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Abstract—Passive macromodeling of high-speed package and
interconnect modules characterized by measured/simulated data
has generated immense interest during the recent years. This paper
presents an efficient algorithm for transient simulation of inter-
connect networks characterized by measured/simulated data in the
presence of other linear and nonlinear devices. A new set of linear
constraints are proposed, which help in preserving the passivity
of resulting macromodels. Examples are presented to demonstrate
the validity and efficiency of the proposed algorithm.

Index Terms—Algebraic riccati equation, circuit simulation,
Hamiltonian matrix, high-speed interconnects, measurements,
passive macromodels, parameters, tabulated data, transient
analysis, transmission lines, parameters.

I. INTRODUCTION

THE RECENT trend in the very large scale integration
(VLSI) industry toward miniature designs, low power

consumption, and increased integration of analog circuits
with digital blocks has made the signal integrity analysis a
challenging task. The ever-increasing quest for high-speed
applications has highlighted the previously negligible effects
of interconnects, such as ringing, delay, distortion, reflections
and crosstalk. It is to be noted that, predicting these effects
in high-speed designs is not an easy task, as high-frequency
interconnect models become necessary [1]–[26].

However, with the increasing frequency and complexity, it is
not always possible to find an analytical model for interconnect
network. For instance, interconnects in chip packages are usu-
ally nonuniform due to high circuit density, complex shapes and
geometrical constraints at the edges of the chip. Numerous sim-
ilar situations can be found, such as vias, nonuniform transmis-
sion lines, on-chip passive components and high-frequency mi-
crowave devices, where the interconnect modeling becomes a
difficult task. In such cases, the behavior of these devices is gen-
erally characterized by sampled data, obtained either directly
from measurements or from rigorous full-wave electromagnetic
simulations [6]–[22]. The measured/simulated (tabulated) data
can be in the form of scattering , admittance , impedance

or hybrid parameters. As a result, characterization and
simulation of interconnect networks based on tabulated data
within nonlinear simulation environment is becoming a topic
of intense research.
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However, transient simulation of such frequency-dependent
tabulated data in the presence of nonlinear devices is not a
straight-forward process. This can be attributed to the mixed
frequency/time problem as the network consists of measured
subnetwork described by frequency-dependent data and non-
linear devices which are described only in the time-domain. In
addition, discrete measured data does not have adequate repre-
sentation for simulation purposes. More recent approaches to
address the above issue are based on obtaining a reduced-order
model [9]–[21] for the frequency sampled data and performing
transient analysis either by using recursive convolution [23] or
by converting the frequency-domain reduced model into a set
of ordinary differential equations [1]. However, there are two
main difficulties associated with this category of approaches.

1) They suffer from the problem of ill-conditioning in cap-
turing the broadband frequency spectrum of the device.

2) Passivity of the resulting macromodel is not guaranteed.
It is to be noted that, passivity is an important requirement

for macromodels. If the macromodel is not passive, then the
transient simulation of such macromodels with the rest of the
circuitry may suffer from spurious oscillations [1], [25]–[27]
(details in Section II). Conventional approaches in the literature
on imposing macromodel passivity constraints lead to nonlinear
optimization formulation, which can be CPU expensive [28].
Alternative approaches use constraints such as, every first
or second-order pole-residue pair must strictly conform to
passivity relations. However, these constraints are sufficient
but not necessary [18] (most practical circuits do not obey
these conditions), strict enforcement of these conditions may
lead to convergence problems, inaccurate and CPU expensive
macromodels. Algorithms such as the ones based on convex
optimization [21] can guarantee the passivity of the macromodel.
However, they can be CPU expensive, since the associated
computational complexity is in the range of to (where

