and in the 
SLATE  program [ 11 I .  For example, the SPLICE  program in- 
put is a mixture of subcircuits specified as models and as con- 
ventional circuit elements. Since  SPLICE k a mixed mode 
simulator, some of the models are analyzed with simplified 
“timing analysis” techniques [ 41, and some are analyzed with 
full-fledged circuit analysis.  Models  which are specified for 
circuit analysis are identified by special delimiters. The 
contact  nodes of these models are chosen as the  node tearing 
variables, and thus become the exogenous  variables of the de- 
composition. Similar techniques are used in  the SLATE pro- 
gram [ l l l .  
B .  Exploiting  a  Given  Decomposition  at  the  Nonlinear  Level 

An effective algorithm for exploiting a BBD structure 
explicitly specified by  the  input language of a circuit simulator 
such as  SPICE,  SPLICE, or ASTAP, is the multilevel  Newton- 
Raphson algorithm of Rabbat, Sangiovanni,  and  Hsieh [ 171. 
In general, each of the  subcircuits specified in the  input lan- 
guage interacts  with the rest  of the circuit only  through a small 
number of  exogenous  variables u E Rk. The  endogenous  vari- 
ables of one of these  subcircuits can be partitioned into  two 
sets. The first set, called the  output-variables, is denoted by 
y E Rk, and are in one-to-one correspondence with the exoge- 
nous variables. For example if the exogenous  variables  are 
chosen to be the node voltages, then  the set y corresponds to 
the  currents  entering the subcircuits. The second set, called 
the  internal variables, will  be denoted  by  the vector x E Rm. 

Assume that  the circuit to be simulated is static, i.e., is 
described by a set of nonlinear algebraic equations. In general, 
given the values  of the exogenous  variables, the  output vari- 
ables and  the  internal variables  are determined  by a system of 
equations of the  form 

N u ,  x ,  y )  = 0. (16) 
Given u,  the  interaction of the subcircuit with the rest of the 
circuit is completely described  by y .  Thus to simulate the 
“super” circuit, it suffices to compute y for each subcircuit. 

Assuming that (16) has one and only  one  solution  for each u ,  
(16) describes implicitly a map from u to y .  This map  is  de- 
noted by G y ( u )  and is called  an exact  macromodel. We shall 
now discuss  an algorithm for analyzing a network with subnet- 
works  described  by equations of the  form (1 6), [ 171. 

For  the sake of simplicity, we assume that only one subcir- 
cuit is described by its macromodel. Let the equations of the 
network  be  written as 

F(u, Gy(u) ,  W )  = 0 (17) 
where w E RP is thevector of network variables in the  network 
not interacting  with the subcircuit, and G, represents the 
macromodel  of the subcircuit. Newton-Raphson’s algorithm 
applied to (1 7 )  consists of the following scheme: 

D u F ~ ,  G y ( u ) ,  W )  Au + D G F ~ ,  G y ( u ) ,   w ) D G y ( u )   A u  

+ D,F(u,   G, (u) ,   w)Aw + F(u, G , , ( u ) ,   w )  = 0. (18) 

Here D, represents the derivative with respect to  the generic 
variable z .  

Thus, to apply Newton’s method, we  need to evaluate 
G y ( u )  and DGy(u) .  Recall that  the macromodel G y ( u )  is 
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implicitly  determined  by  the  nonlinear system of equations 

H(u, x, y )  = 0. (19) 

To evaluate Cy@), we can use a second Newton process on 
(1  9) which yields 

Dx,,H(u,x,Y)(hr,AY)=+H(u,x,Y)= 0. (20) 

This second Newton process is at a lower level  since u is deter- 
mined from  (1 8) and held fixed  in (20). Now, if (1  9) is solved 
precisely, then  the  error  in  the  evaluation of the  macromodel 
and its derivative is zero and when these are used in (1 8), we 
have a  true Newtonian iteration  with  local  quadratic conver- 
gence.  However, if the macromodel  and  its derivative are  not 
determined precisely, then  the  question of quadratic conver- 
gence is open. The idea proposed  in [ 171 is to retain  local 
quadratic convergence in  the presence of error as follows. 

