
Abstract Passive macromodeling of EM subnetworks
and high-speed modules characterized by S-parameters
has generated immense interest during the recent years.
This paper presents a comparison of two techniques for
the passivity compensation of macromodels of S-
parameter based subnetworks. The formulation and
implementation of the two techniques are discussed.
Numerical examples are presented to validate the theory
presented in this paper.

I. INTRODUCTION

Due to the continually increasing operating
frequencies and circuit densities/complexities,
characterization and simulation of high-speed
electromagnetic subnetworks based on S-
parameters has become a topic of intense research.
The S-parameters can be obtained either directly
from measurements or from rigorous full-wave
electromagnetic simulation. Important applications
of such a characterization include microwave
devices, high-speed packages, vias, nonuniform
transmission lines, antennas and on-chip passive
components, such as inductors and transformers.
However, for the transient simulation of such
frequency-dependent tabulated data, a simulatable
model is required. All the prominent techniques for
macromodel generation approximate the tabulated
data with a rational approximation [1]-[6].
Although most of these techniques lead to stable
approximations (having poles with negative real
parts), they may not guarantee the passivity of the
macromodel. However, passivity is an important
property, because stable but non-passive models
may lead to unstable systems when connected to
other passive components.
Recently, several techniques for passivity
enforcement of macromodel have been proposed in
the literature. Some of these techniques may be too
constraining, while others based on the convex
optimization may be limited to small problem size
due to large computational cost [4]. This paper
describes two techniques for passivity
compensation, based on the perturbation of the
rational approximation of the S-parameter tabulated
data [5], [6]. The first technique uses first-order

perturbation formulation to enforce passivity (we
will call this technique “passivity compensation by
first-order perturbation”, in abbreviated form as
PCFOP). In order that the formulation satisfies the
first-order perturbation requirement, compensation
is done in small increments at a time. The second
technique uses the linear matrix inequality (LMI)
formulation, for carrying out the compensation (we
will call this technique “passivity compensation by
linear matrix inequality”, in abbreviated form as
PCLMI). A comparative study of the above two
approaches is presented. Numerical examples are
given to validate the described algorithms. 

II.  PROBLEM FORMULATION

The scattering parameters (S) are widely used to
characterize multiport subnetworks at higher
frequencies, by relating the incident travelling waves
(a) and the reflected travelling waves (b) as

(1)

The rational approximation of S-parameters of a m-
port subnetwork can be written as

(2)

Several algorithms can be found which can compute
the rational approximation for the given tabulated
data [2]-[6], [8]. However, the challenge here is to
ensure both the accuracy and passivity of the
multiport macromodel. The loss of macromodel
passivity can be a serious problem because transient
simulations may encounter artificial oscillations. A
network with scattering matrix  is passive [7]
iff,
(a) , ‘*’  is the complex conjugate opera-

tor. 
(b)  is bounded real, i.e.,  or

 for .
Condition (a) is automatically satisfied in rational-
function based approximations [8], since the
complex poles/residues of the transfer function are
always considered along with their conjugates,
leading to only real coefficients in rational functions
of . However, ensuring condition (b) is not easy
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(straight-forward formulation can lead to
computationally expensive nonlinear optimization,
which can also suffer from non-convergence).
In order to address the above problem, two
techniques for passivity compensation, based on the
perturbation of the rational approximation of the S-
parameter tabulated data [5], [6] are discussed in this
paper. Both techniques start from the pole-residue
approximation (2) using methods described in [5],
[6]. This approximation is converted into state-space
representation and checked for passivity based on
method described in [5]. A comparative study of the
above two approaches is presented. 
In the following section, we review the procedure
for systematic passivity checking and identification
of local bandwidths of passivity violation. The
details of the procedure may be found in [5]. 

III.  PASSIVITY CHECK AND DETERMINATION OF 
REGIONS OF LOCAL PASSIVITY VIOLATION

Consider the -port pole-residue macromodel
represented by (2). Corresponding state-space
representation  can be obtained as

(3)

where , , , and . The
relationship between the input  and output 
can be obtained as

(4)

It is assumed that the matrix  has no imaginary
eigenvalues (only stable poles constitute the
macromodel) and the matrix  (constituted by direct
coupling constants) has norm less than one. The
pole-residue approximation (2) of tabulated data is
not guaranteed to satisfy the passivity conditions.
Hence, the corresponding state-space system (3) is
checked for passivity based on the following
theorems:
Theorem 1: The state-space system  is
bounded real (passive) iff the following Hamiltonian
Matrix ( ) [7] has no imaginary eigenvalues,

(5)