is the order of the state-space matrix). On the other hand,
approaches such as the ones in [9]–[16] are computationally
fast. However, they may not strictly guarantee the macromodel
passivity and may lead to passivity violations. Hence for such
class of algorithms it becomes essential to verify the macromodel
passivity and correct for any passivity violations. However,
one of the key requirement of these algorithms is the quality
of the macromodel prior to post-processing, that is, the extent
of their conforming to passivity conditions. Post-processing
can be quite effective if the passivity violation is minor; on
the other hand, if the violation is significant, it can lead to
inaccurate/nonpassive macromodels.
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In order to address the above problem, a new algorithm
is presented in this paper to efficiently synthesize passive
macromodels for measured/simulated data, which keeps the
need for post passivity compensation to the minimum. The
algorithm mainly involves three steps. In the first step, a multi-
port vector-fit-based rational approximation [12] is performed
to obtain an accurate set of poles. Next, multiport residues are
obtained subject to a new set of passivity conforming linear
constraints (the associated computational complexity is in the
range of ). In the last step, a check for any passivity violation
is performed using Hamiltonian matrix formulation of the
state-space equations obtained from the pole-residue model
[30]. For this purpose, two theorems are presented in this
paper. In case of passivity violation, necessary compensation
is carried out [31], [32].

The rest of the paper is organized as follows. Section II
presents the problem formulation. Section III presents a tech-
nique to compute accurate poles of the system. Section IV
presents the proposed passivity conforming linear constraints
and the new residue computation algorithm. Section V de-
scribes the passivity check and compensation. Sections VI and
VII present computational results and conclusions, respectively.

II. PROBLEM FORMULATION

The tabulated data can be multiport scattering , admit-
tance , impedance , transmission or hybrid pa-
rameters. For the ease of presentation, in this paper it is assumed
that the frequency-domain -parameter data is given. The ad-
mittance matrix of a -port subnetwork can be written in terms
of a rational approximation as

(1)

In the conventional curve fitting methods, (1) is formulated as
a linear problem, , where is the vector of unknown
coefficients, . However, this formulation
is ill-conditioned [12]. Also the total number of poles in the
admittance matrix could be too many, which could lead
to inefficient simulation.

In addition, the above conventional approach doesn’t guar-
antee passivity of the multiport macromodel. However, the loss
of macromodel passivity can be a serious problem because tran-
sient simulations may encounter artificial oscillations.

This is because macromodels that are only stable but not pas-
sive, can produce unstable networks when connected to other
passive loads. On the other hand, a passive macromodel, when
terminated with any arbitrary passive load always guarantees
the stability of the overall resulting network. To illustrate the
point, consider a single-port second-order macromodel shown
in Fig. 1(a). The macromodel is stable but not passive. When
this macromodel is terminated with the passive load [Fig. 1(b)],
the overall network becomes unstable.

Therefore the challenge here is to ensure passivity (in addi-
tion to accuracy) of the multiport macromodel. A network with
admittance matrix is passive [27], iff

Fig. 1. Illustration of significance of passivity.

a) , where ’ ’ is the complex conjugate op-
erator;

b) is a positive real (PR) matrix, i.e., the product
for all complex values of

with and any arbitrary vector .
Condition (a) is automatically satisfied since the complex

poles/residues of the transfer function are always considered
along with their conjugates, leading to only real coefficients in
rational functions of . However, ensuring condition (b) is
not easy. For the practical case of networks with symmetric ad-
mittance matrices, condition (b) implies that

(2)

must be positive definite for all with . From [27],
if matrix rational function has no poles on the closed
right-half plane, it is positive real iff

for (3)

As is obvious from the introduction, ensuring (3) could be
a daunting task for macromodels from tabulated data. In
this paper, a new algorithm is presented to ensure passivity of
macromodels obtained from tabulated data and is based on CPU
efficient linear formulation. The algorithm has the following
three steps. In the first step, a multiport vector-fit-based rational
approximation [12] is performed to obtain a good set of poles
(details in Section III). Next, multiport residues are obtained
subject to new passivity conforming linear constraints (details
in Section IV). In the last step, a check for any passivity viola-
tion is performed using Hamiltonian matrix formulation [37]
of state-space equations and if necessary, the macromodel is
compensated for any passivity violation (details in Section V).

