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Abstract— This paper presents a novel compact passive model-
ing technique for high-performance RF passive and interconnect
circuits modeled as high-order RLCM circuits. The new method
is based on a recently proposed generals-domain hierarchical
modeling and analysis method and VPEC (vector potential
equivalent circuit) model for self and mutual inductance. The-
oretically, we show that the s-domain hierarchical reduction
is equivalent to implicit moment matching around s = 0,
and that the existing hierarchical reduction method by one-
point expansion is numerically stable for general tree-structured
circuits. We also show that the hierarchical reduction preserves
reciprocity of the passive circuit matrices. Practically,we propose
a hierarchical multi-point reduction scheme to obtain accurate
order reduced admittance matrices of general passive circuits.
A novel explicit waveform matching algorithm is proposed for
searching dominant poles and residues from different expansion
points based on the unique hierarchical reduction framework.
To enforce passivity, state-space based optimization is applied to
the model order reduced admittance matrix. Then we propose
a general multi-port network realization method to realize the
passivity-enforced reduced admittance based on relaxed one-
port network synthesis technique using Foster’s canonicalform.
The resulting modeling algorithm can generate the multiple-port
passive SPICE-compatible model for any linear passive network
with easily controlled model accuracy and complexity.

Experimental results on an RF spiral inductor and a number
of high-speed transmission line circuits are presented. Incompar-
ison with other approaches, the proposed reduction is as accurate
as PRIMA in high frequency-domain due to the enhanced multi-
point expansion, but leads to smaller realized circuit models. In
addition, under the same reduction ratio, realized models by the
new method have less error compared with reduced circuits by
the time-constant based reduction techniques in time domain.

Index Terms— Circuit Simulation, Model Order Reduction,
Determinant Decision Diagrams, Realization, Behavioral Mod-
eling

I. I NTRODUCTION

As VLSI technology advances with increased operating
frequency and decreased feature size, parasitics from on-
chip interconnects and off-chip packaging will de-tune the
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performance of high-speed circuits in terms of slew rate, phase
margin and bandwidth [2]. Reduction of design complexity
especially for those extracted high-order RLCM network is
important for efficient VLSI design verification.

Compact modeling of passive RLC interconnect networks
has been an research intensive area in the past decade due to
increasing signal integrity effects and interconnect-dominant
delay in current system on a chip (SoC) design [22]. Ex-
isting approaches can be classified into two categories. The
first category is based on subspace projection [11], [12],
[20], [26], [28], [37]. Projection-based method was pioneered
by Asymptotic Waveform Evaluation (AWE) algorithm [28]
where explicit moment matching was used to compute dom-
inant poles at low frequency. Pade via Lanczos (PVL) [11],
Arnoldi Transformation method [37] improved the numerical
stability of AWE, congruence transformation method [20] and
PRIMA [26] can further produce passive models. However,
reduced circuit matrices by PRIMA are larger than direct
pole marching (having more poles than necessary) [1] and
PRIMA does not preserve certain important circuit properties
like reciprocity [12]. The latest development by structured
projection can preserve reciprocity [12], but it does not realize
the reduced circuit matrices. An efficient first few order
moments matching based realization for interconnect RLC
circuit is proposed in [19]. In general, no systematic approach
has been proposed for realizing order-reduced circuit matrices.

Another quite different approach to circuit complexity re-
duction is by means of local node elimination and realiza-
tion [3], [10], [31], [34], [35]. The major advantage of these
methods over projection-based methods is that the reduction
can be done in a local manner and no overall solution of the
entire circuit is required and reduced models can be easily
realized using RLCM elements. This idea was first explored
by selective node elimination for RC circuits [10], [34], where
time-constant analysis is used to select nodes for elimination.
Node reduction for magnetic coupling interconnect (RLCM)
circuits has recently become an active research area. Gener-
alizedY -∆ transformation [31], RLCK circuit crunching [3],
and branch merging [35] have been developed based on nodal
analysis (NA), where inductance becomes susceptance in the
admittance matrix. Since mutual inductance is coupled via
branch currents, to perform nodal reduction, an equivalent
6-susceptance NA model is introduced in [31] to reduce
two coupling current variables and template matching via
geometrical programming is used to realize the model order
reduced admittances, but its accuracy depends heavily on the
selection of templates and only1-port realization has been
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reported. Meanwhile, RLCK circuit crunching and branch
merging methods are first-order approximation based on the
nodal time-constant analysis. The drawbacks for this first-order
approximation are: (1) error is controlled in a local mannerand
will be accumulated, hence it is difficult to control the global
error due to reduction; (2) not too many nodes can be reduced
if the elimination condition is not satisfied.

Another way to model and characterize complex intercon-
nect structures in high frequency (in RF or even microwave
ranges) is by means of rational approximation based on the
direct measurements or rigorous full-wave electromagnetic
simulation [1], [7], [9], [13], [14], [24], [33]. Many of those
methods have been used in the RF and microwave circuits
modeling as they are very flexible to be applied to different
interconnect structures and wideband modeling.

In this paper, we focus on realizable modeling of RLCM
circuits. We propose a new passive reduction and realization
framework for general passive high-order RLCM circuits. Our
method starts with large RLCM circuits which are extracted
by existing geometry extraction tools like FastCap [25] and
FastHenry [17] under some relaxation conditions of the full-
wave Maxwell equations (like electro-quasi-static for FastCap
or magneto-quasi-static for FastHenry) instead of measured or
simulated data. It is our ultimate goal that we can obtain the
compact models directly from complex interconnect geometry
without measurement or full-wave simulations. The new mod-
eling method is based on the general s-domain hierarchical
model reduction algorithm [39], [41] and an improved VPEC
(vector potential equivalent circuit) [44] model for self and
mutual inductance, which can be easily sparsified and is
hierarchical reduction friendly.

