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Abstract -- This paper presents an efficient algorithm
based on linear formulation for addressing passivity
of macromodels from s-parameter subnetworks. It
also describes fast and accurate algorithm for
verification and compensation of s-parameter based
macromodels. Examples are  presented to
demonstrate the validity and accuracy of the
proposed algorithm.

1. INTRODUCTION

It is becoming increasingly essential to model
frequency-dependent signal integrity effects that can
have considerable impact on the performance and
functionality of a high-speed design. For example,
design and analysis of modern high-speed VLSI and
communication systems involves diverse technologies
such as packages, multi-chip modules, printed circuit
boards, connectors and backplanes. Signal propagation
in such diverse environments suffers from high-
frequency effects, such as ringing, signal delay,
distortion. and reflections. However, with the increasing
frequency and complexity, it is not always possible to
find an analytical model for such high-frequency
passive components [1]-[8]. For instance, interconnects
in chip packages are usually nonuniform due to high
circuit density, complex shapes and geometrical
constraints at the edges of the chip. Similarly, the layout
and fabrication of connector pins are also nonuniform,
Also, other passive components such as vias,
nonuniform transmission lines and on-chip passive
components (such as inductors and transformers)
present significant challenge to the available modeling
tools. As a result, these passive components are
generally characterized in a practical environment either
through measurements or from the physical layout using
rigorous full-wave electromagnetic simulations. In both
cases, widely adapted method is to use s-parameter
based characterization [1]-[2], [8].

However, transient simulation of s-parameter data in the
presence of nonlinear devices to obtain a global
electrical assessment is a CPU expensive process due to
the mixed frequency/time problem. Prominent
approaches to solve this difficulty are based on
approximating the s-parameter data through rational-
functions [1]-[8] and subsequently synthesizing a
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SPICE compatible macromodel/netlist from such an
approximation, However, the primary chalienge in such
approaches is ensuring the passivity of the maromodel.
Passivity is an important property, because stable but
non-passive models may lead to unstable systems when
connected to other passive components [2].

This paper describes an algorithm for passive
macromodeling  of  high-frequency  subnetworks
characterized by s-parameters. A new set of linear
passivity conforming constraints are presented to ensure
passivity of macromodels from s-parameters. Since the
constraints are linear, macromodel generation is highly
CPU efficient as compared to vsing traditional nonlinear
constraints. Also it describes an efficient methodology
for passivity verification and compensation. Examples
are presented to demonstrate the validity and efficiency
of the proposed algorithm.

I1. DEVELOPMENT OF THE PROPOSED ALGORITHM

The scautering parameters (S) are generally used to
characterize  muluport  subnetworks at  higher
frequencies, by relating the incident travelling waves
(a) and the reflected travelling waves (&). The rational
approximation of S-parameters of a m-port subnetwork
can be written as

b = Sa; S(s)= [S,-j(s)];
sy < BT
(5) = — — iLhje l..m
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The challenge here is to ensure both the accuracy and
passivity of the multiport macromodel. The loss of
macromodel passivity can be a serious problem because
transient  simulations may encounter artificial
oscillations. A neiwork with scattering matrix S(s) is
passive [2] iff,

(a) S(s*) = S*(s) , where “ * 7 is the complex
conjugate operator.

(b S(s) is a bounded real

IS Gl = 1

matrix, i.e.,
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Condition (a) 1s automatically satisfied since the
complex poles/residues of the transfer function are
always considered along with their conjugates, leading
1o only real coefficients in rational functions of 8(s).
However, ensuring condition (b) is not easy.

In order to ensure both accuracy and passivity of the
macromodel a new algorithm is developed. The first
step involves computation of 2 common multiport pole-
set. This issue is well addressed in the literature [4]-
(8]. In this work multiport vector fitting based
algorithm is used for extracting a common multiport
pole-set. The second step computes multiport residues,
subject 10 certain linear constraints which help to ensure
macromode! passivity. The third step checks for any
possible passivity violation and corrects in case of
violation. Details of second and third steps are given
below.

Formulation of Residue Equations
Let w

max

be the frequency corresponding to the highest
given data point. Let the common pole set (P) in the

ascending order be denoted as
P = [pl' P2 o+ Pmaxty Pimax1++o prna.x:[ ;
(imag(p]) <<l < imag(p,,,ﬂx))
(imag (P ra20) < Wiax < imag (P pyari }) 2

Next, each S, ; can be expressed using the pole-residue
relation and the frequency response as:

. k- Ko P -
e L TR = w5,k
Sh—P1 S Py Sy Py

g —  total number of poles; Pp kl‘ - Impole-residue pair;

\p!')(sh) - given tabulated data at & freq point, 5, 3)

Equating both the real and imaginary parts of (3)
separately at all the data points, we can write

G, Ki:f
where the subscripts r and ¢ correspond to the real and
imaginary parts, respectively, for the corresponding

\Vi'j ij ij
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parameters/formulations (vector K’ also includes the

direct coupling constant ¢"7). Direct solution of above
residue equations do not guarantee the macromodel
passivity. Also, straight-forward application of passivity
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constraints can lead to the problem of nonlinear
optimization. To overcome this difficulty, in case of y-
parameters, passivity conforming linear constraints can
be found in the literature [4]. The next section describes
passivity conforming linear constraints for the case of s-
parameter based subnetworks.