If no imaginary eigenvalues are found, it
automatically implies that the macromodel is
passive. If there are imaginary eigenvalues found,
the following theorem helps in identifying the exact
locations of passivity violation. 
Theorem 2:  has a maximum singular value
equal to one (i.e. the norm equal to one) iff  is an
imaginary eigenvalue of , provided  has no
imaginary eigenvalues and  does not have a
singular value equal to one [9].
Theorem 2 gives a very useful information about the
exact frequency points where the macromodel
transits from being passive to non-passive. But, this
information alone is not enough to carry out
passivity compensation. In addition, we need the
exact frequency bandwidths of passivity violation as
well as the location of maximum passivity violation
in each bandwidth of violation. A systematic method
for this, based on the frequency points obtained from
Theorem 2 was presented in [5]. Using this
information, in the next section, we describe two
techniques for passivity compensation. 

IV. PASSIVITY COMPENSATION

Using the information from section III, we describe
two techniques for obtaining passive approximation

 for a given non-passive model , such that the
induced perturbation in the input-output responses is
minimized. To be more precise, we keep the state-
space matrices  fixed and perturb the matrix 
containing residues by an amount . In such a case
if we denote the induced perturbation in  by

, it can be verified that [10]

(6)

where  is the Frobenius norm of ,  is
the number of ports and  is the controllability
Grammian obtained by solving the following
Lyapunov equation

(7)

IV.1 Compensation by first-order perturbation (PCFOP)

With a small perturbation  in matrix , the
perturbed scattering model represented by  can
be expressed as 
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 (8)

where
(9)

If the model (4) is nonpassive (i.e.  is
negative definite), matrix  is perturbed by  such
that the perturbed model (8) satisfies Condition (b). 
The perturbation  is calculated by using the first
order eigenvalue perturbation formula [11]. The
perturbed model  should be such
that it satisfies the following condition at the frequency
points of violation

(10)

or (for simplicity dropping )

(11)

Neglecting the second order term in the perturbation
, (11) implies that if the original model is

nonpassive, i.e. an eigenvalue of  is negative
by an amount , we perturb  by 
such that (11) is satisfied. For the first-order
perturbation condition be satisfied, the perturbation
in  is carried out in increments. This results in the
following system of equations [11]

(12)

where v and u are the left and right eigenvectors of
 respectively,  is the amount of correction

in eigenvalue of L.H.S of (11) under which the first-
order formulae is valid. Next, (12) can be formulated
as a least-square problem

(13)

where  is the vector of unknowns of the
perturbation matrix , while  is composed of
entries of matrix  and . The problem in
(13) is solved iteratively at the frequency points of
maximum violation in each region of the passivity
violation, with the constraint that the error in the
response (6) is minimized.   

IV.2 Compensation by linear matrix inequality (PCLMI)

In this section we describe the technique based on
the Linear Matrix Inequality formulation of (11).
Neglecting the second order term in the perturbation

, (11) can be written as the LMI

(14)

where, the matrix on the L.H.S. of (14) is complex-
valued and Hermitian. 
The LMI solvers are written for real-valued matrices
and cannot directly handle LMI problems involving
complex valued matrices. However, complex-valued
LMIs can be turned into real-valued LMIs by
observing that a complex Hermitian matrix 
satisfies 

(15)

if and only if

(16)

Using this information, (14) can be written in the
form of inequality suitable for Linear Matrix
Inequality (LMI) solvers. In our implementation, the
above LMI is solved subjected to the constraint (6)
in the MATLAB LMI solver. The difference in this
approach is that the desired perturbation  is
calculated in one go at one frequency point of
violation, as against the technique presented in
Section IV.1, where correction is done at a frequency
point in several small steps subjected to satisfying
the first-order perturbation formulae.

V. COMPUTATIONAL RESULTS

For the comparison we considered RJ-45 connector
consisting of eight-ports. The frequency dependent
S-parameters tabulated data was approximated by
the algorithm described in [5]. The resulting size of
the state-space system was . The macromodel
was checked for passivity and it was found to be
non-passive, illustrated by the plot of norm of 
(in solid line) of the macromodel in Fig. 2. This non-
passive model was compensated by using the two
techniques described in section IV. The resulting
responses after compensation are shown in Fig. 1
while the norm of  is plotted in Fig. 2. Both the
techniques took approximately 8 minutes for
compensation. Frequency responses from both the
techniques had a comparable accuracy. 

VI. CONCLUSIONS

In this paper, two techniques and their comparison
for passivity compensation, based on the
perturbation of the rational approximation of the S-
parameter tabulated data are described. Necessary
formulations and numerical examples are presented
for validation purposes.
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Fig. 1. S-parameters of RJ-45 connector

Fig. 2. Comparison of norm of 
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