
Abstract  Circuit modeling of networks described by
tabulated S-parameters has generated immense interest
during the recent years. The tabulated data may be
obtained either from measurements or full-wave EM
simulations. However, one of the major difficulties with
such type of data is that, the data can be non-passive in
the frequency bandwidth of interest, due to the
measurement errors or the numerical errors associated
with the full-wave simulator. This causes significant
difficulty while interfacing such a data with circuit
simulators. To overcome this difficulty, this paper
presents an efficient algorithm for restoring the passivity
of the S-parameter data, prior to its circuit modeling.
Numerical examples are presented to demonstrate the
validity and efficiency of the proposed algorithm.

Index Terms  EM Subnetworks, Measured Data,
Passive Macromodels, Scattering Parameters,
Transient Analysis.

I. INTRODUCTION

During the recent years, due to the continually
increasing operating frequencies, circuit densities
and complexities, characterization and simulation
of high-speed microwave and electromagnetic
subnetworks based on S-parameters has become a
topic of intense research. Important applications of
such a characterization include high-speed
packages, vias and on-chip passive components [1]-
[9], connectors, non uniform transmission lines etc.
The S-parameters can be obtained either directly
from measurements or from rigorous full-wave
electromagnetic simulation. In the rest of the paper,
we refer to such a data as the “tabulated data”.

It is of practical interest to include above type of
tabulated data during the global transient analysis
of the entire system. However, interfacing such a
data with circuit simulators for transient analysis
purposes can suffer from the major difficulty, that
the data can be non-passive in the frequency
bandwidth of interest. Non-passivity of the data can
be caused due to the measurement errors or the
numerical errors associated with the
electromagnetic analysis tools. It is to be noted

that, passivity is an important property, because
stable but non-passive models may lead to unstable
systems when connected to other passive devices.
Implication of this from the transient analysis
perspective can be explained as follows.

Transient analysis involving tabulated data can be
mainly accomplished via convolution based
approaches [8], [9] or passive macromodels [3]-[7].
If the convolution based approach is used, the
frequency-domain S-parameter data is converted
into time-domain using the IFFT algorithm.
Subsequently, transient responses are evaluated by
convoluting the IFFT response with the input
responses. However this can run into convergence
problems if the tabulated data is non-passive. 

On the other hand, transient analysis using
macromodels requires that the passivity of the
macromodel is ensured, to guarantee asymptotic
stability. Passive macromodeling algorithms
available in the literature for this purpose are based
on approximating the tabulated data through
rational-functions and subsequently checking/
compensating for any passivity violation [3]-[7].
The time/effort spent in compensating the rational
function model depends on the amount of the
passivity violation in the rational-function fitted
model. This in turn is influenced by the amount of
the passivity violation present in the original
tabulated data. 

Hence, it is highly desired that the tabulated S-
parameter data is made passive in the bandwidth of
interest, prior to its circuit compatible modeling. In
order to accomplish the above, this paper describes
an efficient algorithm for restoring the passivity of
the S-parameter data obtained from measurements
or electromagnetic simulations. The method is
based on the first-order matrix perturbation theory.
Numerical examples are provided to validate the
proposed algorithm. The pre-processed data using
the new algorithm, allows it to be directly used for
transient analysis using convolution techniques as
well as results in significantly improved
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performance for passive macromodeling
algorithms.

The rest of the paper is organized as follows.
Section II describes the problem definition, section
III describes the proposed algorithm, while section
IV and V present numerical results and
conclusions, respectively.

II.  PROBLEM DEFINITION

At higher frequencies, scattering parameters are
widely used to characterize the complex
interconnect and microwave subnetworks. S-
parameter matrix (S) relate the incident travelling
wave vectors (a) and the reflected travelling wave
vectors (b) as

(1)

The scattering parameters are obtained at several
discrete frequency points in the bandwidth of
interest. Let the highest frequency at which the data
is given be denoted by . The designers are
interested in performing time-domain analysis
including the device characterized by tabulated S-
parameter subnetwork, along with the external
terminations. As discussed in the introduction,
passivity of the tabulated data becomes important
for the success of passive macromodeling
algorithms and to ensure the stability of the global
transient simulation.

A network with scattering matrix  is passive
[6]  iff,
(a) , ‘*’  is the complex conjugate operator. 
(b)  is bounded real, i.e.  for 

(  represents 2-norm).

Condition (b) also implies that  for
, where ‘H’ is the Hermitian operator.