It would  seem to make no sense to solve (19) to a higher 
precision than  the  current  iteration  for  (17), and it would 
seem only necessary to tighten the convergence control  for 
(20) at  the same rate  (18) is converging. In the  algorithm 
proposed in [ 171 iteration (20) is stopped whenever 

I1 h r ,  AY II Q II Au, Aw I1 '. (21) 

In [ 171, it is proven that this  algorithm has local  quadratic 
convergence. Note that if iteration (20) is stopped according 
to a  different  criterion,  for  example, whenever 11 A x ,  Ay 11 Q 
11 Au, Aw 11, the algorithm can be shown to converge but loses 
its  quadratic convergence property. 

Like other  decomposition  methods,  this  algorithm  permits 
individual subcircuits to be processed in parallel. In  this case 
quadratic convergence is retained. The method also has two 
other  principal advantages. First, if there are identical sub- 
circuits,  then the linear equation  solution  step (20) for  each 
identical  subcircuit may  be obtained  with the same (symbolic) 
LU factors.  Second,  note  that  although we  have discussed the 
algorithm of [ 171 in  the  context of a  two level hierarchy, the 
method applies equally well to a multilevel hierarchy, which is 
the most typical case in IC simulation. 

V. RELAXATION DECOMPOSITION OF NONLINEAR 
SYSTEMS 

In this section, we will discuss a second avenue by which the 
decomposition of nonlinear  systems has been  approached in 
the literature of the engineering disciplines, especially the 
circuits  literature. While the first  approach,  presented  in the 
Sections I1 and IV, derives conceptually  from the "direct 
method"  approach to solving linear algebraic systems, the 
second derives conceptually  from the classical subject of relax- 
ation  methods. 

The second approach is characterized  by the inclusion of 
more or less  classical relaxation  methods.  In the integrated 
circuit  context,  this  approach began with the work which led 
to  the MOTIS simulator, 141. MOTIS  was a  revolutionary 
simulator  in  three main respects: 

1) It  limited severely the types of networks  it  dealt  with 
(MOS devices with  quasi-unidirectional  circuit models, 
and  a  grounded  capacitance  on every node); 

2) it discarded both sparse Gauss elimination and conven- 
tional Newton-Raphson as a solution  method; 

3) it discarded implicit time  integration  methods such as 
backward Euler, trapezoidal  rule, or stiffly  stable  methods. 

One of the key contributions made by the authors of  MOTIS 
was the physical reasoning devoted to justifying the method 
used for advancing the  time  step,  and,  in  fact, selecting the time 
step  taken.  The physical reasoning was indeed well founded, 
and the success  of  MOTIS, as implemented, was a  landmark 
for the CAD area. 

However,  as subsequent  investigators  soon fotind out, MOTIS, 
as implemented, was not  optimally  efficient  and, in fact, had 
problems. 

In  order to discuss these  problems we express the  nodal 
equations of a general network as follows. 

J(u) + cir = 0. (22) 

Here u stands  for  the  vector of node voltages, C is the (as- 
sumedly linear)  capacitance  matrix,  and J(u) is the  vector of 
currents feeding the  capacitors.  Throughout  this  section, we 
will assume that there is a  capacitor to ground from every 
node.  For  purpose of exposition, we will also discuss only the 
case where the backward Euler method, 

in+, E ( U " + l  - v,)/h (23) 

is used to discretize the time derivative operator. Here the sub- 
script  denotes the time  point of the integration and h = t,+l - 
t,. For  simplicity, we shall henceforth  drop  the  subscripts 
referring to  the time  point. 

Because we shall be describing the literature  in  this area in 
terms of point relaxation  methods [19], we must consider 
solution  methods which  sweep through the component equa- 
tions of (22), solving one  equation at a  time  for one unknown 
at a  time. A procedure  for  such  a sweep was  given in (12). 
However, in  order to compare the sweeps used in MOTIS, 
MOTIS-C, and SPLICE, we need a  different  notation.  The 
problem is that we need to distinguish between three distinct 
classes of components of the node voltage vector,  namely, 
vi, the variable being solved for  in  the j th  equation, Gi, i < j ,  a 
variable already solved for  during  this sweep through  the  equa- 
tions, and the variables remaining to be  solved for, S,, k > j ,  
j = 1, 2, * * * ,4, q 1111. Given this compQcation, we shall find 
it  useful  for  our discussion of relaxation  methods to introduce 
the  functions 

A 
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with  a one-step “time advancement” scheme which consists of 
a single relaxation sweep through the “diagonal” equations 

j i ( u , u , u ) + ~ ~ ( u , u , u , ~ , , h ) = O ,  i = l Y 2 ; . * , q .  (26) 

Note that ; does not appear here, so only the diagonal terms  in 
(24) are updated  in any given  sweep. 

