
1264 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

A Survey of Third-Generation Simulation
Techniques

Invited Paper

Abrtmct-We present a rwiew of recznt work on circuit simulation
techniques which are “third generation” in that they go beyond the
Sparse Gauss Elimination, Newton Iterrtion, Stiff Implicit time inte-
gration appmach which mark secondgeneration circuit simulators such
as SPICE-II ud ASTAP-II. Thitd generation simulators such as MOTIS,
DIANA, and SPLICE have rejected one or more of these principal
features in their quest for size and speed capabilities commensurate
with the requirements of the W I en. We attempt to present a uni-
f d treatinent of the vpriow and disparate types of third generation
simulators b a d on the concepts of l.rge9ale decomposition theory.
Inprrticul.rweaulldescn’bemdcl.ssifysimuhtorsinterrrmofthe
role played by certain matrix forms in their formulation, namely
Bordered Block Diagonal (BBD), Bordered Block TrLagulnr (BBT), ud

I . INTRODUCTION
Bordered Lower Trianguh (BLT).

c IRCUIT SIMULATION, which matured in the 1970’s
[1 I-[31, has established itself as a significant design aid
and a significant cost item as well, in most large inte-

grated circuit (IC) design houses. This fact is reflected by the
presence in such houses of large mainframe computers dedi-
cated solely to circuit simulation.

The spectacular growth in the scale, measured in device
count, of IC’s being designed in the VLSI microelectronics era
has started and intensified a search for “third generation”
methods of circuit- simulation. Similar developments have
stimulated the same kind of research in other disciplines such
as electrical power distribution, chemical engineering plants,
logic design, and operations research. The common theme is
that the systems being designed take too much cpu time
and/or too much storage for economically realistic simulation
support for the design effort. As a result, the search is on for
alternatives to circuit simulators that were once considered
revolutionary 111-[3], but are now regarded as “standard.”
This paper is devoted to a tutorial review of “third-generation”
simulators and simulation techniques [4]-[171, i.e., simulators
and techniques which, in their quest for larger scale capabili-
ties, have departed radically from the approach defined in
[11-[31.

A similqly motivated paper has recently appeared [181. The
present paper differs in two respects. First, De Man [181 dealt

by the Defense Advanced Reseiich-Ro&cts-&nG tinder Grant
Manuwipt received June 5, 1981. This work was supported in part

N00039-K-0251 and in part bythe uToT&Off&-of Scientific Re-
search under Grant F4920-79C0178.

wrsity of Colorado, Boulder. CO 80309.
G. D. Hachtel is with the Department of Electrical Engineering, Uni-

neering and Computer Science, Uninrsity of California. Berkeley, CA
A. Sangiovanni-Vicentelli is with the Department of Electrical Engi-

exclusively with IC simulators and emphasized functionality,
whereas the present paper has a more interdisciplinary scope
and emphasizes algorithmic techniques. Second, the present
paper attempts a unified treatment of the various disparate
simulator types based on the concept of decomposition of
large-scale systems. Specifically we shall classify and describe
the various “thirdgeneration” simulators in terms of the role
played by certain matrix forms in their formulation, namely
(cf. Fig. 1)

Bordered Block Diagonal (BBD)
Bordered Block Triangular (BBT)
Bordered Lower Triangular (BLT)
Block Diagonal (BD)
Block Triangular (BT)
Lower Triangular (LT).

Note that the BD and BT forms are just BBD and BBT forms
without a border, and that the LT form is just the BT form
with unit block sizes. It is common, however, when referring
to the BT form, to assume that the diagonal blocks are irre-
ducible, that is, cannot by themselves be decomposed by row
and column permutation into a BT subform.

We have chosen decomposition as a theme because the
modules of a decomposed system may be treated individually
in special ways. For example, if storage is limited, sequential
treatment of the individual modules permits much larger sys-
tems to be simulated. Also the modular approach permits ad-
vantage to be taken of machines with parallel architectures.
Further, the modular approach is well suited for the exploita-
tion of “latency,” 1 131, [151, i.e., avoiding the expense of
simulating modules which are not active at a given point in the
simulation.

The plan of the paper shall be as follows. First, the introduc-
tion shall be completed by a brief sketch of what we mean by
“standard” circuit simulation. Then, we begin the technical
discussion in Section I1 with a desqiption and classification of
decomposition methods for linear, nonlinear, and dynamic
systems. We continue in-S&tion. I11 with a discussion of
algorithms for identifying &-appropriate topological decom-
position of a large system (for those cases where the decompo-
sition is not functional, i.e., specified in advance by a hier-
archical input language).

In Section IV we describe the steps taken in some simulators
to exploit a given topological decomposition. This section
begins with a discussion of node-tearing vems branch-tearing
[lo], an issue which remains to be settled after a topological

~

-. ~

0018/9219/81/1000-1264$00.75 0 1981 IEEE

decomposition has been determined. Then various data
structures and numerical solution techniques are described
which form the basis of some important third generation
simulators [71, [l o] , [l l l , [161, [171. In SectionV we treat
“temporal” decomposition methods (sometimes called “relaxa-
tion methods” or “indirect” methods [19]), thereby reviewing
the line of research started by the celebrated MOTIS simulator
[4], and continued through the development of SPLICE and
DIANA [51, [6].

In Section VI, we further discuss some of the techniques of
temporal decomposition, specifically describing the related
concepts of latency [101, [131, event scheduling [121, [141,
[151,andmixedmodesimulation[4~]-[7],[11].

We begin our discussion of standard simulation by assuming
that the system being simulated is described by a set of
differential-algebraic equations

f(i , x , t) = 0 (1)

A very broad class of physical systems can be described in the
form (1). “Standard” simulation is characterized for our
present purposes by inclusion of all of the following algorithmic
techniques for solving (1):

1) replacement of i by an astable or stiffly-stable [20] or
backward difference [2 1] formula which is a function of

2) automatic control of the time step h and differentiation

3) solution of the resulting nonlinear system by a quadrati-

4) solution of the linear algebraic equations involved in each

In the approach of [201, [21], the time derivative of the

4 t h

order K so as to insure accuracy of the solution,

cally convergent Newton’s method,

Newton step by sparse Gaussian elimination.

vector x is approximated at time point t,+l by

where K is the approximation order of the differentiation
formula, h E (t , + l - t ,) , ~ ~ + ~ is the computed value of

1, and X(K, n) Z b l a k ~ , + ~ - k / a , , . Note that in
“standard” simulation, the same order K and time step h is
used for every component of i. The a~ are chosen so that the
solution is a polynomial of degree R passing through the last
n + 1 time points.

With the substitution (2), equation (1) can be expressed in
the form

which is a system of nonlinear algebraic equations which
must be solved at every time step t n + l , n = 1, 2, . * - , for the
updated vector x,+1.

The truncation error is controlled in standard simulators by
monitoring

where xP(t ,+ ,) is the value predicted for x , + ~ by passing a
polynomial of order K through the most recent K + 1 time
points, up to and including x,. Because of the stability
properties of (2) the time step h is controlled by accuracy re-
quirements rather than by the stability of the difference equa-
tions (2). This would not be the c8se if simpler “explicit”
formulas such as the “forward Euler” formula were employed,
which avoid the solution of (3) at each time step but require
extremely small time steps if the system equations are “stiff”

(i.e., the Jacobian matrix exhibits widely separated eigenvalues
at the operating points of interest).

One of the prime motivations for the development of sparse
matrix technology [221, [231 was to solve the linear equations
which arose when (3) was solved by Newton’s method.

According to the preceding algorithmic technique 2, the
solution to (3) is obtained in standard simulators by using the
Newton’s algorithm

x,+1 +x,
For u = O , l;..

0

Begin

x;:’, + x i + l + A x
if 6”’ I IIx;;: - II < E Then STOP; Else
End (5)

The important feature of this algorithm is its quadratic con-
vergence [191. Ignoring roundoff errors, if the uth iteration
incurs a suitably small error, say, lo*, then the error at the
(u + 1)th iteration will be, approximately, the previous error
squared, i.e., = lo-*.

This ensures that (3) will be solved accurately, which is pre-
requisite to realizing the stability properties of (2) which in
turn is required in order for the time step to be controlled by
engineering accuracy rather than by expensive stability re-
quirements. We will return to this key point in Section v,
when we discuss MOTIS [4], which departed radically from
the standard wisdom of the preceding algorithmic techniques
1-3, yet succeeded by restricting the type of network which
could be simulated.

ag/ax(x;+l , W , n) , t ,+l) Ax = - g (~ ; + ~ , %K, n) , tn+l)

11. SYSTEM DECOMPOSITION
Nonstandard simulators can be meaningfully classified by

the decomposition techniques employed. A particular tech-
nique can be functionally and/or topologically motivated, and
can be applied to any of the three main levels of circuit
simulation, namely the time level, nonlinear equation level, or
the linear equation level. There are two principal points of
departure from the “standard” simulation approach which
may be taken at each of these three levels, namely, “tearing”
decomposition and “temporal” decomposition. The tech-
niques we shall classify as “tearing” aim to retain the con-
vergence and stability properties of the “standard” approach.
In contrast, the techniques classified as “temporal” are related
to the so-called “relaxation” or “indirect” methods, and are
characterized by completely different convergence and stabil-
ity properties. In this section we discuss the two decomposi-
tion levels at the linear level, and briefly introduce them at the
nonlinear equation level and time level.

A . Decomposition of Linear Systems
Assume that the system to be solved is of the form

A x = b, x , b ER”. (6)
When we take the tearing approach, we regard the task of

solving (6) efficiently, i.e., quickly (by exploiting parallel
processing or latency) or with small storage, as equivalent to
finding permutation matrices P and Q such that the permuted
system

29= 8 (7a 1

,$=B+CR* (7c)

2 E P A Q a E Q x 8 E P b (7b)

can be solved by optimally exploiting the block structure

1266 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

1 r- 1
Fig. 2. Matrix decomposition.

A= L + D + U

(c) (4

Fig. 1 . Triangular matrix structures. (a) BBD. @) BBT. (c) BD. (d) BT.