On the theoretical side, we show that the s-domain hierar-
chical reduction is equivalent to implicit moment matching
arounds = 0, and that the existing hierarchical reduction
method by one-point expansion [39], [41] is numerically stable
for general tree-structured circuits. We also show that thepro-
posed hierarchical reduction preserves reciprocity of passive
circuit matrices. Practically, we propose a hierarchical multi-
point reduction scheme to obtain accurate order reduced ad-
mittance matrices of general passive circuits. A novel explicit
waveform matching algorithm is proposed for searching domi-
nant poles and residues from different expansion points based
on the unique hierarchical reduction framework. To enforce
passivity, state-space based convex programming optimization
technique [7] is applied to the model order reduced admit-
tance matrix. To realize the passivity-enforced admittance, we
propose a general, reciprocity-preserving, passivity-preserving,
multi-port network realization method based on relaxed one-
port network synthesis technique using Foster’s canonicalform
in an error-free manner. The resulting modeling algorithm can
take in general RLCM SPICE netlists and generate out SPICE
netlists of passive multiple-port models for any linear passive
network with easily controlled model accuracy and complexity.

The rest of this paper is organized as follows. Section II
reviews the hierarchical reduction algorithm. Section IIIshows
some theoretical results regarding the hierarchical reduction.
Section IV proves that the hierarchical reduction can pre-
serve the reciprocity. Section V presents a new hierarchical

multi-point expansion scheme and a novel explicit waveform
matching algorithm for searching dominant poles and residues
from different expansion points. Section VI briefly reviews
the VPEC model and comparison with nodal-susceptance
based inductance models. Section VII present the state-space
based convex programming for enforcing the passivity of the
order reduced admittance circuit matrices. In section VIII, we
will describe the generaln-port network realization method.
Experimental results on an on-chip spiral inductor, high-speed
PEEC modeled bus circuits and comparison with existing re-
duction approaches will be presented in Section IX. SectionX
concludes the paper.

II. REVIEW OF HIERARCHICAL CIRCUIT REDUCTION

ALGORITHM

Assume that modified nodal analysis (MNA) is used for
circuit matrix formulation. With this, the system-equation set
MX = b, can be rewritten in the following form (Schur’s
decomposition):





M II M IB 0
MBI MBB MBR

0 MRB MRR









xI

xB

xR



 =





bI

bB

bR



 . (1)

The matrix, M II , is the internal matrix associated with
internal variable vectorxI .

Hierarchical reduction is to eliminate all the variables inxI ,
and transform (1) into the following reduced set of equations:

[

MBB∗ MBR

MRB MRR

] [

xB

xR

]

=

[

bB∗

bR

]

, (2)

whereMBB∗ = MBB
− MBI(MII)−1MIB and bB∗ = bB

−

MBI(MII)−1bI . Suppose that the number of internal variables
is t, and the number of boundary variables ism. Then each
matrix element inMBB∗ and bB∗ can be written in the
following expanded forms:

aBB∗

u,v = aBB
u,v −

1

det(MII )

m
X

k1,k2=1

aBI
u,k1

∆II
k2,k1

aIB
k2,v, (3)

whereu, v = 1, ..., m. We call aBI
u,k1

∆II
k2,k1

aIB
k2,v/det(MII) a

composite admittancedue to MNA formulation, and

bB∗

u = bB
u −

1

det(MII )

m
X

k1,k2=1

aBI
u,k1

∆II
k2,k1

bI
k2

, (4)

where u = 1, ..., m and ∆u,v is the first-ordercofactor of
det(M) with respect toau,v.

Hierarchical node reduction algorithm computes the new
admittanceaBB∗

u,v and new right-hand side elementbB∗
u in

terms of order-limited rational functions ofs hierarchically.
One critical issue during the hierarchical reduction is can-

cellation. Two type of cancellations have been observed [39]:
symbolic term cancellation, where two product terms consist-
ing of composite admittances cancel out;symbolic common-
factor cancellation, where the numerator and the denominator
of the resulting product term consist of composite admittances
have a common symbolic factor, which happens when there
are at least two first-order cofactors exist in a product term. A
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general s-domain reduction algorithm based on MNA (modi-
fied nodal analysis) was proposed in [39], [41] where graph-
based de-cancellation is carried out numerically in frequency
domain (s-domain). The hierarchical reduction algorithm [39],
[41].

III. H IERARCHICAL REDUCTION VERSUSMOMENT

MATCHING

In this section, we first discuss how the s-domain hierarchi-
cal reduction is related to the implicit moment matching. Then
we discuss the numerical stability and reciprocity-preserving
property of the hierarchical reduction process.

A. Moment Matching Connection

Consider a linear system withn state variables in vectorx,
the system is given by

sx = Ax + b, (5)

whereA is ann×n system matrix,b is the input vector to the
circuit. Then we can obtainx = (Is − A)−1b. Let’s consider
single-input single-output systems where we have only one
input bj and we are interested in state response at nodei. In
this case we have

xi(s) = Hij(s)bj =
∆ij

det(Is − A)
bj , (6)

where∆ij is the first-order cofactor of matrixM = (Is−A)
with respect to the element at the rowi and columnj. Hij(s) is
the transfer function. So the exact solution of any state variable
or its transfer function ins-domain can be represented by a
rational function ofs.

Hierarchical reduction basically is to reduce then × n
matrix M into a very smallerm × m matrix M ′ based
on block Gaussian elimination such thatxi can be trivially
solved symbolically by using Eq. (6). During this reduction
process, all the rational functions involved are truncatedup
to a fixed maximum order and the final solution will be a
rational function with the same order for its numerator and
its denominator. We then have the following theoretical result
for the computed state variablex′

i(s) from the hierarchical
reduction process in s-domain.