However, the nonlinear equations encountered at each step 
of a sweep through (26) are not solved exactly.  Instead,  a 
single regula falsi, [ 191,  step is taken to approximately solve 
each equation. This linearizing approximation was motivated 
in MOTIS by  clever physical reasoning based on first principles 
of  MOS device physics. It is justified when sufficiently small 
time  steps are taken. With hindsight it can be seen that  the 
MOTIS algorithm can  be regarded as a nonlinear version of 
the classical Jacobi  “iteration” [ 191 . However, the term 
“iteration” is used advisedly, since only  a single  pass through 
the system (26) is taken. Since the MOTIS system does not 
actually solve (22),  the original astable backward Euler implicit 
integration  method can be shown to be reduced to an explicit 
form which is not astable. Thus the method has the disadvan- 
tage that  the time step may be controlled not by  user deter- 
mined accuracy requirements, but by stability requirements, 
which may require a much smaller time  step than  that needed 
for accuracy. The avoidance of this situation was one of 
the prime motivations for the development of sparse matrix 
technology. 

However, the MOTIS approach has advantages, some of 
which are: 

- A -  - A -  

1)  that  the computational expense of taking  a single time 
step is very small; 

2) that  the equations  are decoupled and can be  solved in 
any  order, perhaps on parallel processors; 

3) that since after the regula falsi step, each equation is 
linear and a function of only a single variable, no sparse 
matrix  software  for Gaussian elimination is required. 

In cases where the inputs to  the circuit do not change very 
much over a sequence of time steps, the MOTIS time advance- 
ment method (26) can be  viewed as equivalent to a  Jacobi 
iteration. In this case the accuracy and stability of the time 
advancement scheme can be related to the convergence of the 
analogous Jacobi  iteration. This iteration will  converge  well if 
the Jacobian matrix of the system (26) is sufficiently diago- 
nally dominant [ 19a1, [ 1 9 ~ 1 .  If  we assume that  the MOS 
circuit has no floating capacitors, the capacitance matrix C of 
(25) is a diagonal matrix. In this case the sufficient diagonal 
dominance may  always  be obtained  for sufficiently small h. 
However, if the node capacitances are too small, an unaccept- 
ably small  value  of h may  be required. 

Moreover  MOTIS has a problem with floating capacitors. 
If the floating capacitance is large with respect to  the node 
capacitance, at any given node,  there may be no value of h 
which makes the Jacobian sufficiently diagonally dominant to 
ensure convergence of the analogous Jacobi  iteration. Thus 
the corresponding accuracy and stability of the MOTIS time 
advancement scheme will  be insufficient for any value of h. 

Other investigators [ 5  J , [ 141, [ 511 , have expanded on  the 
MOTIS concept by taking further advantage of the nearly uni- 
directional nature of MOS devices. In SPLICE [ 5  J , [ 141,  the 
Jacobi-like formulation of (23) is replaced by 

- 
u +un (274  

j i ( $ ,  $, V) + ci(u,  u, u, u,, h )  = 0, i = 1, 2, * , q (27b) A A -  

- 
u +^v. ( 2 7 ~ )  

Note that in  contrast to (26), $ is substituted  for the “lower 
triangular” variable 6, instead of i. Thus whereas (26) consti- 
tuted q independent  equations  in  1  unknown apiece, equation 
(27) constitutes  a triangular system of q equations in q un- 
knowns, analagous to a back substitution process. This is the 
essential part of the well known Gauss-Seidel process [ 191 . In 
a true Gauss-Seidel process (27b) and (27c) would  be iterated 
to convergence. Like MOTIS,  SPLICE linearizes the nonlinear 
equation (27b), and takes only a single relaxation sweep 
through  (27). 

If the Jacobian of (27) with respect to the  third argument 
u is identically zero, then it is in a degenerate form of  Fig. l(b) 
in which all block sizes are unity. As noted  in Section 11, equa- 
tion  (27) converges in  a single  sweep in this case. Note that 
this would  be the case for the simplest MOS device  models 
when there are no pass transistors. If this were indeed the case 
and if (27) represented a truly linear system, then the Gauss- 
Seidel iteration would converge  in exactly one step. The cor- 
responding time advancement scheme would then be astable, 
and the method would have no time-step limitation due to 
stability, regardless of how small the capacitances were. 
Note that this would not be true of the Jacobi iteration ap- 
proach used in MOTIS, an indication of the greater power of 
the one-step Gauss-Seidel time advancement scheme. 