Fig. 3. Gauss-Seidel decomposition.

of the "torn" matrix B. Thf is, when the original matrix A
is permuted into the form A , which is BBD or BBT, the de-
composition permits the reduced matrix B to assume the BBD
form of Fig. l(c), or BBT form of Fig. l(d). The structure of
the outer product CRT is illustrated in Fig. 2(b). As we shall
discuss in detail in Shection 111, the matrix CRT can be thought
of as "torn" from A , leaving in its place the reduced matrix B.
Tearing is formally equivalent to solving (7a) by applying the
Sherman-Morrison-Woodbury formula [241,

x^ = B-'8 - B-' (~ (Z Q + RTB-' C)-'RT) B-' 8. (8)

It is not customary to solve (8) with explicit inverses. Instead,
the procedure, or a variant of it, is usually employed. First,
the block matrix B and an intermediate m-atrix Q are factorized,
Le.,

B + L U

Q =(zQ + R ~ u - ' L-'c)
Q'LQUQ. (9)

Once these LU factorizations are done, the solution is com-
pleted by the back substitutions

y t B-' f E u-' L-' 8
+ Q - ~ R T ~ = U G ' L G ~ R T ~

Ay + U-'L-' Cz

x + y - AY. (10)
Thus "tearing" the matrix C from A permits an initial ap-
proximation, i.e., y, to be computed by solving the system
yith the structured matrix B . At the expense of factoring a
smaller matrix Q, and performing an extra back substitution
with L and U, the solution x is completed by subtracting the
correction term Ay from the approximation y.

With regard to efficiency we can make some general
observations.

1) Since B has the structure of either BBD or BBT,
can be obtained blockwise. This is also true

for the product of B-' with various other terms in (8), which
is the key point. This enables the block operations to be
carried out concurrently to increase execution speed or serially
to extend storage capability.

B-' E u-' L-'

2) The rectangular matrix R , owing to its composition
(Fig. 2(b)) as a zero matrix catenated with an identity matrix,
operates sobly as a selector, i.e., multiplication with this
matrix requires no numerical operations.

3) Given that the LU factors of B are available (with the
appropriate block structure of course), then various economies
can be obtained by clever association of B-' E U-'L-' . For
example, the quantity B-'C can be computed either as
U-'(L-'C) or (U-'L-')C. The most economical choice de-
pends on the sparsity and block structure of the "tear"
matrix C. George [25], [261, Hajj [271, and Guardabassi
and Sangiovanni [501, have studied this association technique
carefully and demonstrated the advantages which can be
attained.

4) If the size of the border (number of columns in C) is
small, the factorization and back substitutions of Q are cheap.

Various third-generation circuit simulation techniques based
on this approach are discussed in Sections I11 and IV.

An alternative approach to solving (6) is based on the idea of
"temporal" decomposition. The terms "relaxation methods"
and "indirect methods" are sometimes used to describe the
same process. In this approach, LU factorization is replaced
by an iterative sweep through the equations of (7a), using the
following procedure or a variant of it. Instead of obtaining the
LU factorization of b, we simply partition d into the form

b+P+f,+PI (1 1)

where 2 and are strictly (i.e., with zero diagonal) lower and
strictly upper triangular matrices and f, is a diagonal matrix,
as illustrated in Fig. 3. Then (7a) is solved by iteratively
calling

Procedure Gauss-Seidel sweep (GSS) [191 :

F o r v = 1 , 2 , ...,
Begin
For i = 1,2, . , . ,n

Begin
x;+' =ID 7; (b - Pix"+' - %,x")
End

gu+1 f l l X U + l - x" II
End.

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRD-GENERATION SIMULATION TECHNIQUES 1267

Here Pi and Qi stand for the ith row of the triangular matrices
2 and 3, and u stands for the iteration counter. The iteration
stops when SU+l z IIxU+l - xu 11 is suitably small. Since it is
easily shown that

=II(Z+!$-1p)!$-'Q116u =llM116u. (12b)

it can be seen that this solution process has the following
properties:

1) the iteration converges for any initial value of x if and
only if all the eigenvalues of M have modulus strictly less
than 1;

2) the iteration converges in one step if the rows and
columns of A are permuted so that is identically zero,
in this case P and Q exist such that C is identically zero in
(7), so that (8) and (1 2) are equivalent;

3) speed of convergence is improved if A is permuted into
nearly lower triangular form;

4) convergence depends, in general, on the numerical proper-
ties of 2, !$, and U. Convergence is typically rapid for
the first few iterations, and then gets progressively slower;
the asymptotic rate of convergence is linear.

The advantage of this procedure is that at each iteration only
a triangular system of equations has to be solved. Moreover,
the improvement of the speed of convergence can be achieved
by a vestige of sparse matrix technology, i.e., the permutation
of A into a form which is nearly triangular. The disadvantage
of this procedure is its weak convergence. In some cases, if
convergence is achieved, it is only linear. That is, if M has an
eigenvalue of modulus near to 1, it may take many iterations
to reduce the error by an order of magnitude. In a simulation
context, this can lead to inaccurate solution of (3) and the
concommitant forfeiture of the stability properties of (2).
On the other hand, in many applications, A is diagonally
dominant and symmetric on physical grounds. In this case, the
eigenvalues of M have modulus strictly less than 1 and con-
vergence is guaranteed.

B. Decomposition of Nonlinear Systems
Tearing decomposition at the nonlinear equation level is

achieved in some third generation simulators by one of the
following two approaches. The first approach solves the
original system (1) by a Newton's method (e.g., equation (5)
or a variant), and relies on the decomposition methods de-
scribed earlier for linear systems. The SLATE program [l l] ,
being developed at the University of Illinois for IC simulation
utilizes this approach, as does the chemical engineering simula-
tion program of Westerberg and Bema [161. The second ap-
proach decomposes the system at the nonlinear level by
introducing additional iteration loops into the original New-
ton's method. The multilevel Newton method [171, used in
IBM's MACRO IC simulator, which utilizes this approach, is
discussed in Section IV later. A different example of the latter
approach is the complementary pivoting algorithm [28],
employed in the piecewise linear IC simulator reported by
van Bokhoven [91.

Other thirdgeneration simulators utilize temporal decom-
position by solving the original system (1) with a nonlinear
relaxation technique [191. The MOTIS program [4], uses a
nonlinear Gauss-Jacobi method, while the SPLICE program
uses a nonlinear Gauss-Seidel-Newton iteration. These tech-
niques are discussed in detail in Section V.

C . Dynamic System Decomposition
By dynamical system decomposition we mean the indepen-

dent time-domain analysis of the subcircuits of a given circuit.
Most large IC exhibit temporal sparseness or latency [181,

i.e., most of the subcircuits are inactive most of the time.
Logic simulation [131-[151 exploits this fact by using event
scheduling and selective trace algorithms, which are possible
due to the inherent delay unidirectional transmission charac-
teristic of most of the logic gate models and to the absence of
local feedback paths. Selective trace algorithms process logic
gates only when they are active, i.e., when their internal vari-
ables or their inputs change. An impressive saving in simula-
tion time can be obtained in cases where the restrictions
imposed on the logic gate models prevent the numerical stabil-
ity problems associated with "stiff" systems. In standard
simulation selective trace algorithms cannot be applied since
feedback paths are of importance and consequently the inte-
gration algorithms constrain all the variables of the circuit to
use the same step size, necessarily the smallest one required to
maintain truncation errors within limits.

Simulators such as SPLICE [51, MACRO [171, and SAM-
SON [7] achieve decoupling of the subnetworks and allow
each subnetwork to follow its time trajectory at a self-tailored
pace. These simulators assume that the subnetwork block
structure is specified by the user in the input language. This
permits the possibility of choosing different time steps for
each subnetwork, allowing the sluggish subcircuits to take large
steps independently of the rapidly changing subnetworks.
Therefore, each subnetwork has to be scheduled for analysis
at different time points and synchronization problems arise.
MACRO and SAMSON process a subnetwork (i.e., solve the
corresponding discretized equations) scheduled for analysis at
a time point by extrapolating the variables associated with
other subnetworks interacting with the subnetwork to be
analyzed.

Scheduling algorithms are nontrivial: SPLICE, MACRO, and
SAMSON use different strategies. In Section VI a prototype
scheduling algorithm will be discussed together with a more
detailed analysis of latency.

While the time decomposition discussed above is achieved
by decoupling the subnetworks at the linear (SAMSON) or
nonlinear (SPLICE and MACRO) equation level, a new iterative
technique related to relaxation decomposition has been very
recently introduced [7b] by Ruehli et al. In this method, the
circuit equations are decoupled at the ordinary differential
equations level before they are actually discretized. We shall
refer to this method as the waveform relaxation decoupling
(WRD) method. The WRD is better explained describing its
application to a circuit described by its state equations:

x = f(x, t) , x(0) = xg. (12c)

WRD Procedure:
Foru= 1 ,2 ;** ,

Begin
For i = 1,2, , n

Begin
solve from t = 0 to t = T ,

End
$+I = fi($+l, - . , xi"-:', xy+1, xi";;"X;), xy+l(o) = x;.

gu+' max max 1xu+l (t) - x"(t) I
End.

i t

1268 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

The iteration stops when 6”’ is suitably small. Note that
each component of the decomposition is processed for the
entire time evolution individually and in a fixed sequence. The
components which drive the component being processed, as
well as the component which load this component, are
handled by storing the temporal waveforms computed for
those components on their most recent iteration. Then, when
it is required to know how these components drive or load the
component being processed, the necessary information can be
obtained by interpolation on the stored waveforms of the ad-
jacent components.

The preceding example shows the algorithm applied point-
wise. Block WRD methods can also be derived in analogy with
block relaxation methods for the solution of linear and non-
linear algebraic systems of equations. The blocks may be
either be specified 4 priori, or determined algorithmically. The
latter alternative is an open problem, perhaps amenable to ap-
proaches like those described in Section 111.

In contrast to the conditions described above for the con-
vergence of relaxation methods for linear and nonlinear sys-
tems of equations, the conditions for the convergence of the
WRD method are quite mild. Remarkably, Lelarasmee [7c]
has shown that convergence of the WRD method is guaranteed
for any arbitrary piecewise continuous set of initial waveforms.
Convergence will of course be linear like other relaxation
methods. For circuits which cannot be described explicitly
by state equations of the forms (12c), Lelarasmee [7c] has
given conditions under which the procedure converges. Im-
portantly, it is possible to show that for MOS circuits with a
grounded capacitor at each node, convergence is guaranteed
for any arbitrary piecewise continuous set of initial waveforms
for the node voltages of the circuit.