Theorem 1:The state variablex′
i(s) computed by thes-

domain hierarchical reduction withq as the maximum order
for all the rational functions will match the firstq moments of
the exact solutionxi(s) expanded by Taylor series ats = 0.
Proof: As we know that the exact solution ofxi(s) is a rational
function as shown in Eq.(6). Due to the truncation, the solution
computed by the hierarchical reduction process will be given
by

x′
i(s) =

a0 + a1s + ... + aqs
q

b0 + b1s + ... + bqsq
, i = 1, ..., q. (7)

It is proved in [40] that a cancellation-free rational expres-
sion from the hierarchical reduction process are the exact
expressions obtained from the flat circuit matrix. If we do
not perform any truncation, thenx′

i(s) will be the exact
solution,xi(s), which is obtained from the flat circuit matrix
by Eq.(6) when all cancellations are removed numerically

during the hierarchical reduction process (under assumption
that no numerical error is introduced). With truncation, all
the coefficientsa0, ..., aq and b0, ..., bq are still exactly the
same as that inxi(s). If we compute the moments ofx′

i(s) =
m0+m1s+..., the firstq moments can be uniquely determined
by the2q coefficientsa0, ..., aq andb0, ..., bq:

mi =
ai −

∑i

k+l=i,k≤i,l≤i,k 6=0 bkml

b
. (8)

If b0 is not zero,b is simply b0, otherwiseb will be the first
non-zero coefficientbt and the firstq moments become the
coefficients ofs−t(t > 0) to that of s−t+q. So the theorem
is proved. Hence the transfer functionH ′

ij(s) will also match
the exact one up to the firstq moments.

For a general multi-input and multi-output system, each
element in the reducedm × m admittance matrixM ′(s)
becomes a rational function [41]:

aBB∗
u,v =

det(M [1, ..., m, u|1, ..., m, v])

det(M II)
, (9)

where,M [1, ..., m, u|1, ..., m, v] is a matrix that consists of
matrix M II . It is M [1, ..., m|1, ..., m], plus rowu and column
v of matrix M . Then we have the following results:

Corollary 1: Each rational admittance functiona′BB∗
u,v (s) in

the reducedm×m matrix,M ′(s), by the hierarchical reduction
process, will match the firstq moments of the exact rational
function aBB∗

u,v (s) expanded by Taylor series ats = 0.

B. Numerical Stability of the Hierarchical Reduction

The hierarchical reduction process is essentially equivalent
to implicit moment matching ats = 0. As a result, the
frequency response far away froms = 0 will become less
accurate due to the truncation of high order terms. Another
source of numerical error comes from the numerical de-
cancellation process where polynomial division are required
for removing the common-factors (cancellation) in the newly
generated rational function, which will in turn introduceserror
from numerical term cancellation (the sum of two symbolic
terms should have been zero, but is not zero due to numerical
error). Such numerical noise will cause the higher order terms
less accurate even we try to keep them. In Fig. 1, we show
that the responses from the 3-way, 2-level partitionedµA741
circuit [42] under different maximum reduction orders of
rational functions. As we can see that increasing the rational
function order does not increase the accuracy of the response
after the order reaches 8. This is the typical numerical stability
problem with the moment matching method [28]. However,
unlike explicit moment matching methods, the hierarchical
reduction is numerical stable for tree-structured circuits. We
then show the following results:

Theorem 2:For tree-structured circuits, the hierarchical
reduction process can be performed such that there is no
common-factor cancellation in the generated rational func-
tions.
Proof: For tree structured circuits, we can always partition
the circuit in such a way that each subcircuit only has one
node shared with its parent circuit. As a result, there is only
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Fig. 1. Responses ofµA741 circuit under different reduction orders.

one composite admittanceaBI
u,k1

∆II
k2,k1

aIB
k2,v/det(MII ) in Eq.(3)

generated in its parent circuit for each subcircuit. According
to common-factor cancellation condition [39], at least four
composite elements from the same subcircuit reduction are
required for the existence of common-factor cancellation.So
no common-factor cancellation will occur under such parti-
tioning. The theorem is proved.

The significance of Theorem 2 is that the hierarchical re-
duction process becomes numerical stable for almost arbitrary
order for tree circuits. The only cancellation left is the term
cancellation, where the sum of two symbolic terms is zero,
which will not introduce any noticeable numerical error in the
reduction process. Fig. 2 shows the voltage gain response (real
part) of a RC tree with about 100 nodes (also 100 capacitors)
under different reduction orders. As can be seen, the reduced
voltage gain will match the exact one well when the kept
orders reach about 60.

0 1 2 3 4 5 6 7 8 9 10

x 10
8

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency

R
ea

l p
ar

t o
f v

ol
ta

ge
 g

ai
n

Frequency responses of a RC tree circuit under different reduction orders

exact
10th order
20th order
40th order
60th order

Fig. 2. Responses of a RC tree circuit under different reduction orders.

The fact that no common-factor de-cancellation (polynomial
division) is required was also exploited in the direct truncation

of transfer function method (DTT) [16] where only polynomial
addition is required to compute the truncated transfer functions
for tree-structured RLC circuits only. The DTT reduction
process can be viewed as a special case of our method. But
for general non-tree structured circuits, polynomial division
is required in node elimination based reduction methods due
to common-factor cancellation, and polynomial division due
to truncation will not be numerically stable for very high
frequency range far away from DC as shown before.

To mitigate this problem, we propose using multi-point
expansion for obtaining accurate rational functions or reduced
admittance matrices for modeling a general multi-input and
multi-output linear system as will be shown in Section V.

IV. PRESERVATION OFRECIPROCITY

A reciprocal network is one in which the power losses
are the same between any two ports regardless of direction
of propagation [43]. Mathematically, this is equivalent tothe
requirement that the circuit admittance matrix is symmetric
(or scattering parameter S21=S12, S13=S31, etc). A network
is known to be reciprocal if it is passive and contains only
isotropic materials. Reciprocity is an important network prop-
erty. For the hierarchical reduction, we have the following
results:

Theorem 3:The hierarchical reduction method preserves
the reciprocity of a passive circuit matrix.
Proof: The proof can be found by using Eq.(9) again. We
first study a circuit with circuit matrixM . The circuit has
one subcircuit with circuit matrixM II . Assume that original
circuit matrix is symmetric (its subcircuit is also symmetric,
i.e. bothM andM II are symmetric) due to reciprocity.