Thus if there is no feedback in a given circuit, it can be con- 
cluded that  the SPLICE formulation gives more accurate 
results (exact  in the linear case) than  the MOTIS formulation. 
In fact, with this approach, it is no longer necessary to have a 
capacitor to ground at every node. Note, however, that to 
take advantage of this desirable property, it is necessary to 
order the equations of (27), whereas with (26),  the equations 
could be processed in an arbitrary order. Thus the Gauss- 
Seidel approach requires a vestigial form of sparse matrix pre- 
processing. 

The MOTISC program, represents an intermediate approach 
where a Gauss-Seidel technique is employed, but the equa- 
tions are not ordered into  the “most lower-triangular” form. 
In this case,  even if all the devices are unidirectional the Gauss- 
Seidel iteration will not converge in  one  step, so that some of 
its intrinsic power is lost. 

The introduction of the Gauss-Seidel iteration into the 
MOTIS concept was a significant contribution  toward dealing 
with the problem of  small capacitances in MOS circuits. How- 
ever, this improvement did not deal with the problem of float- 
ing capacitors. The presence of floating capacitors degrades 
the accuracy and stability of the basic MOTIS approach and 
furthermore  introduces nonphysical oscillations into  the solu- 
tions of digital MOS networks. When  viewed as integration 
methods, the Jacobi and Gauss-Seidel iteration schemes de- 
scribed above can be said to introduce complex “parasitic 
roots” (i.e.,  eigenvalues of the difference equations which do 
not correspond to eigenvalues of the approximated differential 
equations). 

One technique for dealing with these difficulties without 
giving up  the essential character of the MOTIS-SPLICE ap- 
proach was  given in [521, [531. The problem was identified 
as the destruction of symmetry (and therefore of the positive 
definiteness of the Jacobian) by  the triangular aspect of the 
Gauss-Seidel approach. The basic idea was to replace the 
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“one-step” Gauss-Seidel solution  method  with  a  method that 
takes  two half-steps instead.  The  method symmetrizes the 
basic  Gauss-Seidel technique by taking  one half-step in  the 
normal  “forward” (i.e., lower  triangular)  direction and a 
second half-step in the  “backward”  direction.  The  algorithmic 
aspects of their  approach  can be summarized as follows. Let 
$i/2(G1/2)  stand  for the variable being updated (not yet  up- 
dated)  in  the ith equation of the first half-step. As above, let 
u(  u ) stand  for  components being updated  (already  updated) 
on the second half-step.  Then the  twwtep Gauss-Seidel pro- 
cedure can be written 

* -  

,112 - - vn (284 
j j ($1/2 ,  w ,  W )  + Cj($1/2,  $112,  ij1/2, i j w ,  (h/2)) = 0, 

i = 1,2 ,  * , q (28b) 

( 2 8 ~ )  ; .+ $‘/2 

A h -  ii(V, $,$)+c~(F, u, u,u,(h/2))=0, i = q , q  - I , . . . ,  1. 

( 2 8 4  

U+$. (28e) 

In interpreting  (28) it is important to observe a few key points. 
First  note that except for  the superscripts,  (28a) and (28b) are 
identical to  (27a)  and  (27b)  for one-half of the time  step h. 
Second,  note that  in  (28d),  the Gauss-Seidel step is reversed in 
two important  respects: 

1)  the positions of and ii in  the  argument  lists  of the two 

2)  the order  in which the equations  are processed in  (28d) is 

In concert,  these  two reversals amount  to processing the physi- 
cal devices in reverse order. 

This method shows strong similiarity to the well-known 
alternating-direction  implicit  method [ 19b1, as well as to a 
method  proposed by Kahan [541. Its advantages may be 
summarized as follows. First,  integration  with  this  method 
has shown good stability  properties on practical examples. 
Second,  this  method is astable  for  a simple circuit consisting 
of a pi-section of resistors and  capacitors,  an advantage which 
cannot be claimed by the methods  in MOTIS and SPLICE. 
Third,  the  method does not  introduce  complex  parasitic  roots, 
and therefore does not  produce  nonphysical oscillations and 
overshoot  conditions. 