111. BLOCK DECOMPOSITION-ALGORITHMS
AND &PLICATIONS

In some of the literature on circuit simulation [SI-[71 , [101 ,
hierarchical decomposition is customarily identified directly
by the “block diagram” implied by the nested models and
subcircuits of the input description, as illustrated in Fig. 4. In
this example some elements, e.g., resistors, diodes etc., are
given explicitly in Fig. 4(a), while others, such as the large
differential amplifier element, represent an entire circuit
block, in this case that of Fig. 4(b). The transistor symbols of
Fig. 4(b) are, in turn, symbols for the Ebers-Moll BJT model
of Fig. 4(c).

If the block structure is not specified (I priori, one must use
an algorithm for determining an appropriate structure, such as
the structure illustrated in Fig. 4(d). The appropriate structure
is often defined in terms of the so-called dependency matrix of
the system. The dependency matrix of a given (linear or non-
linear) system, denoted by A , is defined by

Aii = I 0, if equation i independent of variable j

I , i , j = 1, 2, * , n , otherwise.

Note that the dependency matrix of a linear system represents
the zero-nonzero pattern of the coefficient matrix and that
the dependency matrix of a nonlinear system that of its
Jacobian matrix. The important structures which appear in
the literature to date are BBD, BBT, BLT, as defined in Sec-
tion I. As defined earlier, the problem of obtaining the desired
structure is that of finding permutation matrices P and Q such
that PAQ has the appropriate block structure. By appropriate,

we mean that the blocks are not too large, and the overall
computational cost of solving the decomposed system is within
specified limits. Two significant parameters of the decomposi-
tion are nmm, the size of the largest block, and q(PAQ), the
size of the border. We observe, in general, that the computa-
tional complexity of solving the decomposed system is mainly
related to q(PAQ), and the ability to solve the decomposed
iystem with Limited storage and/or with parallel processing is
strictly related to nmm. Following [29b], the problem of ob-
taining the best decomposition may be stated in abstract terms
as follows:

subject to

ni < nmm, i = 1,2, * * - , m(PAQ),

Here m(PAQ) stands for the number of blocks in the
decomposition.

We shall discuss the BBD, BBT, and BLT cases in turn.
However, we first note that the preceding optimization prob-
lem is NP complete in each case. Thus our discussion of the
cases will emphasize heuristic algorithms which are believed to
produce near optimal solutions of (1 3).

A . BBD Decomposition
We now discuss some algorithms for determining a BBD

structure for a given dependency matrix. One such method
[301 provides heuristics for determining blocks of nearly equal
size, while minimizing the number of variables in the border.
This method has been implemented in a program which has
been used in power simulation [321 , [331 and in parallelization
of computer architectures. In this algorithm, P 1 Q T , where
the superscript denotes transpose. The algorithm operates on
the following piinciple. Assume that the dependency matrix
A is structurally symmetric, and is represented by an undi-
rected graph G, in which the nodes are in one-to-one corre-
spondence with the variables (or equations) of the original
system and the branches are in one-to-one correspondence
with nonzero elements of the matrix. Let Z stand for a set of
nodes which are candidates to form a block of the decomposi-
tion. Let S stand for a set of nodes of G which we call the
separator of Z with respect to the graph G. Let W stand for
the remainder of G, i.e., the part separated from Z by S. By
definition, the sets 2, S, and W , are disjoint. The algorithm of
[301 determines a sequence of nodes of G which are added to
Z . For each node in this sequence, the cardinality of Z is
incremented by 1. After each addition the separator S is up-
dated. The algorithm monitors IS I as the sequence is extended,
thus obtaining the so-called “contour” of the sequence. Let
2, denote the ith candidate block in the sequence, and as-
sumed the sequence is of length k, where IZk I = nmm. Then
Z , is selected as a block of the decomposition from the candi-
date blocks Zi which satisfy

~ s a r g m i n {ISli lanm,GIZiI< nmm} (14)

where IS, I, is the cardinality of the corresponding separator
of the block Z,, and where a is a parameter ranging between
0 and 1.

The above process is illustrated in Fig. 5 . Fig. 5(a) shows the
linear growth of lZfl as a function of i . Fig. 5(b) shows the
corresponding contour plot of ISi I for the case that the block
is selected by the constraint in (13). The horizontal lines,

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRDGENERATION SIMULATION TECHNIQUES 1269

I C

parameterized by OL and nmax, determine the set of i which large parts of the graph C. This process is illustrated in
satisfy (14). In Fig. 5(b), the separator of minimum cardinal- Fig. 5(c), which shows a contour plot which exhibits a strong
ity S, occurs at the extreme right. minimum of ISi 1 at i = p.

The algorithm may also select a "natural" block of the The success of the algorithm depends on the heuristics
decomposition if it discovers a small separator between two chosen for initializing and extending the sequence. The

1270 PROCEEDINGS OF THE IEEE, VOL. 69 , NO. 10, OCTOBER 1981

l i \ i 1‘ ii I

(C)
Fig. 5 . Contours of block size and separator size.

heuristic for extending the sequence is to select the node for
which the increase in IS1 incurred by the selection is mini-
mized. Note that the “increase” is usually negative as the
contour begins to identify a “natural” cluster. Thus this
algorithm can be categorized as a “greedy algorithm,” in the
sense of Edmonds and Lawler [331.

The preceding algorithm has been applied in the example of
Fig. 6. The rows of the matrix of Fig. 6(b) represent the
equations describing the 30.bus electrical power distribution
system shown in Fig. 6(a). The columns represent the
(complex) power variables of the system. The row and
column labels represent the permutations required to place
the matrix into BBD form. The variables 4, 20, 24, and 27 are
identified as the border variables of the decomposition. The
symbol “x” represents the dependency of row (equation) on
column (variable). The heavier lines represent the partitioning
of the diagonal block variables.

Another powerful technique, which is related to the above
algorithm, is called “nested dissection,” and is due to George
[251, [261. This technique can be used for decomposition
purposes as well as for the. conventional purpose of ordering
the rows and columns of a sparse matrix in order to achieve an
economical LU factorization. In the decomposition context,
the algorithm may be thought of as follows. Let Z, S, and W
be defined as above. Again consider a sequence Zi, i= 1,2, - - - .
In the case of nested dissection, the initial objective is to
determine i such that

lzil IWiI. (15)

Once this objective has been attained, the algorithm is re-
cursively applied to the subgraphs corresponding to Z and W
instead of the original graph G. A significant difference be-
tween this algorithm and the BBD algorithm described earlier
is that here the sequence is extended not with a single node
but with the entire set H C W, where His a subset of the set of
nodes ADJ(S), which we shall henceforth define as the set of
all nodes adjacent to one or more nodes in S. If the recursive

“outer loop” of this algorithm is applied k times, the algorithm
will have dissected the original graph into 2k blocks, Le., sub-
graphs. However, in contrast to the previous algorithm, the
blocks produced by nested dissection decrease in size from
top to bottom of the BBD. This is due to the removal of the
separator sets from the blocks.

The remarkable thing about the nested dissection technique
is that when used as an ordering algorithm, it produces
proven optimal multiplication counts for point Gaussian
elimination for dependency matrices corresponding to or
related to the Laplacian operator in two or three dimensions.
It is widely believed that nested dissection produces near-
optimal results for any system whose dependency matrix is
characterized by a twodimensional graph, e.g., a two-
dimensional array (not necessarily regular) of logic circuits.

The nested dissection process is illustrated in Fig. 7. In Fig.
7(a), the graph G of the dependency matrix of the finite dif-
ference equations of the Laplacian operator discretized on a
9 X 9 grid is given. The process begins by heuristically select-
ing a “seed,” which for our example is chosen to be the node
in the middle of the left boundary of the graph. We initialize
Z, to consist of this seed, and set S1 = ADJ(Z,). The se-
quence is extended as described above. The cardinality of Zi
is noted at the left of Fig. 7(a). A block of the decomposition
is selected when condition (1 5) is satisfied. The nested dissec-
tion process then continues recursively, dividing each currently
largest block in the decomposition into two approximately
equal parts. The success of the algorithm depends on the
shape of the grid graph and on the heuristic selection of the
seed node. For the example of Fig. 7(a), this process leads to
the graph decomposition of Fig. 7(b), where the symbols
S,, p = 1, 2, * * label the separators chosen at each stage of
the recursion.

This technique has had spectacular success in the area of
semiconductor device simulation [341, [35]. Most sparse
matrices which arise in this application area have nonzero
patterns which are variants of the well-known Sdiagonal pat-
tern of the Laplacian operator in two dimensions. Fig. 8(a)
illustrated the Laplacian matrix of 16 unknowns, correspond-
ing to a 4 X 4 grid graph. Fig. 8(b) shows the result of apply-
ing nested dissection. Note that the nesteddissection strategy
leads to diagonal blocks of the BBD form which decrease in
size from top to bottom, in contrast to the uniform block
sizes produced by the first algorithm discussed in this section.
Still, the nesteddissection technique has been proven to give a
multiplication count for this nonzero pattern [36], which is
asymptotically optimal for arbitrarily large grid graphs, George
[26d] has also published a “one-way” version of nested dissec-
tion which does tend to produce uniform block sizes.

The application of the technique to VLSI-size networks re-
mains a promising avenue for future exploration.

B . BBT Decomposition
The alternative decompositions addressed by (1 3) yield the

BBT and BLT forms, Actually, either of the algorithms de-
scribed above for the BBD case could be appropriately modi-
fied to operate on the bipartite graph in the unsymmetric case
to produce such a form. The key modification would be to
identify the separator set exclusively with the “right” (i.e.,
column) nodes of the bipartite graph. The selection and
exploitation of the resulting block structure appears to be an-

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRD-GENERATION SIMULATION TECHNIQUES 1271

I1 3 I 9 28 8 5 7 2 6 13 I7 16 x) I9 IO 23 I4 I2 IS 26 tl

Fig. 6. AEP bus test system bus code diagram.

other promising avenue for future research.
There is, however, a substantial literature pertaining to the

selection of a BLT structure, which is a special case of the BBT
for which nmax = 1. This case has important applications and
has been extensively studied. To start with we define an
assignment as a set of distinct row and column index pairs
(ri, ci), such that # 0, i = 1, 2, * * , n. That is, the
assignment permutes A into a matrix with a nonzero diagonal.