After reduction, the reduced circuit matrix becomes anm×
m matrix where each matrix element at rowu and columnv
appears in Eq.(9). Then we look at the element at rowv and
columnu, which is

aBB∗
v,u =

det(M [1, ..., m, v|1, ..., m, u])

det(M II)
, (10)

Notice that matrixM is symmetric, so the rowu in Eq.(9)
and columnu in Eq.(10) are same. This is true for columnv
in Eq.(9) and rowv in Eq.(10). As a result we have

M [1, ...,m, v|1, ...,m, u] = M [1, ...,m, u|1, ...,m, v]T (11)

det(M [1, ..., m, v|1, ...,m, u]) = det(M [1, ...,m, u|1, ..., m, v]T ) (12)

Hence,aBB∗
u,v = aBB∗

v,u and reciprocity is preserved in the
reduced circuit matrix when a subcircuit is reduced. In the
hierarchical reduction, we reduce one subcircuit at a time and
the reduced circuit matrix is still symmetric after reduction. So
the reduced circuit matrix after all the subcircuits are reduced
is still symmetric. This theorem is proved.

V. M ULTI -POINT EXPANSION HIERARCHICAL REDUCTION

The multi-point expansion scheme by real or complex
frequency shift has been exploited before in projection based
reduction approaches for improving the modeling accuracy [8],
[15]. The basic idea for such a strategy is that dominant poles
close to an expansion point is more accurately captured than
the poles that are far away from the expansion point in the
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moment matching based approximation framework. Therefore,
instead of expanding at only one point, we can expand at
multiple points along real or complex axis to accurately
capture all the dominant points in the given frequency range.

In this paper, we extend this concept to the hierarchical
reduction algorithm. Specifically, at each expansion point, the
driving point function or each rational admittance function in
a reduced admittance matrix can be written into the partial
fraction form

f(s) =

n
∑

i

ki/(s − pi). (13)

By intelligently selecting poles and their correspond residues
from different expansions and combining them into one ratio-
nal function, we can obtain a more accurate rational function
for very high frequency range. In this paper, we propose
an explicit waveform matching scheme based on hierarchical
reduction framework to find dominant poles and their residues
for both SISO (single-input single output) and MIMO (multi-
input multi-output) systems. It is shown experimentally tobe
superior to the existing pole searching algorithm.

A. Multi-Point Expansion In Hierarchical Reduction

To expand the circuit at an arbitrary location in the complex
s-plane, saysk = αk + ωkj, we can simply substitutes in
Eq.(6) bys + sk. Then Eq.(6) becomes

xi(s) = Hij(s)bj =
∆ij(s + sk)

det(I(s + sk) − A)
bj . (14)

As shown in [8], poles that dominate the transient response
in interconnect circuits are near the imaginary axis with large
residues. Hence we expand along the imaginary axis for RF
passive and interconnect circuits. Since only capacitors and
inductors are associated with the complex frequency variable
s, expansion at a real pointα or a complex pointωij point is
essentially equivalent to analyzing a new circuit where each
capacitorC has a new resistor (with real valueαiC or complex
value ωiCj) connected in parallel with it and each inductor
L has a new resistor (with real valueαiL or complex value
ωiLj) connected in series with it [29].

In this paper, we show that the multi-point expansion can be
done very efficiently in the hierarchical reduction framework.
The rational functions are constructed in a bottom up fashion
in a Y-parameter determinant decision diagrams (YDDDs) in
the hierarchical reduction algorithm [39]. When a capacitor
C or an inductorL (its YDDD node) is visited, we build a
simple polynomial0+Cs or 0+Ls to multiply or add it with
existing polynomials seen at that DDD node. In the presence
of a non-zero expansion point,αi or ωij, we can simply build
a new polynomialαiC + Cs or ωiCj + Cs for the capacitor
andαiL + Ls or ωiLj + Ls for the inductor respectively. So
we do not need to rebuild the circuit matrix or the YDDD
graphs used for reduction ats = 0. Instead we only need to
rebuild the rational functions by visiting every YDDD node
once, which has the time complexity linear with the YDDD
graph size, a typical time complexity for DDD graph based
methods [36].

B. Explicit Waveform Matching Algorithm

One critical issue in multi-point expansion is to determine
at each expansion point which poles are accurate and should
be included in the final rational function. In the complex
frequency hopping method [8], a binary search strategy was
used where poles (common poles) seen by two expansion
points and poles with distance to the expansion points shorter
than the common poles are selected. Such acommon-pole
matchingalgorithm, however, is very sensitive to the numerical
distance criteria for judging if two poles are actually a same
pole. For accurately detecting common poles, small distance
is desirable, but it will lead to more expansion points; and
even worse is that the same pole may be treated as different
poles seen by two different expansion points. Also this method
may fail to detect some dominant poles as the circle for
searching accurate poles might be too small as shown in our
experimental results.

In this paper, we propose a new reliable pole searching
algorithm, which is based on explicit frequency waveform
matching. The new algorithm is based on the observation thata
complex polepi and its residueki in the partial fraction form,
ki/(s − pi), has the largest impact at frequencyfi when the
imaginary part of the pole equals2πfi. Fig. 3 shows a typical
response ofki/(s−pi), whereki = 2.78×1012+2.34×1010j
andpi = −4.93× 108 + 2.58× 1010j. The peaks of both real
(absolute value) and magnitude are around4.11× 109, which
is equal to2.58× 1010/(2π). The reason for this is that both
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real and imaginary parts ofki/(s−pi) reach a peak when their
denominator(pr)2 +(ω− pi)2 reaches a minimum atω = pi,
wheres = ωj andpi = pr+pij. Complex pole with negative
imaginary part typically will not have significant impact on
the upper half complex plane.