A third  variation on this basic approach is implemented  in 
the program DIANA, [ 5 51 . DIANA considers the same types 
of MOS circuits as MOTIS and SPLICE.  DIANA also employs 
the regukz falsi linearization  technique developed for MOTIS. 
Without stretching the  truth  too much, we can regard DIANA’S 
time  advancement  technique as “block” Gauss-Seidel, where 
the block  structure is obtained as follows. For the sake of 
simplicity we assume that like SPLICE and MOTIS, the DIANA 
circuit  equations can be expressed in  the form 

functions are reversed, 

reversed. 

(V, u, u)  + cD(u, u,  u, un 9 h )  = 0 (29) 

where the  subscript is added to  note  that DIANA uses a slightly 
different MNA formulation [ 31 , to accomodate  ideal switches. 
Thus, the DIANA algorithms are somewhat  more  complicated 
than discussed below. The  algorithms  in DIANA are similar to 
those  described  in [56]. The dependency  matrix discussed in 

Sections 11-IV is obtained  from the sparsity  pattern of the 
Jacobian of (29)  with  respect to u. Then the algorithm of 
Tarjan 1571, 1581 is used to find the block triangular (i.e., 
BBT form  with  zero  border)  structure of (29). This structure, 
like that of SPLICE, is triangular  except  for occasional square 
blocks, which correspond to what the  authors of  DIANA refer 
to as the blocks enclosed in  “tightly  coupled  feedback  paths.” 
Physically, these blocks derive either  from  floating  capacitors, 
pass transistors or explicitly  intended  feedback. 

If  we consider  these  blocks as units  in  a  “block” Gauss- 
Seidel, then  the resulting structure is triangular in the block 
sense of [56]. If the equations were linear, the block Gauss- 
Seidel method would  converge in  a single relaxation sweep. 
What is different  from SPLICE and MOTIS is that  the non- 
trivial blocks  are handled explicitly by L U factorization.  Thus 
DIANA has an even stronger  tie  than SPLICE to  the sparse 
matrix  technology  employed  in  standard second-generation 
circuit  simulators. 

VI. EVENT SCHEDULING AND LATENCY IN MIXED 
MODE SIMULATION 

In the preceding sections, we have  discussed some of the 
numerical techniques that are used by mixed mode simulators 
such as SPLICE,  SLATE, and DIANA. Emphasis was placed 
on decomposition  methods as a means of paring a large com- 
putation down to reasonable size. In  this  section we describe 
some related  techniques which are  function specific to  the task 
of “mixed mode”  simulation. A mixed mode simulator is 
defined  here to be one which is capable of simulating different 
parts of a given circuit  or  system  in two  or more modes in the 
following list : 

Register Transfer Level Simulation 
Logic Simulation 
critical  Path Timing Simulation  (PERT) 
MOS Timing Simulation 
Circuit  Simulation. 
As we enter  the VLSI era, mixed mode  simulation is becom- 

ing increasingly important. It is possible to meaningfully 
extend  this list in  both  directions, but we feel this list is ada  
quate  in  the  context established for  the present  paper. 

There  are  many ways to view the preceding simulation hier- 
archy, e.g., bottom-up,  top-down,  architecturedevice,  etc. 
However, for our purposes,  a useful and equally valid  way is 
to think of it as a  feedback  hierarchy. At the  top levels, feed- 
back is either  nonexistent or plays a  minor  role. At the  bottom 
level  of conventional  circuit  simulation,  feedback  plays  a very 
significant role. 

The analysis performed  by mixed mode  simulators  reflects 
this  hierarchy.  For  example, SPLICE requires  the user to 
specify which blocks of the circuit has to be analyzed at  the 
logic, timing  or  circuit levels. Then, the blocks of the circuit 
declared by the user as logic blocks  are analyzed with logic 
simulation  algorithms which essentially ignore feedback; the 
blocks declared by the user as timing blocks are analyzed with 
the algorithm described in  Section V, where feedback  paths 
are  broken  according to  the Gauss-Seidel time  advancement 
scheme;  the blocks declared by  the user as circuit  blocks are 
analyzed with  “standard”  simulation  algorithms as defined  in 
Section  I, where feedback is fully  taken into account. 

Mixed mode  simulators allow a  smooth  transistion  between 
different levels  of simulation  but  they also allow the designer 
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Fig. 9. Event scheduling and the BT form. 

to take advantage of the  time and memory savings available 
from higher level descriptions of blocks of the circuits. Some 
basic  issues for mixed mode simulators  are 1) how to manage 
the  interfaces  between the various levels of circuit  description 
and  simulation, and 2) the scheduling of the blocks to be 
processed during the analysis to exploit the inactivity  or  latency 
of part of the  circuit. Since the interface  problems have  been 
discussed thoroughly elsewhere, [ 181,  in  this  section we shall 
focus  on the scheduling algorithms. 