We can divide algorithms for obtaining a BLT into two
classes: 1) those operating on a fixed assignment (i.e., P E QT,
which means that the assignment itself is not exploited as a
degree of freedom in minimizing the size of the border), and
2) those which exploit the assignment for this purpose.
In the first category are algorithms by Roth [371, Hellerman

and Rarick 1381, Kevorkian [391, [401, Cheung and Kuh [411,
Guardabassi 1421, and Smith and Walford [431. In this case

1272 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

IZ.1 = 36 = I W.1 r 1
x x X
x x x X

x x x X
x x x X

x x x X
X x x x X

X x x x X
X x x x X

X x x x X
X x x x X

X x x x X
X x x x

X x x x
X x x x

X x x x
X X X

L d

(b)
Fig. 7. (a) Selection of f m t separator. (b) Separator sequence (first

5 only).

the optimization problem (1 3) is equivalent to the problem of
minimizing the cardinality of the essential (feedback) vertex
set for directed graphs. The algorithms of Roth, Cheung and
Kuh, and Smith and Walford were motivated by logic simula-
tion and logic “design for testability” [37], applications in
which it was desired to find a way in which the minimal set of
registers could convert a sequential logic circuit into an equiva-
lent combinational form. The algorithm of Kevorkian was
used to simulate the design of a chemical plant. The algorithm
of Hellerman and Rarick was used for updating the basis for a
linear programming package. This latter algorithm is, there-
fore, important in piecewise linear circuit simulators such as
those reported by Katzenelsen [441, Kuh [451, and Von Bok-
hoven [9] . Due to the importance of these applications, we
offer a brief discussion of some of the algorithmic techniques
used to obtain an effective bordered triangular form.

The problem addressed by algorithms in this category is
NP-complete. Therefore, algorithms which seek to find the
exact optimum will have exponentially bounded computa-
tional complexity. The Hellerman-Rarick algorithm, proposed
for linear programming applications, proceeds heuristically to
find a nearly optimal BLT form.

The other algorithms in this category deal with the directed
graph representation of the dependency matrix. All proceed
by reducing the size of the given graph by transformations
which do not affect the cardinality of the minimum essential
set. After the graphs have been thus reduced to a minimal
size, the minimum essential set itself is determined by a branch
and bound algorithm. Thus the exact minimum is obtained,
rather than an approximation. However, all these algorithms
are, consequently, exponentially bounded.

Fig. 8. BBD structure from nested dissection.

Algorithms in the second category, which attempt to opti-
mize PAQ by heuristically choosing the assignment, have been
presented by Hellerman and Rarick [461, Sangiovanni and
Bickart [47], and Jess and Trouborst [81. These algorithms
have a strong potential for use in circuit simulators imple-
mented for on relatively small machines such as minicom-
puters and desktops.

The algorithm of Bickart and Sangiovanni operates on the
bipartite graph of the dependency matrix, and so is con-
ceptually based on graph theory. However, we discuss this
algorithm in terms of both the dependency matrix and the
corresponding bipartite graph. The algorithm proceeds by
selecting a maximal sequence of nonzero pivots from the ir-
reducible blocks of the dependency matrix. The sequence is
2xtended by two mechanisms. The main mechanism is to
enumerate the rows which have minimum count in the “un-
pivoted” portion of the matrix. Among these rows, the
column of maximum count in the unpivoted portion is se-
lected, along with a corresponding row in the “minimal row
count set.” This heuristic selects the minimum row count be-
cause a nearly lower triangular form is sought. The maximal
column count is motivated by a desire to process the hardest
columns, i.e., the columns which provide the greatest oppor-
tunity for creating cycles (which would increase q(PAQ)). The
second mechanism identifies submatrices for which an optimal
border may be found by a process of elimination of cycles of
length two in the corresponding bipartite graph.

Note that this algorithm creates a BLT in which the diagonal
is populated solely by elements which were nonzero in the
original matrix. This strategy promotes numerical stability, as

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRD-GENERATION SIMULATION TECHNIQUES 1273

documented by Brayton et al. [481, who showed that pivoting
on originally zero valued elements can lead to exact symbolic
cancellation.

Jess and Trouborst [81 have presented an algorithm which is
both a variant and an extension of the Bickart-Sangiovanni
algorithm. This algorithm introduces another degree of free-
dom to be exploited in minimizing q(PAQ). In their algorithm,
equations in the original system (and, therefore, rows of the
dependency matrix) which correspond to linear equations are
identified. Then, equations of this type are subjected to
Gaussian elimination on originally nonzero pivots to further
reduce q(PAQ). This approach to simulation also resembles
that of Moad [491, who attempted to find an “evaluation
order” for the equations and unknowns.

IV. EXPLOITING A GIVEN TOPOLOGICAL DECOMPOSITION
In this section, we discuss various ways to exploit a given

topological decomposition (such as that provided by the
methods described in the previous section). Section IV-A
treats the necessary step of selecting the variables which inter-
act between the various hierarchical levels of the decomposi-
tion. Section IV-B is devoted to a treatment of a numerical
method for exploiting decomposition at the nonlinear equa-
tion level to computational advantage while retaining the
stability and convergence properties of standard simulation
methods.
A. Selecting the Exogenous Variables of a Decomposition

Even if an a priori “functional” hierarchy is chosen for the
decomposition, one must still decide which variables in the
functional block are “endogenous,” i.e., interact only inside
the block, and which are “exogenous,” i.e., interact with the
variables at the next level of the hierarchy. In electrical net-
works, for example, one must decide whether the branch
currents or voltages are chosen to be the exogenous variables,
or the external node voltages of the functional blocks are
chosen to be exogenous.

In the block diagram approach, the exogenous variables are
not determined algorithmically but are selected by the designer
of the simulation program. This choice characterizes the type
of decomposition actually employed. For example, if the
exogenous variables are chosen to be the voltage on the
nodes external to the differential amplifier model in Fig. 4(a),
the well known case of “node tearing” results [51, [7 J , [lo],
[111. On the other hand, if the exogenous variables are
chosen to be the branch currents, the case of branch tearing is
selected [271. Note that with either of these approaches, the
selection of the appropriate formulation of the network equa-
tions is made after the tearing is performed, and remains as a
degree of freedom to be exploited in obtaining the most
economical simulation. Hajj [271 has studied both branch and
node tearing and pointed out an equivalence between this type
of tearing and the block factorization approach for solving
linear algebraic equations (cf. the discussion of (8) in Section
11-A). In addition, he enumerated the various types of block
factorization which are possible and pointed out that different
combinations of block factorization techniques are appropriate
for different blocks. Also, he showed that for a specific case,
using the best technique for each block, node tearing was
slightly superior to branch tearing. Sangiovanni et al. [291,
[301, gave a more general result comparing these two methods.
They proved under quite mild topological restrictions, that

node tearing always gives a smaller number of exogenous
variables in the decomposed system. The node tearing ap-
proach has been used in the SPLICE program [5], and in the
SLATE program [11 I . For example, the SPLICE program in-
put is a mixture of subcircuits specified as models and as con-
ventional circuit elements. Since SPLICE k a mixed mode
simulator, some of the models are analyzed with simplified
“timing analysis” techniques [41, and some are analyzed with
full-fledged circuit analysis. Models which are specified for
circuit analysis are identified by special delimiters. The
contact nodes of these models are chosen as the node tearing
variables, and thus become the exogenous variables of the de-
composition. Similar techniques are used in the SLATE pro-
gram [l l l .
B . Exploiting a Given Decomposition at the Nonlinear Level

An effective algorithm for exploiting a BBD structure
explicitly specified by the input language of a circuit simulator
such as SPICE, SPLICE, or ASTAP, is the multilevel Newton-
Raphson algorithm of Rabbat, Sangiovanni, and Hsieh [171.
In general, each of the subcircuits specified in the input lan-
guage interacts with the rest of the circuit only through a small
number of exogenous variables u E Rk. The endogenous vari-
ables of one of these subcircuits can be partitioned into two
sets. The first set, called the output-variables, is denoted by
y E Rk, and are in one-to-one correspondence with the exoge-
nous variables. For example if the exogenous variables are
chosen to be the node voltages, then the set y corresponds to
the currents entering the subcircuits. The second set, called
the internal variables, will be denoted by the vector x E Rm.

Assume that the circuit to be simulated is static, i.e., is
described by a set of nonlinear algebraic equations. In general,
given the values of the exogenous variables, the output vari-
ables and the internal variables are determined by a system of
equations of the form

N u , x , y) = 0. (16)
Given u, the interaction of the subcircuit with the rest of the
circuit is completely described by y . Thus to simulate the
“super” circuit, it suffices to compute y for each subcircuit.

Assuming that (16) has one and only one solution for each u ,
(16) describes implicitly a map from u to y . This map is de-
noted by G y (u) and is called an exact macromodel. We shall
now discuss an algorithm for analyzing a network with subnet-
works described by equations of the form (1 6), [171.

For the sake of simplicity, we assume that only one subcir-
cuit is described by its macromodel. Let the equations of the
network be written as

F(u, Gy(u) , W) = 0 (17)
where w E RP is thevector of network variables in the network
not interacting with the subcircuit, and G, represents the
macromodel of the subcircuit. Newton-Raphson’s algorithm
applied to (1 7) consists of the following scheme:

D u F ~ , G y (u) , W) Au + D G F ~ , G y (u) , w) D G y (u) A u

+ D,F(u, G, (u) , w)Aw + F(u, G , , (u) , w) = 0. (18)

Here D, represents the derivative with respect to the generic
variable z .

Thus, to apply Newton’s method, we need to evaluate
G y (u) and DGy(u) . Recall that the macromodel G y (u) is

1274 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

implicitly determined by the nonlinear system of equations

H(u, x, y) = 0. (19)

To evaluate Cy@), we can use a second Newton process on
(1 9) which yields

Dx,,H(u,x,Y)(hr,AY)=+H(u,x,Y)= 0. (20)

This second Newton process is at a lower level since u is deter-
mined from (1 8) and held fixed in (20). Now, if (1 9) is solved
precisely, then the error in the evaluation of the macromodel
and its derivative is zero and when these are used in (1 8), we
have a true Newtonian iteration with local quadratic conver-
gence. However, if the macromodel and its derivative are not
determined precisely, then the question of quadratic conver-
gence is open. The idea proposed in [171 is to retain local
quadratic convergence in the presence of error as follows.