III. COMPUTATION OF MULTIPORT DOMINANT

POLE-SET (STEP 1)

This step computes an accurate pole-set for the given multi-
port admittance matrix. For this purpose, the pole identification
algorithm of the vector fitting approach [12] is extended to ef-
ficiently handle the case of multiport networks. Here, an initial
guess of poles is considered and a scaling function is introduced.
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With this initial guess of poles the scaled function is fitted, from
which an accurate set of poles are computed. However, finding
pole-sets individually for each element of the admittance ma-
trix can lead to large number of redundant poles in the macro-
model resulting in inefficient transient simulation. Also, identi-
fying a common multiport pole-set from pole-sets of individual
elements of the admittance matrix is generally heuristic and can
lead to errors. In order to overcome the above problem and to
minimize the number of poles in the matrix-transfer function,
the following two propositions are used [11].

1) In general, the pole set corresponding to any individual
element of the admittance matrix is a subset of the union
of all driving point admittances [33].

2) Generally, in a system with large number of dominant
poles, pole sets belonging to different driving point ad-
mittances contain mostly identical poles and only a very
small percentage of poles differ among these sets.

Using the above two propositions, a common pole-set for the
multiport pole-residue model is obtained by performing the pole
identification algorithm of the vector fitting approach [12] on
driving point admittances. This is done as follows. The admit-
tance matrix of a -port electrical network can be written as

...
...

. . .
... (4)

To obtain a common pole-set, vector-fitting algorithm is carried
out on the vector of the diagonal entries of the admittance ma-
trix (proposition 1). For the case of -port network of (4), the
vector

...
(5)

is fitted. Each element of (5) is approximated with the following
pole-residue formulation:

(6)

where the residues and poles can be real or com-
plex conjugate pairs, is the number of poles and residues,

and are real constants. Next, an initial guess of pole-set
is specified and a scaling function

of the following rational form is considered:

(7)

Next, of (5) is multiplied by the above scaling function
and the scaled function can be expressed as

...

... (8)

Next, multiplying (7) by and then equating it to (8),
we can write

(9)

or, from (5)

...
... (10)

Using (7) and (8), we can write (10) as

...
...

... (11)

Note that in (11), the poles of the scaling function are
considered to be same as the poles of the approximated scaled
functions . Also note
here that, represents the initial guess of poles and the
total number of unknowns are . The
ambiguity in the solution of the scaling function in (7) has
been overcome by forcing it to approach unity at very high
frequencies. Writing each row of (11) at different frequency
points , we get an overdetermined problem

(12)

where (13)–(15) are shown at the bottom of the next page. The
overdetermined problem of (12) is solved by least-square tech-
nique or QR factorization. In the case of least-square method,
premultiplying both sides of (12) by , we get

(16)

On the other hand, in the case of using QR factorization, writing
in terms of QR factors, we get . Here is an orthog-

onal matrix, i.e., , and is an upper triangular matrix.
Using this information and multiplying both sides of (12) by ,
we get

(17)

Next, a rational-function approximation for the function
can be easily obtained by writing it in the fractional
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form. For this purpose, we first express the scaling (7) and
scaled (8) functions in fractional form as

(18)

and

...

(19)

From (9) it is evident that

(20)

Substituting (18) and (19) in (20), becomes

...

(21)

From (21) and (18), it is clear that the zeros of are the poles
of . (Note that the initial poles cancel in the division
process as we started with the same initial poles for and

). Thus, by calculating the zeros of we get a

better set of poles than the initial set of poles , for fitting
the original function . Once the vector of unknowns,

[(13)] is computed [using (16) or (17)], zeros of can be
calculated, depending on whether the initial guess for the poles
is real or complex, as follows.

Case 1: Real Poles: It is to be noted that zeros of cor-
respond to the eigenvalues of the matrix [12]

(22)

where

. . .