The event scheduler is the part of logic, timing, and mixed 
mode simulators which establishes the order  in which the 
blocks of the circuit have to be processed. Thus we can estab- 
lish an equivalence between the task of finding the intrinsic 
block structure of the dependency  matrix of a given system 
and the basic task of the  event  scheduler. Event schedulers 
therefore play an important  role  in  exploiting  latency.  The 
remaining of the section is devoted to  the analysis of the basic 
tasks of an event scheduler, i.e., determining  the  block  structure 
of the circuit and  exploiting  latency. We conclude  the  section 
with  a brief description of an event scheduling algorithm. 

A .  Determining  the  Block  Structure  and  Related Tasks 
In Fig. 9, the equivalence between the basic task of the event 

scheduler and the task of finding the block  structure of the 
dependency  matrix can be seen by tracing  the sequence of 
events which follow a change in  input variable block “1.” We 
assume that  the system is initially  in  equilibrium and that all 
blocks have the same unit delay. We can then  determine  that 
due to the  nonzeros  in  submatrix  1 (circled numeral) variable 
blocks “3-7,” should be scheduled for processing at the second 
time  step.  After the second time  step,  due to  the nonzeros  in 
submatrices  2 and 3, variable blocks  “10, 11,” and “13,  14” 
should be scheduled for processing at the  third  time  step. 
Finally,  due to submatrix 4, variable block “12” is scheduled 
for processing at the  fourth time  step.  Note variable blocks 
“2,” “8,  9” and “15-18”  are  not  scheduled. 

Of course, the event schedulers used in mixed mode simula- 
tors  perform  more  sophisticated  tasks as well, but  these may 
also be  viewed in  terms of the BT structure of  Fig. 9. One 
such task is the so-called “backtracing,” [ 141 , problem of 
finding the cone of influence of a given variable, i.e., the set 
of variables in the system which  must be determined  before 
the given variable can be updated.  Another  such task is that of 
maintaining  a  storageefficient  hierarchical  representation of 

the block  structure  for scheduling purposes. These tasks  are 
discussed in turn later. 

We illustrate  in Fig. 9 the task of backtracing.  Suppose we 
wish to know the cone of influence of the block of variables 
labeled “1  1” at  the  top of  Fig. 9(a). We assume that  the 
dependency  matrix A is zero everywhere except  on  the diagonal 
and in  the  blocks  explicitly  identified by solid lines in  the 
lower triangle, which we assume for  simplicity to be full. Since 
the  submatrix 5 (Ezl) is full, block “10” must be computed 
along with  “1  1 .” Before either of these can be computed, 
variable block “6, 7” must be known,  due to  the existence of 
submatrix  3. But the computation of “6,7” must be preceded 
by that of “1, 3,4.” Therefore, the cone of influence of  vari- 
able block “1  1” is “1, 3, 4, 6, 7, 10.”  The  algorithmic  embod- 
iment of this idea is known as critical  path analysis [331. The 
critical  path  algorithm is the essential step  in  the  “critical  path 
timing simulation”  mentioned  in the list above. This type of 
simulation,  in which the circuit  blocks have delay attributes, 
but  no  other logical or algebraic properties, is an extremely 
important tool in  the timing verification of  large digital sys- 
tems [ 141. 

As an example of the use of this  algorithm,  suppose  that  a 
critical  path  timing analysis of the system characterized by 
the  dependency  matrix A of  Fig. 9 has indicated that  output 
variable block “1 1” was on  a  critical  path (i.e., a  path of maxi- 
mum delay).  In  order to make the system faster, it is then 
desirable to simulate  only the subcircuits which contribute to 
the  critical  path delay. But these  subcircuits  are precisely those 
whose variable blocks are in the cone of influence of variable 
block “1  1 .” Circuit simulation of only the cone of influence 
can be accomplished by arming the event scheduler  with  this 
information.  The  scheduler can then avoid the scheduling of 
any circuit block which might be active, but  not on  the  critical 
path. 