The idea offrequency waveform matchingis to explicitly
match the approximate frequency waveform with that of exact
ones. Specifically, at an expansion point,fi, we perform the
hierarchical reduction and then determine an accurate max-
imum frequency range[fi, fi+1] such that the error between
responses (magnitude) of the reduced rational function andthat
of the exact one are bounded by a pre-specified error bound.
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The error is computed as follows:

err =
|dB20(Ve) − dB20(Va)|

|dB20(Ve)|
(15)

wheredB20(x) = 20 ∗ log10(|x|) and |x| is the magnitude
of a complex numberx. Ve is the exact response andVa is
the approximate response. If|dB20(Ve)| = 0, then we use
|dB20(Va)| as the denominator in Eq.(15 if it is not zero. If
|dB20(Va)| = 0, we haveerr = 0.

Then fi+1 will be the next expansion point. All the poles
whose imaginary part fall within the range[2πfi, 2πfi+1] will
be selected because their contribution in this frequency range
is the largest. The new algorithm does not have the duplicate
pole issue as accurate poles can only be located at one place.
The accuracy of the found poles is assured by the explicit
waveform matching. Experimental results show that it tends
to use less expansion points than the common-pole matching
method, and less CPU time.

C. Multi-Point Expansion for MIMO System Reduction

For a multi-input multi-output system, by using the mod-
ified nodal analysis, the reduced circuit matrixM ′(s) =
[yij(s)]m×m will become an m × m admittance matrix.
Each admittanceyij is a complex rational function with
real or complex (if expansion points are on imaginary axis)
coefficients. In this case, we explicitly watch for the error
between each approximate rational admittance and the exact
value of the admittance at each frequency. The exact value
of each admittance can be computed by visiting the DDD
graph representing the admittance. Since there is a lot of
sharing among those admittances, the cost of evaluating all
the admittances are similar to evaluating one admittance,
considering that every DDD node just needs to be visited once
at each frequency point [42].

VI. I NDUCTANCE MODELS IN HIERARCHICAL REDUCTION

In this section, we discuss the VPEC (vector potential
equivalent circuit) used in our reduction method. We compare
the VPEC model with another inductance based nodal sus-
ceptance concept. We will show that the inductance model by
nodal-susceptance is not physically equivalent to inductance
as unwanteddc paths are created at low frequency.

A. Inductance Formulation In Hierarchical Reduction

For an RLCM circuit, when we assume only independent
current sources exist at external ports, the circuit matrixin
s-domain starting with MNA formulation can be written as

Gx + sCx = Bi(s), v(s) = BT x (16)

wherex, v, i are the state variable, output voltage and input
current vectors, andG, C, B are state and input-output matri-
ces, respectively. (16) can be further written as:

»

G AT
l

−Al 0

– »

vn

il

–

+ s

»

C 0
0 sL

– »

vn

il

–

=

»

Aiin(s)
0

–

, (17)

whereG andC are the admittance matrices for resistors and
capacitors,L is the inductance matrix, which includes mutual
inductance,vn is a vector of node voltage ,il is a branch

Fig. 4. An example of coupled 2-bit RLCM circuit under PEEC model.

current vector of inductors,Al is the adjacency matrix for all
inductors, andAi is the adjacency matrix for all port current
sources.

Thecircuit-reductionmeans applying the Gaussian elimina-
tion for state variables like node voltagevn and branch current
il. If we first reduce the branch current vectoril, we actually
result in the state equation only with nodal voltage variables.

[G + sC +
1

s
AlSAT

l ][vn] = [Aiin(s)]. (18)

This is exactly the nodal analysis formulation, whereS = L−1

is the susceptance [5], andΓ = 1
s
AlSAT

l is the admit-
tance form for the mutual inductance under NA. The circuit-
reduction by further eliminating the nodal voltage-variable vn

is exactly theY − ∆ transformation in [31].

B. Inductance Models by Nodal-Susceptance
The nodal-susceptance in (18) actually createsdc path at

low-frequency range. We illustrate this with a 2-bit intercon-
nect example shown in Fig. 4. The nodal voltage equation of
susceptance at four nodes (A,B,C,D) becomes

S11

s
VA −

S11

s
VB +

S21

s
VC −

S21

s
VD = I1

−
S11

s
VA +

S11

s
VB −

S12

s
VC +

S12

s
VD = −I1

S12

s
VA −

S12

s
VB +

S22

s
VC −

S22

s
VD = I2

−
S12

s
VA +

S12

s
VB −

S22

s
VC +

S22

s
VD = −I2 (19)

As shown in Fig. 5, it is mathematically equivalent to
stamping six susceptance elements into the admittance ma-
trix [31] whens 6= 0. However, the susceptance elementSij/s
approaches infinite (thus 0 impedance or short circuit) when
s = 0, there exist four unwanteddc-paths between nodes
(A,B,C,D), which do not exist before. As a result it leads to
the wrongdc values and inaccurate low-frequency simulation
results even for the 2-bit bus example in Fig. 4.

We compute the exact driving-point impedance responses
using inductance under MNA and nodal-susceptance under
NA, respectively using the symbolic analysis tool [36].

As shown in Fig. 6, NA formulation (by using nodal suscep-
tance for inductance) gives the exact response as SPICE does
in the high-frequency range, but the response is not correctin
the low-frequency range. Whens approaches zero, the actual
driving-point impedance in Fig.4 should be dominated by three
capacitors with total capacitance value43fF . However, for
Fig.5 at dc, the driving-point impedance becomes a resistor
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Fig. 5. An example of coupled 2-bit RLCM circuit under nodal susceptance
model.

with total resistance value234 ohms (or49 ohms(dB)) due to
the unwanteddc paths.
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Fig. 6. Frequency responses of PEEC model in SPICE, susceptance under
NA and VPEC models for the 2-bit bus.

The reason for such discrepancy is that whens = 0, L−1

can’t be computed asL becomes singular. As a result, the
NA formulation of inductance, which is based onL−1, is no
longer equivalent to the original circuit matrix. Hence circuit-
reduction starting with nodal-susceptance formulation can not
give the correct low-frequency response in general, and it
is not suitable for generating the wideband macro-model of
interconnects.