Passive macromodeling algorithms strive to
satisfy the above conditions for the entire
frequency region , by employing
various mechanisms. However, success of these
algorithms depend on the passivity compliance of
the original tabulated data (i.e. satisfying the
conditions (a) and (b)) at the given discrete points
in the region ). However, as pointed
out in the introduction, the tabulated data in
practice can be non-passive due to the measurement
errors or numerical errors associated with the

electromagnetic analysis tools. In the next section,
an efficient algorithm for restoring the passivity of
the non-passive tabulated data is described.

III. PROPOSED PASSIVITY RESTORATION 
ALGORITHM FOR S-PARAMETER DATA

The proposed passivity restoration algorithm is
based on the following first order perturbation
theory [10]:

Lemma 1: If a matrix  is perturbed by an
amount , then the resulting change in its
eigenvalue   is given by [10]:

(2)

where y and x are the left and right eigenvectors of
, respectively.

Next, consider the S-parameter data at N discrete
points. In the first step, the 2-norm of the S-
parameter matrix is evaluated at each frequency
point. The data corresponding to those frequency
points, where the norm is greater than one (i. e., the
data at these points violates the bounded real
condition (b)) is collected in a set:

  . (3)

where L represents the total number of non-passive
data points. 

Next, to illustrate the proposed passivity
restoration algorithm, consider a kth non-passive S-
parameter data matrix (i.e. ) in set G.
The above also implies that, for this case, at least
one of the eigenvalues of  is negative.
Consider that an eigenvalue is negative by the
amount . In the proposed algorithm, the data 
is perturbed by an amount  such that the
perturbed data  satisfies the following
passivity criteria

 (4)

Expanding the relationship (4) and neglecting the
second order term of perturbation  in it, implies
that if we perturb  by , then
from (2) it is obvious that the corresponding
change in the eigenvalue of  is given by:
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(5)

where v and u are the left and right eigenvectors of
, respectively. In other words, if the

original data  is non-passive, then based on the
knowledge of the extent of violation , we
compute a perturbation , such that the bounded
realness relation (4) is satisfied.

Next, in order to evaluate the entries of the
required perturbation matrix , (5) can be
formulated as a least-square problem

(6)

where  is the vector of unknowns of the
perturbation matrix , while  is composed of
the entries from matrix , vectors  v and u.
Equation (6) is solved at each entry of the non-
passive data set G. In order to minimize the
perturbation in the data, (6) is solved with the
constraint that  is minimized. It is to be noted
that, solving (6) at a given frequency point (while
minimizing ) to correct a negative eigenvalue
of , may cause other eigenvalues to become
negative. For the rare cases of this happening, in
the proposed algorithm, the resulting S-parameter
data is checked again for passivity violation and the
above correction scheme is performed iteratively
until the resulting data satisfies the passivity
criteria (4).

Also, it is to be noted that, (5) is valid if the
required perturbation  is relatively small. To
ensure this for data with relatively large violations,
we compensate for the violation  in steps of
small increments, sequentially. In other words, if m
steps are required to completely compensate the
violation , total perturbation  is given by

(7)

where  is the perturbation at step number p.

IV. COMPUTATIONAL RESULTS

To demonstrate the validity and efficiency of the
proposed algorithm, measurement data of a 2-port
coaxial microstrip was considered. The tabulated
S-parameters (henceforth referred to as the original
data) were given up to 9GHz (sample responses are

given in Fig.1 to Fig.5). As seen by the plot of
 v/s frequency in Fig. 6 (solid line), the

original data was not bounded-real at many
frequency points. 

Next, using the proposed algorithm of section III,
the given S-parameter data was preprocessed to
restore its bounded realness in the bandwidth of
interest (this required only 15 seconds). As seen
from the dashed line in Fig. 6, the bounded realness
of the data was ensured in the bandwidth of interest
(up to 9GHz). Next, the accuracy of the passivity
restored data is verified by comparing them against
the original data (see dashed lines in Fig.1 to Fig.
5). As can be seen from the plots, the proposed
algorithm had negligible impact on the accuracy
while restoring the passivity.

V.  CONCLUSIONS

In this paper an efficient algorithm is presented
for the passivity restoration of S-parameter
tabulated data. The algorithm helps to restore the
bounded-real property of the data in the bandwidth
of interest. This allows the S-parameter data to be
directly used for transient analysis using
convolution techniques as well as results in
significantly improved performance for passive
macromodeling algorithms.
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Fig. 1. Real (S11)  v/s Frequency

Fig. 2. Imag (S11)  v/s Frequency

Fig. 3. Real (S12)  v/s Frequency

Fig. 4. Imag (S12)  v/s Frequency

Fig. 5. Real (S22)  v/s Frequency

Fig. 6. Norm of the data before and after passivity restoration
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