...

(23)

Notice that is the diagonal matrix of starting (initial guess)
poles, is a unity column vector. is the column vector of
residues of , corresponding to the starting poles [computed
using (16) or (17)].

Case 2: Complex Poles: In this case, too, zeros of corre-
spond to the eigenvalues of the matrix of (22), however, with

, and modified as [12], you have (24) shown at the bottom
of the next page. Once the zeros of are calculated, they are
used as the new set of starting poles in the next iteration while
solving (11). The next iteration provides new set of zeros of
which are again used in the next iteration as starting poles. The
iterative process is continued till the poles converge. It is to be
noted that during this iterative process, some of the calculated
poles may become unstable, i.e., the real part of some of the
poles may be positive. This problem is overcome by inverting
the sign of their real parts [12].

(13)

(14)

...
...

...
...

...
...

...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

(15)
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The above approach overcomes the illconditioning problem
discussed in Section II and also ensures that the poles of the
admittance matrix are common. This avoids the conventional
method of independently fitting individual admittance parame-
ters and then collecting the common set of poles. Also, it helps
to keep the macromodel compact and enables efficient transient
simulation.

IV. RESIDUE COMPUTATION AND PROPOSED LINEAR PASSIVITY

CONSTRAINTS (STEP 2)

Once an accurate set of poles are calculated in Step-1, each
element of can be expressed in the pole-residue formula-
tion as

(25)

where, are the poles of the system,
are the corresponding residues and is the direct coupling con-
stant. The residues of each element of of can be com-
puted by formulating a linear least-square problem by writing
(25) at several frequency points. However, direct application of
this approach does not guarantee the passivity of the resulting
macromodel. For a macromodel with stable poles, to ensure pas-
sivity, (3) must be satisfied. However, ensuring (3) is a difficult
task and its direct application can lead to nonlinear optimization
problem. In order to address these difficulties, we propose the
following algorithm with linear constraints, which help to retain
the passivity of the macromodel.

Let the tabulated data be given up to a maximum frequency
. Note that, in practice is determined based on the

rise time of the input signal using the relationship:
[1]. The common pole-set obtained from Step

1, written in ascending order of their imaginary parts, can be
expressed as

(26)

Consequently, the admittance matrix of (4) has the following
form in (27) shown at the bottom of the page. The unknown
residues and the direct coupling constants are com-
puted by writing each entry of (27) at several frequency points,

, as

(28)

where represents the th frequency point. In the case of
complex poles, both the pole as well as its conjugate should be
used while formulating (28). Next, equating both the real and
imaginary parts of (28) separately, we obtain a new set of linear
equations as

(29)

where is the column vector containing
the unknowns corresponding to the real and imaginary parts
of residues, is the column vector containing
real and imaginary parts of frequency responses (represented
by admittance parameters ) and
consists of entries contributed by the LHS of (28).

When written at several frequency points, (29) can be formu-
lated as a least square problem [similar to formulation in (16)],
which is solved subjected to a new set of proposed passivity con-
forming linear constraints [22], as

(30)

. . .

(24)

...
...

... (27)
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such that

a) for diagonal elements, i.e., ,
• the direct coupling constant

(C1)

• the real part of the computed function is equal to or
greater than the real part of the given tabulated data,
i.e.,

(C2)

b) for off-diagonal elements, i.e., ,
• the direct coupling constant

(C3)

• any pole beyond the maximum frequency of interest
is ignored, i.e., the following poles are only

considered from the common pole set in (26)

(C4)

The above linear constraints (C1)–(C4) help in preserving
passivity of the macromodel, by satisfying the passivity con-
dition (3) (i.e, )
in the region . In the remainder of this section,
a discussion of how this objective is achieved using the above
constraints, is given.

a) Region
It is obvious from the constraints (C1) and (C3), that the con-

dition (3) is satisfied at .
b) Region
Constraint (C2) helps to ensure that the passivity condition

(3) is satisfied in this region. This constraint is developed based
on the following theorem [34].