C. Formulation by VPEC Model

From the above discussion, we know that the inductance
formulation by the nodal-susceptance leads to inaccurate low-
frequency response. It is not suitable for generating the re-
duced interconnect model for wideband applications. How-
ever, directly handling mutual inductance in a dense MNA
formulation as in [3] will be computationally expensive. As
shown in [44], the sparsified VPEC model actually not only
achieves the runtime speedup, but also has the high accuracy
compared to the original full model. Therefore, we use1 the
VPEC model to represent inductance in our circuit-reduction
flow, as it enables passive pre-sparsification [27], [44].

Fig. 7. An example of coupled 2-bit RLCM circuit under VPEC model.

The significant difference between VPEC and nodal-
susceptance models for mutual inductance is that VPEC is
a physically equivalent model, and it can exactly representthe
original system [44]. As shown in Fig.7, this model consists
of an electrical circuit (PEEC resistance and capacitance)and
magnetic circuit (VPEC effective resistance and controlled
source). It includes the following components: (1) the wire
resistance and capacitance the same as in the PEEC model;
(2) a dummy voltage source (sensing electrical currentIi) to
control Îi; (3) a voltage controlled current source to relateV̂i

and Îi with gain g = 1; (4) an electrical voltage sourceVi

controlled byV̂i; (5) effective resistors including ground̂Ri0

and couplingR̂ij to consider the strength of inductances; and
(6) a unit inductanceLi to: (i) take into account of the time
derivative ofAi; and (ii) preserve the magnetic energy from
the electronic circuit.

Clearly, this SPICE compatible implementation does not
introduce unwanteddc paths whens = 0 as by the nodal-
susceptance. Moreover, Fig. 6 shows the response of VPEC
model for the 2-bit circuit, which is identical to SPICE for
the entire frequency range. Detailed analysis also shows the
impedance function of the 2-bit circuit modeled by VPEC
model is the same as the impedance function by PEEC
model [45].

As shown in [44], although VPEC model introduces more
circuit elements, it has faster runtime because this model
dramatically reduces reactive elements (i.e., inductors), and
leads to less numerical derivatives and integrals and makesthe
simulation converge faster. To further improve the sparsified
VPEC model extraction without full inversion as in [44], we
extend a windowing technique [5]. It reduces the computation
complexity to (O(Nb3)), where b is the size of the window
(i.e. the size of sub-matrix). Note that although VPEC model
enables efficient inductance simulation, the order of the circuit
matrix is still high. Moreover, its SPICE compatible model
still contains controlled sources, and can not be handled by
the existing realizable circuit-reduction approaches [3], [31].

VII. PASSIVITY ENFORCEMENT

In this section, we present the state-space based passivity
enforcement method, which is based on the method used in [7].
But we show how this method can be used in our hierarchical
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model order reduction framework to enforce passivity of the
model order reduced admittance matrixỸ(s).

Passivity is an important property of many physical systems.
O. Brune [6] has proved that the admittance and impedance
matrix of an electrical circuit consisting of an interconnection
of a finite number of positive R, positive C, positive L, and
transformers are passive iff (if and only if) its rational function
are positive real (PR). It can be proved that the following
statements are equivalent:

(a) a transfer function matrixY(s) is positive real.
(b) Let (A B C D) be a minimal controllable state space

representation ofY(s). ∃K,

K = KT , K ≥ 0, (20)

such that the Linear Matrix Inequality (LMI)
[

AT K + KA KB − CT

BT K − C −D − DT

]

≥ 0 (21)

holds.
Constraint (21) actually comes from the Kalman

Yakubovich Popov (KYP) Lemma, which establishes
important relations between state space and frequency domain
objects. KYP was introduced in control theory and later used
in the network synthesis [4].

If we include the term proportional tos in the transfer
function, which means we need to know what happens in
infinite frequency, we can write the admittance matrix in terms
of (A B C D) as

Y(s) = sY ∞ + D + C(sI − A)−1B (22)

whereI denote the identify matrix with the same dimension as
A.To keep the transfer function positive real,Y ∞ must satisfy

Y ∞ = (Y ∞)T , Y ∞ ≥ 0 (23)

Therefore, we can transform the problem of checking
whether the admittance matrixY(s) is positive real into the
problem of checking whether its corresponding state space
model in terms of(A B C D) is positive semidefinite. More
important is that we can use the PR criterion in terms of the
state-space form to enforce the passivity of the reduced circuit
matrices as shown in the next section.

A. State-Space Model Representation ofỸ(s)

After the multi-point hierarchical model reduction, ann-
port order reduced admittance matrix is generated as shown
in Eq.(24), where each̃Yp,q is a rational function ofs. The
reduction process can capture the entire dominant complex
poles, which means there is no poles in the RHP (right hand
plane) of the complex plane.

Ỹ(s) =







Ỹ1,1 · · · Ỹ1,n

...
. . .

...
Ỹn,1 · · · Ỹn,n






(24)

The first step we do is to transform the admittance matrix
Ỹ(s) into its state-space representation. We assume that all
rational functions in the matrix share the common poles

of the system. If there are private poles appearing on the
leading diagonal element, we can separate them and their
residues from the whole rational function after partial fraction
decomposition and realize them separately.

Given a multivariablen-port network, each rational func-
tion Ỹp,q is considered as a single-input and single-output
(SISO) subsystem and mapped to its state-space representation
in the controllable canonical form, which corresponds to
(Aq,q Bq,q Cp,q Dp,q) in the matrix of (A B C D) respec-
tively. Now we can write its state-space representation as
Eq.(25)

A =







A1,1 · · · 0
...

. . .
...

0 · · · An,n






B =







B1,1 · · · 0
...

. . .
...

0 · · · Bn,n







C =







C1,1 · · · C1,n

...
. . .

...
Cn,1 · · · Cn,n






D =







D1,1 · · · D1,n

...
. . .

...
Dn,1 · · · Dn,n







(25)
Also this mapping process could be viewed asn set single-

input and multiple-output (SIMO) subsystems. If we choose
them-th port as input port, them-th column admittance ratio-
nal function can be mapped into(Am,m Bm,m C:,m D:,m).