Passivity Conforming Linear Constraints for S-
parameter based subnetworks

Equation (4) describing s-parameter based subnetworks
is solved subject to the following new set of passivity
conforming linear constraints:

Solve G'GK" = G'v"'  such thar
0< |ci’j| <l {a)
o for (i =)
lex™| < |y ()
&= o (©)
iGr™ < |v'; for (izj) (@
P=1p, Po o Puud e)
(3)

A brief discussion of the relevance of above constraints
is given below. (it is assumed that the original data
conforms to passivity conditions).

(a) Region o =
that [SGo)| <1 at @ = o,

oo ¢ Constraints 5¢(a) and 5(c) ensure

(b) Region (0<w<w,,): Constraints 5(b) and 5(d)
help to ensure that |S(j@)|| < 1 in this region. These
constraints are based on the following Lemma.

Lemma I: If S is a complex matrix of size m X n, then

its 2-norm ||S] £ JIST,1IS]l. [111, where

ISl = max 3 IS,
1<jsn ;-

ISk, = max ¥ |5, = lesHls
1<ismj=1 6)

Constrainis 3(b) and 5(d) ensure that the absolute value
of each entry of the fitted scattering matrix is equal to or
less than the corresponding elements of the scattering
matrix of given the data. From (6), this ensures that the
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1-norm and infinity-norm of the fitted scattering matrix
is equal to or less than that of the scattering matrix of
the given data, which implies that the 2-norm of the
fitted scattering matrix is less than or equal to that of
the scattering matrix of the given data. This ensures that
the fitted model is bounded real in the frequency region
(Oswsw, .

(c) Region w,,,, S @ <<= Constraint 5(c) and 5(¢) help
in ensuring that [|S{jw)|| < 1 in this region.

Enforcing the above conditions and performing linear
constrained optimization, will lead to passive
macromodels for most cases of practical measured/
simulated data. It is important to note that, for
macromodels thus generated, the post-processing or
compensation reguirement is very minimum. Also,
since the constraints are linear, macromodel generation
is highly CPU efticient.

It is to be noted that, since the above constraints are not
strict passivity enforcing conditions, there may be
minor chances of passivity violation, which may require
post passivity compensation. For efficient passivity
verification, theorems based on formulation of
Hamiltonian matrices can be used [5], [12]-[13].
Using these theorems exact locations where the norm

of the scattering matrix S(jw) of the macromodel
exceeds one, can be found independent of where it
happens in the frequency spectrum. In addition, this is
achieved without resorting to any frequency sweep.
This information can be used to carry out the passivity
compensation by the approaches such as [7]. Having
ensured the passivity of the matrix-transfer function, a
time-domain macromodel can be synthesized as a set of
first-order differential equations [3], which can be
easily linked to nonlinear simulators since they are
described in time-domain. Alternatively, they can be
directly stamped to the simulator, based on simulator
interface capabilities such as Laplace element of
HSPICE [14].

I1II. COMPUTATIONAL RESULTS

The proposed algorithm was performed on measured S-
parameters {data is given up to 6GHz) of a 3-port
distributed subnetwork [3]. Fig. 1 shows the norm of
matrix §(jo) of the model plotted against frequency by
using the frequency sweep (conventional method) up to
50GHz and it can be seen that the norm is less than one,
which implies that the model is passive (if the
constraints 5(b) and 5(d) are not used during the fitting
process, the model viclated the bounded real condition).
Fig. 2 shows the accuracy comparison of the real part of
macromodel responses with the original data, and they
match accurately. Similarly Fig. 3 shows the comparison

of imaginary part of the macromodel with the original
data. Fig. 4 shows the comparison of wmacromodel
transient responses (in the presence of nonlinear
terminations) with the SPICE simulation of the original
circuit, which match accurately.

IV. CONCLUSIONS

In this paper an efficient technique has been presented
for transient simulation of s-parameter based
subnetworks in the presence of other linear and
nonlinear devices. CPU efficient linear constraints for
s-parameter based subnetworks have been proposed,
which help in preserving the passivity of resulting
macromodels.
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Fig. 2. Three-port scattering parameters (real parts)
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