It would seem to make no sense to solve (19) to a higher
precision than the current iteration for (17), and it would
seem only necessary to tighten the convergence control for
(20) at the same rate (18) is converging. In the algorithm
proposed in [171 iteration (20) is stopped whenever

I1 h r , AY II Q II Au, Aw I1 '. (21)

In [171, it is proven that this algorithm has local quadratic
convergence. Note that if iteration (20) is stopped according
to a different criterion, for example, whenever 11 A x , Ay 11 Q
11 Au, Aw 11, the algorithm can be shown to converge but loses
its quadratic convergence property.

Like other decomposition methods, this algorithm permits
individual subcircuits to be processed in parallel. In this case
quadratic convergence is retained. The method also has two
other principal advantages. First, if there are identical sub-
circuits, then the linear equation solution step (20) for each
identical subcircuit may be obtained with the same (symbolic)
LU factors. Second, note that although we have discussed the
algorithm of [171 in the context of a two level hierarchy, the
method applies equally well to a multilevel hierarchy, which is
the most typical case in IC simulation.

V. RELAXATION DECOMPOSITION OF NONLINEAR
SYSTEMS

In this section, we will discuss a second avenue by which the
decomposition of nonlinear systems has been approached in
the literature of the engineering disciplines, especially the
circuits literature. While the first approach, presented in the
Sections I1 and IV, derives conceptually from the "direct
method" approach to solving linear algebraic systems, the
second derives conceptually from the classical subject of relax-
ation methods.

The second approach is characterized by the inclusion of
more or less classical relaxation methods. In the integrated
circuit context, this approach began with the work which led
to the MOTIS simulator, 141. MOTIS was a revolutionary
simulator in three main respects:

1) It limited severely the types of networks it dealt with
(MOS devices with quasi-unidirectional circuit models,
and a grounded capacitance on every node);

2) it discarded both sparse Gauss elimination and conven-
tional Newton-Raphson as a solution method;

3) it discarded implicit time integration methods such as
backward Euler, trapezoidal rule, or stiffly stable methods.

One of the key contributions made by the authors of MOTIS
was the physical reasoning devoted to justifying the method
used for advancing the time step, and, in fact, selecting the time
step taken. The physical reasoning was indeed well founded,
and the success of MOTIS, as implemented, was a landmark
for the CAD area.

However, as subsequent investigators soon fotind out, MOTIS,
as implemented, was not optimally efficient and, in fact, had
problems.

In order to discuss these problems we express the nodal
equations of a general network as follows.

J(u) + cir = 0. (22)

Here u stands for the vector of node voltages, C is the (as-
sumedly linear) capacitance matrix, and J(u) is the vector of
currents feeding the capacitors. Throughout this section, we
will assume that there is a capacitor to ground from every
node. For purpose of exposition, we will also discuss only the
case where the backward Euler method,

in+, E (U " + l - v,)/h (23)

is used to discretize the time derivative operator. Here the sub-
script denotes the time point of the integration and h = t,+l -
t,. For simplicity, we shall henceforth drop the subscripts
referring to the time point.

Because we shall be describing the literature in this area in
terms of point relaxation methods [19], we must consider
solution methods which sweep through the component equa-
tions of (22), solving one equation at a time for one unknown
at a time. A procedure for such a sweep was given in (12).
However, in order to compare the sweeps used in MOTIS,
MOTIS-C, and SPLICE, we need a different notation. The
problem is that we need to distinguish between three distinct
classes of components of the node voltage vector, namely,
vi, the variable being solved for in the j th equation, Gi, i < j , a
variable already solved for during this sweep through the equa-
tions, and the variables remaining to be solved for, S,, k > j ,
j = 1, 2, * * * ,4, q 1111. Given this compQcation, we shall find
it useful for our discussion of relaxation methods to introduce
the functions

A

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRD-GENERATION SIMULATION TECHNIQUES 1275

with a one-step “time advancement” scheme which consists of
a single relaxation sweep through the “diagonal” equations

j i (u , u , u) + ~ ~ (u , u , u , ~ , , h) = O , i = l Y 2 ; . * , q . (26)

Note that ; does not appear here, so only the diagonal terms in
(24) are updated in any given sweep.

However, the nonlinear equations encountered at each step
of a sweep through (26) are not solved exactly. Instead, a
single regula falsi, [191, step is taken to approximately solve
each equation. This linearizing approximation was motivated
in MOTIS by clever physical reasoning based on first principles
of MOS device physics. It is justified when sufficiently small
time steps are taken. With hindsight it can be seen that the
MOTIS algorithm can be regarded as a nonlinear version of
the classical Jacobi “iteration” [191 . However, the term
“iteration” is used advisedly, since only a single pass through
the system (26) is taken. Since the MOTIS system does not
actually solve (22), the original astable backward Euler implicit
integration method can be shown to be reduced to an explicit
form which is not astable. Thus the method has the disadvan-
tage that the time step may be controlled not by user deter-
mined accuracy requirements, but by stability requirements,
which may require a much smaller time step than that needed
for accuracy. The avoidance of this situation was one of
the prime motivations for the development of sparse matrix
technology.

However, the MOTIS approach has advantages, some of
which are:

- A - - A -

1) that the computational expense of taking a single time
step is very small;

2) that the equations are decoupled and can be solved in
any order, perhaps on parallel processors;

3) that since after the regula falsi step, each equation is
linear and a function of only a single variable, no sparse
matrix software for Gaussian elimination is required.

In cases where the inputs to the circuit do not change very
much over a sequence of time steps, the MOTIS time advance-
ment method (26) can be viewed as equivalent to a Jacobi
iteration. In this case the accuracy and stability of the time
advancement scheme can be related to the convergence of the
analogous Jacobi iteration. This iteration will converge well if
the Jacobian matrix of the system (26) is sufficiently diago-
nally dominant [19a1, [1 9 ~ 1 . If we assume that the MOS
circuit has no floating capacitors, the capacitance matrix C of
(25) is a diagonal matrix. In this case the sufficient diagonal
dominance may always be obtained for sufficiently small h.
However, if the node capacitances are too small, an unaccept-
ably small value of h may be required.

Moreover MOTIS has a problem with floating capacitors.
If the floating capacitance is large with respect to the node
capacitance, at any given node, there may be no value of h
which makes the Jacobian sufficiently diagonally dominant to
ensure convergence of the analogous Jacobi iteration. Thus
the corresponding accuracy and stability of the MOTIS time
advancement scheme will be insufficient for any value of h.

Other investigators [5 J , [141, [511 , have expanded on the
MOTIS concept by taking further advantage of the nearly uni-
directional nature of MOS devices. In SPLICE [5 J , [141, the
Jacobi-like formulation of (23) is replaced by

-
u +un (274

j i ($, $, V) + ci(u, u, u, u,, h) = 0, i = 1, 2, * , q (27b) A A -

-
u +^v. (2 7 ~)

Note that in contrast to (26), $ is substituted for the “lower
triangular” variable 6, instead of i. Thus whereas (26) consti-
tuted q independent equations in 1 unknown apiece, equation
(27) constitutes a triangular system of q equations in q un-
knowns, analagous to a back substitution process. This is the
essential part of the well known Gauss-Seidel process [191 . In
a true Gauss-Seidel process (27b) and (27c) would be iterated
to convergence. Like MOTIS, SPLICE linearizes the nonlinear
equation (27b), and takes only a single relaxation sweep
through (27).

If the Jacobian of (27) with respect to the third argument
u is identically zero, then it is in a degenerate form of Fig. l(b)
in which all block sizes are unity. As noted in Section 11, equa-
tion (27) converges in a single sweep in this case. Note that
this would be the case for the simplest MOS device models
when there are no pass transistors. If this were indeed the case
and if (27) represented a truly linear system, then the Gauss-
Seidel iteration would converge in exactly one step. The cor-
responding time advancement scheme would then be astable,
and the method would have no time-step limitation due to
stability, regardless of how small the capacitances were.
Note that this would not be true of the Jacobi iteration ap-
proach used in MOTIS, an indication of the greater power of
the one-step Gauss-Seidel time advancement scheme.

Thus if there is no feedback in a given circuit, it can be con-
cluded that the SPLICE formulation gives more accurate
results (exact in the linear case) than the MOTIS formulation.
In fact, with this approach, it is no longer necessary to have a
capacitor to ground at every node. Note, however, that to
take advantage of this desirable property, it is necessary to
order the equations of (27), whereas with (26), the equations
could be processed in an arbitrary order. Thus the Gauss-
Seidel approach requires a vestigial form of sparse matrix pre-
processing.

The MOTISC program, represents an intermediate approach
where a Gauss-Seidel technique is employed, but the equa-
tions are not ordered into the “most lower-triangular” form.
In this case, even if all the devices are unidirectional the Gauss-
Seidel iteration will not converge in one step, so that some of
its intrinsic power is lost.

The introduction of the Gauss-Seidel iteration into the
MOTIS concept was a significant contribution toward dealing
with the problem of small capacitances in MOS circuits. How-
ever, this improvement did not deal with the problem of float-
ing capacitors. The presence of floating capacitors degrades
the accuracy and stability of the basic MOTIS approach and
furthermore introduces nonphysical oscillations into the solu-
tions of digital MOS networks. When viewed as integration
methods, the Jacobi and Gauss-Seidel iteration schemes de-
scribed above can be said to introduce complex “parasitic
roots” (i.e., eigenvalues of the difference equations which do
not correspond to eigenvalues of the approximated differential
equations).

One technique for dealing with these difficulties without
giving up the essential character of the MOTIS-SPLICE ap-
proach was given in [521, [531. The problem was identified
as the destruction of symmetry (and therefore of the positive
definiteness of the Jacobian) by the triangular aspect of the
Gauss-Seidel approach. The basic idea was to replace the

1276 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

“one-step” Gauss-Seidel solution method with a method that
takes two half-steps instead. The method symmetrizes the
basic Gauss-Seidel technique by taking one half-step in the
normal “forward” (i.e., lower triangular) direction and a
second half-step in the “backward” direction. The algorithmic
aspects of their approach can be summarized as follows. Let
$i/2(G1/2) stand for the variable being updated (not yet up-
dated) in the ith equation of the first half-step. As above, let
u(u) stand for components being updated (already updated)
on the second half-step. Then the twwtep Gauss-Seidel pro-
cedure can be written

* -

,112 - - vn (284
j j ($1/2 , w , W) + Cj($1/2, $112, ij1/2, i j w , (h/2)) = 0,

i = 1,2 , * , q (28b)

(2 8 ~) ; .+ $‘/2

A h - ii(V, $,$)+c~(F, u, u,u,(h/2))=0, i = q , q - I , . . . , 1.