Theorem -1 (Gershgorin’s Theorem): Let be a
square matrix. All the eigenvalues of lie in the union of the
discs centered at its diagonal entries , with radii equal to the
sum of the absolute values of the off-diagonal entries in the re-
spective row. i.e., if is an eigenvalue of , then for any we
have

(31)

An example depicting the above theorem is given in Ap-
pendix A. Implications of this theorem and constraint (C2)
can be explained as follows. Enforcing constraint (C2) helps
to maintain the diagonal dominance of the computed model
either same or more than that of the given data. This helps to
avoid the violation of the passivity condition (3) in the regions
where the data is marginally passive. It is to be noted that, in
such regions, some of the eigenvalues of will be
very close to zero. Such eigenvalues are very sensitive to any
error during the fitting of the given data. For the purpose of
illustration, consider the original data in the marginally passive
region, and a corresponding particular eigenvalue , which is
close to zero. Let be the corresponding eigenvalue from the
fitted data, such that

(32)

Fig. 2. Illustration of the general behavior of Z [Re(Y (j!))]z when using
the proposed constraints.

Fig. 3. Nonlinear circuit containing RLC lumped network.

Although the data is fairly accurately fit, however, due to the
sensitive nature of such eigenvalues, any minor error can shift
the eigenvalues in the fitted data to the negative region (i.e., re-
sulting in passivity violation). Use of constraint (C2) ensures
that the computed values of the real part of the diagonal entries
is equal or greater than that of the given data. In other words, by
the above theorem, the centre of the eigenvalue discs is shifted
toward more positive region, and hence maintaining of (32)
to be always positive (i.e., the eigenvalues from the fitted data
to be always positive). For data with many and wider margin-
ally passive regions, an additional constraint for nondiagonal
elements: , can be used in conjunc-
tion with (C2). Importance of the constraint (C2) is numerically
illustrated in Example 2 of Section VI (Figs. 10 and 11).

c) Region :
Constraint (C4), in conjunction with constraints (C1) and

(C3), helps to satisfy the passivity condition (3) in this region.
This is because, since any pole beyond is neglected for
nondiagonal elements, and also since for nondiagonal
elements, the response of nondiagonal elements beyond
quickly tends to zero. In other words, these constraints avoid
any large variations (which could happen if poles beyond
are considered for the nondiagonal elements) in nondiagonal
element responses, there by minimizing the possibility of
violation of the passivity condition (3) in this region.

A graphical description of the impact of these constraints
while satisfying passivity condition (3), at various frequency re-
gions is given in Fig. 2.

V. PASSIVITY CHECK AND COMPENSATION (STEP 3)

It is to be noted that, since the constraints defined in Sec-
tion IV are not strict passivity enforcing conditions, there may
be minor chances of passivity violation (as no constraints were
imposed on the behavior of diagonal elements immediately after

). Hence, the resulting macromodel is checked for any pas-
sivity violation. Traditional approach for this purpose is based
on frequency-sweep of eigenvalues of the real-part of the ad-
mittance matrix of the macromodel. However, this
approach suffers from several drawbacks, such as up to what
frequency to sweep and how fine the sweep should be. In order
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TABLE I
POLES AND RESIDUES OBTAINED USING THE PROPOSED METHOD (EXAMPLE 1)

Fig. 4. Frequency responses for Example 1.

to avoid this problem, the following approach is developed in
this paper.

Consider the state-space representation corresponding to the
pole-residue macromodel of (27)

(33)

Here, , , , ,
, , ( is the total number of

state variables) [24], [35], [36]. It is to be noted that the poles
of the system are contained in matrix , residues in matrix ,

while the direct coupling constants are in matrix . Next, the
following two theorems are used for systematic passivity veri-
fication without resorting to frequency sweep.