The use of hierarchy by an event scheduler can be discussed 
in  terms of  Fig. 9 as well. Note that subcircuit H in the lower 
right comer has a  dependency  matrix which has a BBDF sub- 
structure. Thus the  sub-subcircuits  represented by the variable 
blocks  “8, 9, and 10”  are  connected to  the  external world only 
to variable block “18,” (through  submatrix 8). Thus variable 
blocks  “1 5, 16, and 17” will  never  be scheduled until  after 
“18” has been completed, as indicated by the  existence of 
submatrix 7 to the right of these  blocks  in the overall depen- 
dency  matrix. 
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B. Exploiting  Latency 
Exploiting  latency is a  key  point to make  the analysis of 

very-large-scale circuits economically feasible. Latency is 
traditionally exploited in logic simulators where event driven 
simulation is widely  used [ 131, [ 151. Only recently, with the 
advent of  mixed mode simulators, similar techniques have 
been  introduced  at  the electrical (timing  and circuit) levels, 
“Bypass”  schemes  were  used  previously blocks of the circuit. 
These  schemes required  checking  each block for inactivity. 
The overhead associated  with checking for inactivity can be- 
come a substantial fraction of the  total analysis run. Selective 
trace algorithms  implemented in event  schedulers avoid check- 
ing for inactivity by identifying  and  scheduling for analysis 
only the blocks which can be affected  by  a change in an input 
which is exercised during  simulation. Once the effect of the 
change in the  input disappears in any  sequence of blocks, that 
sequence  need not be traced  further. 

Most  of the efficiencies that have been claimed in the name 
of latency can be  described in terms of  Fig. 9. Since  variable 
blocks “2 ,8 ,9 ,  15-18” are not scheduled in response to a 
change in  input block “1,” these  blocks may  be  said to be 
latent.  Therefore, no computations  on  these  blocks need to  
be  done.  In this case, these  blocks  had no topological  connec- 
tion to the  inputs  which changed. 
As mentioned  above,  a similar situation occurs when it is 

desired to analyse  only  a critical path and not  the  remainder of 
a  network. However, in this case the devices not analysed 
would actually be active if they were considered for processing, 
so they  cannot  be said to be  latent. 

Related to  the “topological”  aspect of latency discussed 
above,  there is a  dynamic aspect. A long  chain of logic gates 
illustrates this point,  in  the sense that  the responses to a step 
at  the beginning  of the chain  propagates like a wave motion 
down the chain. Gates  ahead of or  behind  the wave front, 
may  be  said to be latent, even though  they are all topologically 
connected to the  input.  The degree of latency  depends on  the 
“length” of the shortest path (in the graph of the  dependency 
matrix)  between  a given gate  and the set of active  gates. Be- 
cause of  the dynamic aspect, each  gate in the shortest path  has 
an  inherent delay associated  with  it. In unit delay simulation 
the event scheduler  schedules all  gates on  a  path of length  1 
from  an active gate. Thus if the dependency  matrix is full, no 
gates  can be  latent. ‘In nominal delay simulation, gates  have 
variable  delay attributes.  In this case short  paths can have long 
delays  and vice  versa. 

Therefore, when the  blocks considered  are analyzed at  the 
electrical level, the dynamic behavior of the  internal variables 
of the blocks have to be considered  before declaring a  block 
latent.  For  example,  the  inputs of a given block may  be  quies- 
cent,  but if the internal variables  of the block are still changing 
from  time step to time  step,  the block cannot be  said to be 
latent,  and must  be  processed until  the internal variables  also 
become  quiescent [ 171 . 
C. A n  Event  Scheduling  Algorithm for Timing  Analysis 

Timing simulation  algorithms of the  type described in Sec- 
tion  V require not only the identification of the intrinsic block 
structure of the circuit as discussed  above, but  the identifica- 
tion  ahd  elimination of feedback  loops as  well. This additional 
complication makes the discussion of an  event scheduler for 
timing  simulation particularly interesting. Moreover, the event 
scheduler of a mixed  mode simulator  has  the same  basic struc- 

ture,  the  only  difference being the need to analyze differently 
electrical and logic blocks [ 141.  The  context of the algorithm 
taken  from [ 141, is SPLICE type  timing  simulation  with  a 
one-step Gauss-Seidel time  advancement  scheme.  In  the algo- 
rithm we shall  use ui,n+Lto stand for  the  ith node voltage at 
time r , + l .  Also we use ti  to stand for  the  time  at  which  the 
ith  node voltage  was last processed. We, shall refer to  the 
nodes which  have nonzeros in the  ith column of the depen- 
dency  matrix as the  fanouts of node i. 