(2 8 4

U+$. (28e)

In interpreting (28) it is important to observe a few key points.
First note that except for the superscripts, (28a) and (28b) are
identical to (27a) and (27b) for one-half of the time step h.
Second, note that in (28d), the Gauss-Seidel step is reversed in
two important respects:

1) the positions of and ii in the argument lists of the two

2) the order in which the equations are processed in (28d) is

In concert, these two reversals amount to processing the physi-
cal devices in reverse order.

This method shows strong similiarity to the well-known
alternating-direction implicit method [19b1, as well as to a
method proposed by Kahan [541. Its advantages may be
summarized as follows. First, integration with this method
has shown good stability properties on practical examples.
Second, this method is astable for a simple circuit consisting
of a pi-section of resistors and capacitors, an advantage which
cannot be claimed by the methods in MOTIS and SPLICE.
Third, the method does not introduce complex parasitic roots,
and therefore does not produce nonphysical oscillations and
overshoot conditions.

A third variation on this basic approach is implemented in
the program DIANA, [5 51 . DIANA considers the same types
of MOS circuits as MOTIS and SPLICE. DIANA also employs
the regukz falsi linearization technique developed for MOTIS.
Without stretching the truth too much, we can regard DIANA’S
time advancement technique as “block” Gauss-Seidel, where
the block structure is obtained as follows. For the sake of
simplicity we assume that like SPLICE and MOTIS, the DIANA
circuit equations can be expressed in the form

functions are reversed,

reversed.

(V, u, u) + cD(u, u, u, un 9 h) = 0 (29)

where the subscript is added to note that DIANA uses a slightly
different MNA formulation [31 , to accomodate ideal switches.
Thus, the DIANA algorithms are somewhat more complicated
than discussed below. The algorithms in DIANA are similar to
those described in [56]. The dependency matrix discussed in

Sections 11-IV is obtained from the sparsity pattern of the
Jacobian of (29) with respect to u. Then the algorithm of
Tarjan 1571, 1581 is used to find the block triangular (i.e.,
BBT form with zero border) structure of (29). This structure,
like that of SPLICE, is triangular except for occasional square
blocks, which correspond to what the authors of DIANA refer
to as the blocks enclosed in “tightly coupled feedback paths.”
Physically, these blocks derive either from floating capacitors,
pass transistors or explicitly intended feedback.

If we consider these blocks as units in a “block” Gauss-
Seidel, then the resulting structure is triangular in the block
sense of [56]. If the equations were linear, the block Gauss-
Seidel method would converge in a single relaxation sweep.
What is different from SPLICE and MOTIS is that the non-
trivial blocks are handled explicitly by L U factorization. Thus
DIANA has an even stronger tie than SPLICE to the sparse
matrix technology employed in standard second-generation
circuit simulators.

VI. EVENT SCHEDULING AND LATENCY IN MIXED
MODE SIMULATION

In the preceding sections, we have discussed some of the
numerical techniques that are used by mixed mode simulators
such as SPLICE, SLATE, and DIANA. Emphasis was placed
on decomposition methods as a means of paring a large com-
putation down to reasonable size. In this section we describe
some related techniques which are function specific to the task
of “mixed mode” simulation. A mixed mode simulator is
defined here to be one which is capable of simulating different
parts of a given circuit or system in two or more modes in the
following list :

Register Transfer Level Simulation
Logic Simulation
critical Path Timing Simulation (PERT)
MOS Timing Simulation
Circuit Simulation.
As we enter the VLSI era, mixed mode simulation is becom-

ing increasingly important. It is possible to meaningfully
extend this list in both directions, but we feel this list is ada
quate in the context established for the present paper.

There are many ways to view the preceding simulation hier-
archy, e.g., bottom-up, top-down, architecturedevice, etc.
However, for our purposes, a useful and equally valid way is
to think of it as a feedback hierarchy. At the top levels, feed-
back is either nonexistent or plays a minor role. At the bottom
level of conventional circuit simulation, feedback plays a very
significant role.

The analysis performed by mixed mode simulators reflects
this hierarchy. For example, SPLICE requires the user to
specify which blocks of the circuit has to be analyzed at the
logic, timing or circuit levels. Then, the blocks of the circuit
declared by the user as logic blocks are analyzed with logic
simulation algorithms which essentially ignore feedback; the
blocks declared by the user as timing blocks are analyzed with
the algorithm described in Section V, where feedback paths
are broken according to the Gauss-Seidel time advancement
scheme; the blocks declared by the user as circuit blocks are
analyzed with “standard” simulation algorithms as defined in
Section I, where feedback is fully taken into account.

Mixed mode simulators allow a smooth transistion between
different levels of simulation but they also allow the designer

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRD-GENERATION SIhiULATION TECHNIQUES 1277

Fig. 9. Event scheduling and the BT form.

to take advantage of the time and memory savings available
from higher level descriptions of blocks of the circuits. Some
basic issues for mixed mode simulators are 1) how to manage
the interfaces between the various levels of circuit description
and simulation, and 2) the scheduling of the blocks to be
processed during the analysis to exploit the inactivity or latency
of part of the circuit. Since the interface problems have been
discussed thoroughly elsewhere, [181, in this section we shall
focus on the scheduling algorithms.

The event scheduler is the part of logic, timing, and mixed
mode simulators which establishes the order in which the
blocks of the circuit have to be processed. Thus we can estab-
lish an equivalence between the task of finding the intrinsic
block structure of the dependency matrix of a given system
and the basic task of the event scheduler. Event schedulers
therefore play an important role in exploiting latency. The
remaining of the section is devoted to the analysis of the basic
tasks of an event scheduler, i.e., determining the block structure
of the circuit and exploiting latency. We conclude the section
with a brief description of an event scheduling algorithm.

A . Determining the Block Structure and Related Tasks
In Fig. 9, the equivalence between the basic task of the event

scheduler and the task of finding the block structure of the
dependency matrix can be seen by tracing the sequence of
events which follow a change in input variable block “1.” We
assume that the system is initially in equilibrium and that all
blocks have the same unit delay. We can then determine that
due to the nonzeros in submatrix 1 (circled numeral) variable
blocks “3-7,” should be scheduled for processing at the second
time step. After the second time step, due to the nonzeros in
submatrices 2 and 3, variable blocks “10, 11,” and “13, 14”
should be scheduled for processing at the third time step.
Finally, due to submatrix 4, variable block “12” is scheduled
for processing at the fourth time step. Note variable blocks
“2,” “8, 9” and “15-18” are not scheduled.

Of course, the event schedulers used in mixed mode simula-
tors perform more sophisticated tasks as well, but these may
also be viewed in terms of the BT structure of Fig. 9. One
such task is the so-called “backtracing,” [141 , problem of
finding the cone of influence of a given variable, i.e., the set
of variables in the system which must be determined before
the given variable can be updated. Another such task is that of
maintaining a storageefficient hierarchical representation of

the block structure for scheduling purposes. These tasks are
discussed in turn later.

We illustrate in Fig. 9 the task of backtracing. Suppose we
wish to know the cone of influence of the block of variables
labeled “1 1” at the top of Fig. 9(a). We assume that the
dependency matrix A is zero everywhere except on the diagonal
and in the blocks explicitly identified by solid lines in the
lower triangle, which we assume for simplicity to be full. Since
the submatrix 5 (Ezl) is full, block “10” must be computed
along with “1 1 .” Before either of these can be computed,
variable block “6, 7” must be known, due to the existence of
submatrix 3. But the computation of “6,7” must be preceded
by that of “1, 3,4.” Therefore, the cone of influence of vari-
able block “1 1” is “1, 3, 4, 6, 7, 10.” The algorithmic embod-
iment of this idea is known as critical path analysis [331. The
critical path algorithm is the essential step in the “critical path
timing simulation” mentioned in the list above. This type of
simulation, in which the circuit blocks have delay attributes,
but no other logical or algebraic properties, is an extremely
important tool in the timing verification of large digital sys-
tems [141.

As an example of the use of this algorithm, suppose that a
critical path timing analysis of the system characterized by
the dependency matrix A of Fig. 9 has indicated that output
variable block “1 1” was on a critical path (i.e., a path of maxi-
mum delay). In order to make the system faster, it is then
desirable to simulate only the subcircuits which contribute to
the critical path delay. But these subcircuits are precisely those
whose variable blocks are in the cone of influence of variable
block “1 1 .” Circuit simulation of only the cone of influence
can be accomplished by arming the event scheduler with this
information. The scheduler can then avoid the scheduling of
any circuit block which might be active, but not on the critical
path.

The use of hierarchy by an event scheduler can be discussed
in terms of Fig. 9 as well. Note that subcircuit H in the lower
right comer has a dependency matrix which has a BBDF sub-
structure. Thus the sub-subcircuits represented by the variable
blocks “8, 9, and 10” are connected to the external world only
to variable block “18,” (through submatrix 8). Thus variable
blocks “1 5, 16, and 17” will never be scheduled until after
“18” has been completed, as indicated by the existence of
submatrix 7 to the right of these blocks in the overall depen-
dency matrix.

1278 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

B. Exploiting Latency
Exploiting latency is a key point to make the analysis of

very-large-scale circuits economically feasible. Latency is
traditionally exploited in logic simulators where event driven
simulation is widely used [131, [151. Only recently, with the
advent of mixed mode simulators, similar techniques have
been introduced at the electrical (timing and circuit) levels,
“Bypass” schemes were used previously blocks of the circuit.
These schemes required checking each block for inactivity.
The overhead associated with checking for inactivity can be-
come a substantial fraction of the total analysis run. Selective
trace algorithms implemented in event schedulers avoid check-
ing for inactivity by identifying and scheduling for analysis
only the blocks which can be affected by a change in an input
which is exercised during simulation. Once the effect of the
change in the input disappears in any sequence of blocks, that
sequence need not be traced further.

Most of the efficiencies that have been claimed in the name
of latency can be described in terms of Fig. 9. Since variable
blocks “2 ,8 ,9 , 15-18” are not scheduled in response to a
change in input block “1,” these blocks may be said to be
latent. Therefore, no computations on these blocks need to
be done. In this case, these blocks had no topological connec-
tion to the inputs which changed.
As mentioned above, a similar situation occurs when it is

desired to analyse only a critical path and not the remainder of
a network. However, in this case the devices not analysed
would actually be active if they were considered for processing,
so they cannot be said to be latent.