B. Passivity Enforcement Optimization

In this subsection, we briefly mention how passivity en-
forcement is done via a convex optimization process on the
state-space representation of the admittance matrix.

Assume that we have obtained the admittance matrix of a
model order reduced system̃Y(s) with a set ofN sampling
points. Let Ỹp,q(s) denote the(p, q) entry of the transfer
function Ỹ(s). Let Ŷp,q(sk) be the exact values of the
admittance at the entry(p, q) at the kth frequency point,
which can be obtained by the exact hierarchical symbolic
analysis [42].

The optimization problem is to determineC, D, Y ∞ such
that a cost function is minimized with constraints on the error
(Ŷp,q − Ỹp,q). Here the constraints are on the weighted least
square error, taken overN frequencies

N
∑

k=1

wk,p,q‖Ŷp,q(sk) − Ỹp,q(sk)‖2
2 ≤ tp,q. (26)

It is shown in [7] that the optimization problem in Eq.(26)
subject to constrains in Eq.(21) can be transformed into a
convex programming problem, which can be solved efficiently
by some existing convex programming programs.

We notice that passivity enforcement was done by the
compensation-based approach proposed in [1]. But this method
does not ensure the accurate matching because the compen-
sated part may have significant impacts on the frequency range
that we are interested.

VIII. M ULTI -PORTCIRCUIT REALIZATION

Once the newC, D, Y ∞ are obtained by the convex pro-
gramming, the new passivity-enforcedY(s) are constructed
again by Eq.(22). We now discuss how to generate realized
macro-models for both frequency and time domain simulation.
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A. Relaxed one-port realization

Y(s)

Gn_1
Cn_1

Gs Cs

Rm_1 Rm_M

Cn_N
Gn_N

Lm_1 Lm_M

Ln_N

Rn_1

Ln_1

Rn_N

Fig. 8. One-port Foster admittance realization.

We start with one-port network realization. For a one-port
model with driving-point admittance function, we propose to
use a generalized Foster’s canonical form based realization to
directly synthesize the admittance function.

To synthesize the one-port model from the driving-point
admittance rational functionY (s), we first rewrite it in the
Foster’s canonical form [43]:

Y (s) = sY∞ + Y0 +

M
∑

m=1

am

s − pm

+

N
∑

n=1

(
an

s − pn

+
a∗

n

s − p∗n
)

(27)
where we expand the rational function into the partial fraction
form with N conjugate-polespn andM real-polespm.

The admittance function in Foster’s canonical-form can be
then synthesized by an equivalent circuit in Fig. 8 with the
following relations to determine R, L, C, G elements:

Gs = Y0, Cs = Y∞;

Rm m =
1

am

, Lm m = −
pm

am

;

Ln n =
1

2Re{an}
, Ln nCn n|pn|

2 = Rn nGn n + 1,

Gn n

Cn n

= −
Re{anp∗n}

Re{an}
,

Rn n

Ln n

=
Re{anp∗n}

Re{an}
− 2Re{pn}.

(28)

Some existing works like PRIME [24], require every com-
plex pole pair to be physically realizable (every RCL element
is positive), which is over constrained and may lead to
significant error when unrealizable pole pairs are discarded
or their residues are changed. In our approach, werelax those
constraints by allowing some negative RLC elements. But the
passivity of the admittance function will still be guaranteed
by the passivity enforcement procedure since the realization
is error-free and reversible and does not change the passivity
of the realized system.

B. Multiple-port realization

For passive multi-port order reduced admittance matrix, we
propose a general complete-graph structure (in case of full
admittance matrix) to realize the admittance matrix based on
the one-port realization. In the following, we first illustrate
how a 2-port network is realized and then we extend this
concept for generaln-port network realization.

Given a2× 2 passive admittance matrix, which is obtained
by the hierarchical model order reduction method,

Y2×2(s) =

[

y11(s) y12(s)
y21(s) y22(s)

]

, (29)

it can be realized exactly by using theΠ-structure template
shown in Fig. 9, where each branch admittance will be realized
by the one-port Foster’s expansion method shown in Fig. 8.
Based on this template, such realization can be easily extended
to the multi-port case.

y2=−y12

y1=y11+y12 y3=y22+y12

Fig. 9. A general two-port realizationΠ model.

Yn×n(s) =







y11(s) · · · y1n(s)
...

. . .
...

yn1(s) · · · ynn(s)






(30)

Generally, for a reducedn-port network with a fulln × n
admittance matrix as shown in Eq.(30), the realized network
will be a complete graph where each branch represents an
admittance, which is realized by one-port realization method.
For instance, Fig. 10 shows an realization of a synthesized6-
port network. The branch admittance of themth port branch
(the branch between the port and ground) is the sum of all
the mth row admittances, and the admittance of the branch
between the port and any other port is the negative value of
the corresponding admittance.

Notice that our realized circuits automatically preserve the
reciprocity of the original circuit matrix as it requires the
admittance to be symmetric.

1

2 3

4

56

Fig. 10. A six-port realization based onΠ-structure.

IX. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in C++ and
all the data are collected on a Linux workstation with dual
1.6GHz AMD Althon CPUs and 2G memory. The convex pro-
gramming problem is solved using some standard optimization
packages. We use SeDuMi [38] and SeDuMi Interface to solve
the convex programming problem for passivity enforcement.
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A. One-port Macro-model for Spiral Inductor

We first construct the detailed PEEC model for a 3-turn
spiral inductor with its substrate. We assume copper (ρ = 1.7×
10−8Ω · m) for the metal and the low-k dielectric (ǫ = 2.0).
The substrate modeled as a lossy ground plane (heavily doped)
with ρ = 1.0×10−5Ω·m. The conductor is volume-discretized
according to the skin-depth, and longitudinal segmented by
one 10th of wave-length. The substrate is also discretized as
in [23]. The capacitance is extracted by FastCap [25] and only
adjacent capacitive coupling is considered since capacitive
coupling is short-range. The partial inductance is extracted
by FastHenry at 50GHz [17]. The inductive coupling between
any pair of segments (including segments in the same line)
is considered. Then we generate the distributed PEEC model
by π-type of RLC-topology to connect each segment, and it
results in a SPICE netlist with 232 passive RLCM elements.
The substrate parasitic contribution (Eddy current loss) is
lumped into the above conductor segment. Note that for more
accurate extraction at ultra-high frequency, it needs full-wave
PEEC model description [18]. For mutual inductance, a vector
potential equivalent model (VPEC) is used [44], which is more
hierarchical reduction friendly as no coupling inductor branch
currents are involved and circuit partition can be done easily.