Procedure EVENT: 

WHILE there are nodes  scheduled to  be processed at t,+l, 
BEGIN 
get the next  scheduled  node, i ;  
IF(& = t ,+ l )  

BEGIN 
schedule  node  i  for processing at tn+2 ; 
END 

BEGIN 
process node i at t,+l ; 
set ti = t,+l ; 

ELSE 

A 

IF(Ui,n+l f vi,,) 
BEGIN 
schedule  node  i  for processing at  time t , ,  ; 
schedule all fanouts of node i for processing at  time t,+l ; 
END 

END 
END 

END. 

Note that  this  algorithm is an  example of unitdelay schedul- 
ing,  since nodes are scheduled  only at t,+l or t , + z .  

The  execution of this algorithm can  be explained  by describ- 
ing the three principal cases. First, consider  the case in which 
neither of the IF conditions  are satisfied. In this case, node  i 
does not cause any other nodes to be  scheduled for later pro- 
cessing, so that  the  fanouts of this node  which have not already 
been  scheduled,  remain  latent.  For  example,  suppose that in 
the system of  Fig. 9, variable blocks “1, 3,4, 5, 6” have already 
been processed and we are currently processing  variable block 
“7.” Since by  assumption  these variables  are not changing, 
the rest  of the system will remain latent in this case. 

In the second case, we assume that  the second  IF  condition 
is satisfied but  not  the first. In  the example  described  above, 
since  variable block  “7” is changing in this case, it will cause 
itself to be scheduled at  time tn+2 and will cause  variable 
blocks  “10,  11” to be scheduled for processing at  the current 
time  step t ,+l .  

In the third case we assume that  the first IF condition is 
satisfied. In this case, a variable is scheduled  which  has  already 
been  processed at  the  current  time  step.  Note  that  the  sched- 
uler schedules this node at  the  next  time  step  rather  than  at 
the  current  time  step. This is the specific  mechanism with 
which the SPLICE  Gauss-Seidel time  advancement  scheme 
limits itself to a single relaxation sweep through  the overall 
network. 

Other  event  schedulers  work  with an arbitrary (sometimes 
integer) scheduling  time.  Such  schedulers are helpful in iden- 
tifying timing races and other hazards.  The basic idea is to 
compare  scheduled  times  for the  inputs  and  output of a given 
gate  with the gate  delay  and or clock constraints. 
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VU. CONCLUSIONS 
We have presented a survey of recent  literature on third 

generation circuit simulation. We have chosen large  scale 
decomposition as a theme  for  the paper  and we  have empha- 
sized the role of intrinsic  and derived triangular matrix  forms 
which are  exploited  in various and  disparate ways by  the algo- 
rithms  employed  by  contemporary LSI and VLSI  scale  simu- 
lators. We have  classified decomposition  techniques into  two 
categories: tearing  decomposition  and  temporal  decomposition. 
These methods differ in  the way feedback between blocks of 
the decomposition is treated. Tearing methods  take  the feed- 
back fully into  account, while temporal  decomposition  meth- 
ods achieve decomposition  by  cutting feedback paths  and  then 
performing an inexpensive simulation which approximates the 
effects that feedback has on  the blocks of the decomposition. 
This classification has been carried through all levels  of circuit 
simulation algorithms: linear equation level, nonlinear equa- 
tion level, ordinary differential equation level. In addition we 
have  discussed methods  for identifying an appropriate topolog- 
ical decomposition when this  decomposition is not functional, 
i.e., specified in advance by  the designer. 

We have shown that  the more revolutionary third generation 
simulators achieve their scale advantage over standard second 
generation  simulators  by relaxing the numerical and  stability 
requirements which  gave standard algorithms their generality 
and robustness. This deficiency is made up  for by restricting 
the class  of applicable circuits, e.g., to MOS circuits  with  node 
to ground capacitance at every node (MOTIS). We have finally 
described the use of event scheduling algorithms to identify 
the intrinsic block structure of  large  scale circuits and to ex- 
ploit latency. 

With the advent of the VLSI era, it will soon be possible to 
implement  decomposition algorithms in  hardware to gain or- 
ders of magnitude in execution  time of simulation algorithms. 
We forecast that  fourth generation simulators will be totally 
hardwired in VLSI  chips. For  this to occur,  further research 
on  the relationships between algorithms and chip architecture 
will be necessary. 
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