Related to the “topological” aspect of latency discussed
above, there is a dynamic aspect. A long chain of logic gates
illustrates this point, in the sense that the responses to a step
at the beginning of the chain propagates like a wave motion
down the chain. Gates ahead of or behind the wave front,
may be said to be latent, even though they are all topologically
connected to the input. The degree of latency depends on the
“length” of the shortest path (in the graph of the dependency
matrix) between a given gate and the set of active gates. Be-
cause of the dynamic aspect, each gate in the shortest path has
an inherent delay associated with it. In unit delay simulation
the event scheduler schedules all gates on a path of length 1
from an active gate. Thus if the dependency matrix is full, no
gates can be latent. ‘In nominal delay simulation, gates have
variable delay attributes. In this case short paths can have long
delays and vice versa.

Therefore, when the blocks considered are analyzed at the
electrical level, the dynamic behavior of the internal variables
of the blocks have to be considered before declaring a block
latent. For example, the inputs of a given block may be quies-
cent, but if the internal variables of the block are still changing
from time step to time step, the block cannot be said to be
latent, and must be processed until the internal variables also
become quiescent [171 .
C. A n Event Scheduling Algorithm for Timing Analysis

Timing simulation algorithms of the type described in Sec-
tion V require not only the identification of the intrinsic block
structure of the circuit as discussed above, but the identifica-
tion ahd elimination of feedback loops as well. This additional
complication makes the discussion of an event scheduler for
timing simulation particularly interesting. Moreover, the event
scheduler of a mixed mode simulator has the same basic struc-

ture, the only difference being the need to analyze differently
electrical and logic blocks [141. The context of the algorithm
taken from [141, is SPLICE type timing simulation with a
one-step Gauss-Seidel time advancement scheme. In the algo-
rithm we shall use ui,n+Lto stand for the ith node voltage at
time r , + l . Also we use ti to stand for the time at which the
ith node voltage was last processed. We, shall refer to the
nodes which have nonzeros in the ith column of the depen-
dency matrix as the fanouts of node i.

Procedure EVENT:

WHILE there are nodes scheduled to be processed at t,+l,
BEGIN
get the next scheduled node, i ;
IF(& = t ,+ l)

BEGIN
schedule node i for processing at tn+2 ;
END

BEGIN
process node i at t,+l ;
set ti = t,+l ;

ELSE

A

IF(Ui,n+l f vi,,)
BEGIN
schedule node i for processing at time t , , ;
schedule all fanouts of node i for processing at time t,+l ;
END

END
END

END.

Note that this algorithm is an example of unitdelay schedul-
ing, since nodes are scheduled only at t,+l or t , + z .

The execution of this algorithm can be explained by describ-
ing the three principal cases. First, consider the case in which
neither of the IF conditions are satisfied. In this case, node i
does not cause any other nodes to be scheduled for later pro-
cessing, so that the fanouts of this node which have not already
been scheduled, remain latent. For example, suppose that in
the system of Fig. 9, variable blocks “1, 3,4, 5, 6” have already
been processed and we are currently processing variable block
“7.” Since by assumption these variables are not changing,
the rest of the system will remain latent in this case.

In the second case, we assume that the second IF condition
is satisfied but not the first. In the example described above,
since variable block “7” is changing in this case, it will cause
itself to be scheduled at time tn+2 and will cause variable
blocks “10, 11” to be scheduled for processing at the current
time step t ,+l .

In the third case we assume that the first IF condition is
satisfied. In this case, a variable is scheduled which has already
been processed at the current time step. Note that the sched-
uler schedules this node at the next time step rather than at
the current time step. This is the specific mechanism with
which the SPLICE Gauss-Seidel time advancement scheme
limits itself to a single relaxation sweep through the overall
network.

Other event schedulers work with an arbitrary (sometimes
integer) scheduling time. Such schedulers are helpful in iden-
tifying timing races and other hazards. The basic idea is to
compare scheduled times for the inputs and output of a given
gate with the gate delay and or clock constraints.

HACHTEL AND SANGIOVANNI-VINCENTELLI: THIRDGENERATION SIMULATION TECHNIQUES 1279

VU. CONCLUSIONS
We have presented a survey of recent literature on third

generation circuit simulation. We have chosen large scale
decomposition as a theme for the paper and we have empha-
sized the role of intrinsic and derived triangular matrix forms
which are exploited in various and disparate ways by the algo-
rithms employed by contemporary LSI and VLSI scale simu-
lators. We have classified decomposition techniques into two
categories: tearing decomposition and temporal decomposition.
These methods differ in the way feedback between blocks of
the decomposition is treated. Tearing methods take the feed-
back fully into account, while temporal decomposition meth-
ods achieve decomposition by cutting feedback paths and then
performing an inexpensive simulation which approximates the
effects that feedback has on the blocks of the decomposition.
This classification has been carried through all levels of circuit
simulation algorithms: linear equation level, nonlinear equa-
tion level, ordinary differential equation level. In addition we
have discussed methods for identifying an appropriate topolog-
ical decomposition when this decomposition is not functional,
i.e., specified in advance by the designer.

We have shown that the more revolutionary third generation
simulators achieve their scale advantage over standard second
generation simulators by relaxing the numerical and stability
requirements which gave standard algorithms their generality
and robustness. This deficiency is made up for by restricting
the class of applicable circuits, e.g., to MOS circuits with node
to ground capacitance at every node (MOTIS). We have finally
described the use of event scheduling algorithms to identify
the intrinsic block structure of large scale circuits and to ex-
ploit latency.

With the advent of the VLSI era, it will soon be possible to
implement decomposition algorithms in hardware to gain or-
ders of magnitude in execution time of simulation algorithms.
We forecast that fourth generation simulators will be totally
hardwired in VLSI chips. For this to occur, further research
on the relationships between algorithms and chip architecture
will be necessary.

ACKNOWLEDGMENT
The authors acknowledge the benefits of informative and

stimulating discussions with R. K. Brayton, A. R. Newton,
A. E. Ruehli, M. R. Lightner and E. Lelarasmee.

REFERENCES

[11 L. W. Nagel, “SPICE2: A computer program t o simulate semi-

fornia, Berkeley, May 1975.
conductor circuits,” ERL Memo ERLM520, University of Cali-

[2] a) W. T. Weeks, A. J. Jiminez, G. W. Mahoney, D. Mehta, H.
Qassemzadeh, and T. R. Scott, “Algorithms for ASTAP-A net-
work analysis program,” ZEEE Trans. Circuit Theory, vol. CT-20,

b) G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, “The
sparse tableau approach to network analysis and design,” LTEE

[3] C. Ho, A. E. Ruehli, and P. Brennan, “The modified nodal ap-
Trans. Circuit Theory,vol. CT-18, pp. 101-113, Jan. 1971.

proach to network analysis,” ZEEE Trans. Circuits Syst., vol.

(41 a) B. R. Chawla, H. K. Gummel, and P. Kozak, “MOTIS-A~ MOS
CAS-25, pp. 504-509. June 1975.

timing simulator,” ZEEE Trans. Circuits -Syst., vol. CAS-22, pp.

b) H. N. Nham and A. K. Bose, “A multiple delay simulator for
MOS LSI circuits,” in Proc. 17th Design Automation Conf. (Min-
neapolis, MN), June 23-25, 1980.
c) V. D. Agrawal etal. , “A mixed mode simulator,” in Proc. 17th
Lkdgn Automation Conf. (Minneapolis, MN), June 23-25, 1980.

pp. 628-634, NOV. 1973.

901-909, DeC. 1975.

5 1 A. R. Newton, “Techniques for the simulation of large-scale inte-
grated circuits,” ZEEE Trans. Circuits Sys., vol. CAS-26, pp. 741-
749, Sept. 1979.

[a] a) G. Arnout and H. De Man, “The use of threshold functions
and Booleancontrolled network elements for macromodelling of

332, June 1978.
LSI circuits,” ZEEE J. Solid-state Circuits, vol. SC-13, pp. 326-

b) H. De Man et al., “DIANA: Mixed mode simulator with a hard-
ware description language for hierarchical design of VLSI,” in

71 a) K. Sakallah and S. W. Director, “An activitydkected circuit
ZEEEZCCCPO Conf. Proc. (Rye, NY), pp. 356-360, Oct. 1980.

simulation algorithm,” ZEEE ICCC’80 Conf. Proc. (Rye, NY),

b) A. E. Reuhli, E. Lelarasmee,and A.L.M. Sangiovanni-Vincentelli,
“The waveform relaxation decoupling approach t o large scale cir-
cuit simulation,” to be published in Internal IBM Res. Rep., 1981.

81 P. M. Trouborst and J.A.G. Jess, “Macromodelling by systematic
c) E. Lelarasmee, private communication, Nov. 1980.

code reduction,” in ZEEE ZCCC’80 Conf. Proc. (Rye, NY), pp.

pp. 1032-1035, Oct. 1980.

337-340, OCt. 1980.
[9] W.M.G. van Bokhoven, “Macromodelling and simulation of mixed

analog-digital networks.by a piecewise4inear systems approach,”
in ZEEE ZCCC’80 Conf. Proc. (Rye, NY), pp. 361-365, OCt.
1980.

[l o] I. N. Hajj, “Sparsity considerations in network solution by tear-
ing,” ZEEE Trans. Circuits Syst., vol. CAS-27, pp. 357-366, May
1980.

[111 P. Yang, I. N. Hajj, and T. N. Trick, “Slate: A circuit simulation

[12] S. A. Szygenda and E. W. Thompson, “Digital logic simulation in
program with latency exploitation and node tearing,”

a time-based, tabledriven environment. Part 1. Design verifica-
tion,” Computer, pp. 24-36, Mar. 1975.

[1 3 I E. G. Ulrich, “Time sequenced logical simulation based on circuit
delay and selective tracing of active network path,” in R o c . ACM

[14] A. R. Newton, “Timing, logic and mixed mode simulation for
20th Nat. Conf., pp. 437-448, 1965.

Institute on Computer Design Aids for VLSZ Circuits (Urbino,
large MOS integrated circuits,” in Proc. NATO Advanced Study

[15 1 E. G. Ulrich, “Exclusive simulation of activity in digital net-
Italy), Aug. 1980.

works,” in Commun. ACM, vol. 12, no. 2, pp. 102-110, Feb.
1969.