Theorem 2: The state-space system ( , , , ) is passive
iff the following Hamiltonian matrix [37] has no imaginary
eigenvalues:

(34)
In case of passivity violation, the following theorem helps in
identifying the exact location of passivity violation.
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Fig. 5. Eigenvalues of Real(Y (s)) for Example 1.

Fig. 6. Time-domain responses for Example 1.

Fig. 7. Three-port interconnect subnetwork (Example 2).

Theorem 3: The real part of the symmetric admittance ma-
trix, , is singular if is an eigenvalue of the corre-
sponding Hamiltonian matrix , provided is a positive
definite matrix [30], [38].

Note that, in case a macromodel is found to be nonpassive,
Theorem 3 gives a very useful information about the exact loca-
tions where the violation is happening. This information can be
used to carry out the passivity compensation by the approaches
such as [29], [31], [32]. The proof of Theorem-3 can be found in
[38]. An alternative and simpler proof is given in Appendix B.
Note that, for the case of state-space matrices ( , , , ) cor-
responding to scattering parameters, the criteria for passivity is
that the norm of scattering matrix be less than or equal to one for

[21]. Also for this case, a similar result as Theorem
3 can be obtained: “the Hamiltonian matrix of the nonpassive
macromodel has imaginary eigenvalues which correspond to the
exact locations where the norm of the corresponding scatter-
ring matrix becomes equal to one.” Having ensured the passivity
of the matrix-transfer function, a time-domain macromodel can
be synthesized as a set of first-order differential equations [1],
which can be easily linked to nonlinear simulators since they are
described in the time domain. Alternatively, they can be directly
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Fig. 8. Frequency responses (magnitude) for Example 2.

Fig. 9. Frequency responses (real part) for Example 2.

stamped to the simulator, based on simulator interface capabil-
ities such as Laplace element of HSPICE [39].

VI. COMPUTATIONAL RESULTS

In this section, two examples are presented to demonstrate the
efficiency and accuracy of the proposed algorithm.

Example 1- Two Port R,L,C Circuit: In this example, a
relatively small network (Fig. 3) is analyzed using the
proposed technique. The linear part of the network is simu-
lated using HSPICE to obtain admittance parameters at 1000
frequency points up to 6 GHz, and is considered as tabulated
data (input) to the proposed algorithm. Using the proposed
method, a common pole set (with two real poles and four
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Fig. 10. Illustration of passivity violation due to unconstrained fitting (without using constraint (C2)).

Fig. 11. Illustration of the fitting and eigenvalue spectrum when constraint (C2) is used.

complex poles) and subsequently residues are computed (given
in Table I; values are scaled by 1e9). The computed direct
coupling constants, for diagonal elements , are
1.9291e–06 and 6.8651e–08, respectively (zero for off-diagonal
elements). Fig. 4 shows the comparison of frequency responses
obtained using the proposed method and HSPICE, and they
match accurately. Next, the state-space macromodel is checked
for passivity using Theorem -2, by finding the eigenvalues of
the Hamiltonian matrix in (34) and no imaginary eigenvalues
were found (i.e., the macromodel is passive). This is also
demonstrated using the conventional approach, by plotting the
eigenvalues of the against frequency up to 50 GHz
(Fig. 5). Since the eigenvalues are positive even up to 50 GHz,
implies that the macromodel is passive. Next, the macromodel
obtained from the proposed method is linked to HSPICE and a

nonlinear analysis is performed. The network is excited with a
trapezoidal pulse having a rise/fall time of 0.1 ns and a pulse
width of 4 ns. Responses at nodes and are compared
with the HSPICE simulation of the original network in Fig. 6.
As seen, the results from both the methods match accurately.

Example 2: 3-Port Measured Data: In this example, the
proposed algorithm was performed on a set of measured data
(obtained from a known 3-port interconnect network, given
in Fig. 7). The data is (Y-parameter) given up to 6 GHz, at
1000 sample points and is fitted using the proposed method
(40 complex poles and 4 real poles were required). Figs. 8
and 9 show the comparison between the original data and the
response of the proposed model and they match accurately.
Figs. 10 and 11 illustrate the usefulness of constraint (C2).
Fig. 10(a) shows (using enlarged vertical axis) the comparison
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Fig. 12. Eigenvalue spectrum of Real(Y (s)) of the proposed macromodel (Example 2).

Fig. 13. Transient results for Example 2.

of original with the response of the computed
model obtained without using constraint (C2). As seen, at
certain frequencies, the fitted response is slightly smaller than
the original data and the corresponding eigenvalue spectrum
[Fig. 10(b)] contains several negative values. Fig. 11 shows
the improved results when the constraint (C2) is enforced and
the eigenvalue spectrum in this case always remained positive
[Fig. 11(b)].

Next, the state-space macromodel is checked for passivity
using Theorem -2, by finding the eigenvalues of the Hamiltonian
matrix in (34) and no imaginary eigenvalues were found (i.e.,
the macromodel is passive). This is also demonstrated using
the conventional approach, by plotting the eigenvalues of the

against frequency up to 50 GHz (Fig. 12). As seen,
the eigenvalues are positive even up to 50 GHz, indicating that
the macromodel is passive. Next the macromodel is linked to
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Fig. 14. Gershgorin’s discs for the matrix of (35).

HSPICE and a nonlinear analysis is performed. The network is
excited by a pulse having a rise and fall time of 0.1 ns. The
results at node , , , are shown in Fig. 13, in
comparison to the HSPICE simulation of the original circuit
(from which the measured data was obtained) and they match
accurately.

VII. CONCLUSION

In this paper, an efficient algorithm has been presented for
transient simulation of linear subnetworks characterized by
simulated/measured data in the presence of other linear and
nonlinear devices. New linear constraints have been proposed,
which help in preserving the passivity of resulting macro-
models. Accurate and fast passivity verification strategy has
been presented.

APPENDIX A

In this appendix, an illustrative example is provided, de-
scribing the Gershgorin’s theorem (Theorem -1, stated in
Section IV).

Consider the following matrix:

(35)

Corresponding Gershgorin’s discs are depicted in Fig. 14.
Since the matrix in (35) is of size 3 3, it has three discs

as shown in Fig. 14(a), with the centres at 2, 3, and 1, and
the corresponding radii of 1.5, 1, and 0.5, respectively. As per
Gershgorin’s theorem, eigenvalues of the matrix in (35) lie in
the union of these three discs, shown by the dotted curve in
Fig. 14(b). As a verification, it can be noted that the eigenvalues
(0.70, 1.64, 3.64) indicated by “ ” in Fig. 14(b), lie inside the
union of the corresponding Gershgorin’s discs.

APPENDIX B
PROOF OF THEOREM 3

Assume that is an eigenvalue of the Hamiltonian matrix
, i.e.,

(36)

where, is the eigenvector of corresponding to the
eigenvalue . Using (34) and (36), we get

(37)

Notice in (37) that, exists, as it is assumed that
is positive definite. Rearranging (37), we have

(38)

After simple mathematical manipulations (38) can be written as

(39)

which can rewritten as

(40)

or

(41)

where

(42)

Using (41) and (42), we get

(43)

Equation (43) can be rearranged as

(44)

or

(45)
Using (3), we can write (45) as

(46)

It is evident from (45) that is singular at . Next, cor-
relating this information with the initial assumption we started
with, i.e., is the eigenvalue of the Hamiltonian matrix ,
we can infer that an imaginary eigenvalue of Hamiltonian ma-
trix corresponds to the frequency at which is singular.
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On the lines similar to the proof of the above theorem, the
corollary of Theorem 3 (Corollary: The Hamiltonian matrix
has an eigenvalue , if the real part of the corresponding sym-
metric admittance matrix, is singular at , provided

is a positive-definite matrix) can also be proved.
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