[161 a) A. Westerberg and T. Bema, “Decomposition of very large-
scale Newton-Raphson based flowsheeting problems,” Comput.
Chem. Eng.,vol. 2, no. 1, pp. 61-63, 1978.
b) A. Westerberg et al., Process Flowsheeting. Cambridge, En-

[17) a) N. B. Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh,
gland: Cambridge, Univ. Press, 1979.

“A multilevel Newton algorithm with macromodeling and latency

ZEEE Trans. Circuits Syst., vol. CAS-26, no. 9, Sept. 1979.
for analysis of large-scale nonlinear networks in the time domain,”

b) A. Sangiovanni-Vincentelli and N.B.G. Rabbat, “Techniques

Eng., vol. 127, part G, pp. 292-301, 1980.
for the time domain analysis of VLSI circuits,” Proc. Inst. Elec.

[18] H. De Man, “Computer aided design for integrated circuits: Try-
ing t o bridge the gap,” ZEEE J. Solid-State Circuits, vol. SC-14,

[191 I. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
pp. 613-621, June 1979.

[20] C. W. Gear, “The automatic integration of stiff ODE’s,”in Roc.
Equations in Several Variables. New York: Academic Press, 1970.

(21 1 R. K. Brayton, F. Gustamon, and G. D. Hachtel, “A new efficient
ZFZPS Congr., pp. A81-A85, 1968.

algorithm for solving differential-algebraic systems using implicit
backward differentiation formulas,” in Proc. ZEEE, vol. 60, pp.

[22] Gustavson, F. G., Some basic techniques for solving sparse sys-
98-108, Jan. 1972;‘

tems of linear equations,” in Sparse Matrices and Their Applica-
tions, D. J. Rose and R. A. Wdoughby, Eds. New York: Plenum

[23] A. Westerberg, “La Scala-A programming package for the solu-
Press, 1971.

tion of linear systems,”in Proc. SIAMNat. Meet. (Knoxville, TN),
1979.

[24] J. Sherman and W. J . Morrison, “Adjustment of an inverse matrix

row of the original matrix,” Annu. Math. Stntist., vol. 2 0 , p. 62 1 ,
corresponding t o changes in the elements of a given column or

1949.
[25] a) J. A. Geroge and J.W.H. Liu, “A quotient graph model for sym-

metric factorization,” in SZAM Sparse Matrix Roc. 1978, I. S.

b) J . A. George, J. Liu, and E. Ng, User Guide for SPARSEPAK,
Duff and G. W. Stewart, Eds., pp. 154-175, 1978.

ada, June 1979.
Dep. of Computer Science, Univ. Waterloo, Waterloo, Ont. Can-

c) J. A. Geroge and J.W.H. Liu, “A fast implementation of the
minimum degree algorithm using quotient graphs,” ACM TOMS,

I261 a) J. A. George, and F. G. Gustavson, “A new proof on permut-
vol. 6, no. 3, pp. 337-358, Sept. 1980.

1280 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 10, OCTOBER 1981

ing t o block triangular form,” IBM RC Rep. 8238, 10 pp., Apr.

b) J. A. George, “Nested dissection of a regular finite element
1980.

mesh,”SZAMJ. Numer. A ~ l . , v o l . 11, pp. 345-363, 1974.
c) -, “On block elimination for sparse linear systems,” SZAM J.
Numer. Anal., pp. 585-603, 1974.

[27] I. N. Hajj, “Solution of interconnected subsystems,” Electron.
Lett., vol. 13, no. 3, pp. 78-79, Feb. 1977.

[28] R. K. Brayton and R. Spence, Sensitivity and Optimization.
New York: Elsevier Scientific Publ., 1980.

[29] A. Sangiovanni-VicenteU, L. K. Chen, and L. 0. Chua, “A new
tearing approach-Node-tearing nodal analysis,” in Proc. 1977
ZEEE Znt. Symp. Circuits and Systems (Phoenix, AZ), pp. 143-

[30] -, “An efficient heuristic cluster algorithm for tearing large-
147, Apr. 1977.

scale networks,” ZEEE l h n s . Circuits Syst., vol. CAS-24, pp.
709-717, Dec. 1977.

[311 C. J . Pottle, “A parallel processing architecture for power system
load flow computations,” in ZEEE ZCCCPO Conf. Roc. (Rye,

[321 a) F. F. Wu, “Solution of large-scale networks by tearing,” IEEE Trans. Circuits Syst., vol. CAS-23, pp. 706-713, Dec. 1976.

Power Industry Computer Applications (PZCA) (New Orleans,
b) F. F. Wu, Diakoptic network analysis,” in Proc. ZEEE 1975

LA), pp. 364-371, June 1975.
[33] E. Lawler, Combinatorial Optimization, Networks and Matroids.

New York: Holt, Rinehart and Winston, 1976.
[3 4] G. D. Hachtel et al., “Semiconductor analysis using finite ele-

ments-Part I: Computational aspects,” ZBM J. Res. Dev., July,

[35] E. Buturla et al., “Finite element modeling in 2 or 3 space di-

[36] A. J. Hoffman, M. S. Martin, and D. J. Rose. “Complexity bounds
mensions and time,”ZBM J. Res. Dev., July 1981.

for regular finite difference and finite element grids,” SIAM J.
Numer. AMI., vol. 10, pp. 364-369, 1973.

[3 7] J. P. Roth, Computer Logic, Testingand Verification. Potomac,
MD: Computer Science Press., 1980.

[3 8] E. Hellerman and D. Rarick, “Reinversion with the preassigned
pivot procedure,”Math. Program., vol. 1 , pp. 195-216, 1971.

[39] a) A. K. Kevorkian and J. Snoek, “Decomposition in large scale

simultaneous equations,” in Decomposition of Large Scale Prob-
systems: Theory and applications in solving large sets of nonlinear

lems, D. M. Himmemblau, Ed. Amsterdam, The Netherlands:
North Holland, 1973.
b) A. K. Kevorkian, “A decompositional algorithm for the solu-
tion of large systems of linear algebraic equations,” in Proc. 1975

1401 -, “On bordered triangular or lower N forms of an irreducible
ZEEEZnt. Symp. Circuitssystems, pp. 116-120,1975.

matrix,” ZEEE Trans. Circuits Syst., vol. CAS-23, pp. 621-624,

[4 1] L. K. Cheung and E. S. Kuh, “The bordered triangular matrix and
1976.

minimum essential set of digraph,” ZEEE Trans. Circuits Syst.,

NY), pp. 801-805, Oct . . l980.

1981.

V O ~ . CAS-21, Pp. 633-639, 1974.

1421 G. Guardabassi, “A note on minimal essential sets,’’ ZEEE Trans.
Circuit Theory, vol. CT-18, pp. 557-560, 1971.

[43] a) G. W. Smith and R. B. Walford, “The identification of a mini-
mal feedback vertex set of a directed graph,” ZEEE Trans. Cir-

b) H. Y. Chang, G. W. Smith, Jr., and R. B. Walford, “LAMP:

Oct. 1974.
System description,” Bell Syst. Tech. J.,vol. 53, pp. 1431-1449,

[441 J. Katzenelson, “An algorithm for solving-nonlinear resistive net-
works,”BellSyst. Tech. J.,vol. 44, pp. 1605-1620, 1965.

(451 T. Fujisawa and E. S. Kuh, “~ecewiselinear theory of nonlinear
networks?” SIAM J. Appl. Math., vol. 22, no. 2, Mar. 1972.

[46] E. Hellerman and D. Rarick, ‘‘The partitioned preassigned pivot
procedure (P4),” in Sparse Matrices and meir Applications, D. J.

I471 A. Sangiovanni-Vincentelli and T. A. Bickart, “Bipartite gxaphs
Rose and R. A. Wdloughby, Eds. New York: Plenum Press, 1972.

and an optimal bordered triangular form of a matrix,” E E E
Trans. Circuits Syst., vol. CAS-26, no. 10, pp. 880-890, Oct.
1979.

[48] R. K. Brayton, F. G. Gustavson, and R. A. Willoughby, “Some
results on sparse matrices,” Math. Comput., vol. 24, no. 112,
1970.

1491 M. F. Moad, “A sequential method of network analysis,” ZEEE
Trans. Circuit Theory, vol. CT-17, pp. 99-104, Feb. 1970.

[50 1 G. Guardabassi and A. Sangiovanni-Vincentelli, “A two-level algo-
rithm by tearing,” ZEEE Trans. Circuits Syst., vol. CAS-23, pp.

[51 1 J. D. Crawford, M. Y. Hsueh, A. R. Newton, and D. 0. Pederson,
MOTIS-C User’s Guide, Electronics Research Laboratory, Univ.
California, Berkeley, June 1978.

[5 2] G. De Micheli, A. Sangiovanni-Vincentelli, and A. R. Newton,
“New algorithms for timing analysis of large circuits,” in Proc.

1531 G. De Micheli and A. Sangiovanni-Vincentelli, “Numerical prop-
ZEEE Znt. Symp. Circuits and Systems, 1980.

erties of algorithms for analysis of MOS VLSI circuits,” in Proc.

[541 W. Kahan, Univ. California, Berkeley, Private Communication.
European Conf. Circuit Theory and Systems, Aug. 1981.

[5 5] H. DeMan, G. Amout, and P. Reyneart, “Mixed mode circuit
simulation techniques and their implementation in DIANA,” in
Roc. NATO Advanced Study Institute, SOGESTA (Urbino,

[56] A. E. Ruehli, A. Sangiovanni-Vincentelli, and N.B.G. Rabbat,
Italy), Aug. 19-80.

in Proc. ZEEE Znr. Symp. Circuits and Systems, pp. 766-770,
“Time analysis of large scale circuits usingone-way macromodels,”

[57] R. E. Tarjan, “Depth first search and linear graph algorithms,”
1980.

[5 8] F. G. Gustavson, “Finding the lower triangular form of a sparse
SZAM J. Comput., vol. 1 , pp. 146-160, 1972.

matrix,” in Sparse Matrix Computntions. J. Bunch and D. Rose,
Eds. New York: Academic Press, 1976.

[5 9] A. George, “An automatic one-way nested dissection algorithm
for irregular finite element problems.” SZAM J. Numer. AMI.,

CUits Syst., Vol. CAS-22, Pp. 9-15, 1975.

783-791, 1976.

V O ~ . 17, pp. 740-751, 1980.