1) Comparison with Common-Pole Matching Method in
Frequency Domain:For the spiral inductor, driving point
impedance is obtained by the multi-point hierarchical re-
duction process. We use both the common-pole matching
algorithm in the complex frequency hopping method and the
new waveform matching algorithm to search for dominant
poles along the imaginary axis.

For a fair comparison, we make sure the resulting ratio-
nal functions will have similar accuracy. For common-pole
matching algorithm, if two poles are located within 1% of
their magnitude, they are regarded as the same pole. For
waveform matching algorithm, the error bound between the
approximate one and the exact is set to 0.1%. As a result,
common-pole approach takes 26 expansion with 37.1 seconds,
waveform marching method use 15 expansion with 22.57
seconds. The responses obtained using both method versus the
exact response up to 100GHz are shown in the Fig. 11. The
responses from both methods match the exact ones very well
all the way to 100GHz. Our experience shows that CPU time
of common-pole method is highly depends on the common-
pole detection criteria. For instance if we set the criteria
for common-pole detection to 0.5%, then 65 expansions are
carried out. Also as more expansions are carried out, chances
that a single pole is seen by two consecutive expansion points
become larger, but it may be treated as different poles due
to a small distance criteria, which in turn leads to significant
distortion of the frequency response.

2) Time-domain Simulation of a LC Oscillator:We further
demonstrate the accuracy and efficiency of the inductor macro-
model in the time-domain harmonic simulation. Note that the
synthesized one-port macro-model can be used to efficiently
predict the critical performance parameters of spiral inductor,
such as theωT , Q factor, and even the resonance starting-
condition for an oscillator [32].
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Fig. 11. Frequency Response of the 3-turn spiral inductor and its reduced
model by using waveform matching and common-pole method.

We use the Colpitts LC oscillator as an example as shown
in Fig. 13 (b) where the active circuit behaves likenegative
resistanceto make the oscillator work as shown in Fig. 13 (a).

In this experiment, the synthesized one-port model is from
a 25-order rational function with 24 poles and results in a
macro-model with 40 RLC elements. As shown in Fig. 12,
the waveform at steady state of synthesized model and original
model match very well but we observe a 10X times (5.17s vs.
0.52s) runtime speedup by using the reduced model.
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Fig. 12. Time-domain comparison between original and synthesized models
for a Colpitts LC oscillator with a 3-turn spiral inductor.

B. Multi-Port Macro-model of Coupled Transmission Line

We then use a 2-bit coupled transmission line as the example
for multi-port reduction and synthesis. The original PEEC
model contains 42 resistors, 63 capacitors, 40 self-inductors,
and 760 mutual-inductors, where we consider inductive cou-
pling between any two segments including those in the same
line. Still, for mutual inductance, a vector potential equivalent
model (VPEC) is used.
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Fig. 13. Colpitts LC oscillator with spiral inductors.
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Fig. 14. Frequency Responses ofY11 of a 2-bit Transmission Line.
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Fig. 15. Frequency Responses ofY12 of a 2-bit Transmission Line.

The matching frequency is up to 31GHz and we find 24
dominant poles in this range. There are 150 RLC elements
in the synthesized circuit compared with 364 devices in the
original circuit, which represent a 58.79% reduction rate.The
frequency response forY11(s) andY12(s) are shown in Fig. 14
and Fig. 15, respectively. If we only match to 14G, 12 poles are
required and we can achieve a 78.5% reduction rate instead.
The time domain step responses from the original circuit, the
14GHz synthesized circuit and the 31GHz synthesized circuit
are shown in Fig. 16. The difference among these three circuits
is fairly small.

In Fig. 17, we further compare the frequency responses
of the 24th-order macro-model by hierarchical model order
reductoin (HMOR), 24th-order macro-model by PRIMA, and
time-constant based reduction (with similar reduction ratio)
with the original circuit. The frequency response of port-1is
observed at the input port of first bit, and that of port-2 is at
the far-end of the first bit. Due to the preserved reciprocity,
the reduced mode is easily realized by Foster’s synthesis, and
the model size is half of the SPICE-compatible circuit by
PRIMA (via recursive convolution for eachYij ). Moreover,
as shown in Fig. 17 the accuracy of the 24th-order model by
H-reduction can match up to 30GHz but the same order model
by PRIMA can only match up to 20GHz. Note that under
the similar reduction ratio with H-reduction, the time-constant
based reduction can only match up to 5GHz.
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Fig. 16. Transient Responses of a 2-bit Transmission Line.

C. Scalability Comparison with Existing Methods

Table II gives the reduction CPU time comparison for
two methods.HMOR denotes the CPU times of hierarchical
reduction. We notice that the HMOR is slow than the PRIMA.
But the difference become less for large circuits. Theoretically
PRIMA and the one-point hierarchical model reduction have
the same time complexity, that is time of complexity of
one Gaussian eliminations. In PRIMA, we have to solve the
circuit matrix at least once using Gaussian elimination or LU
decomposition to solve for all the Krylov space base vectors
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Circuits #Elements #Poles Simu-time(s) Model-size(Kb) Delay-error (%)
H-redu time-const. Prima Original H-redu time-const. Prima Original H-redu time-const. Prima

ckt1 84 10 0.15 0.12 0.50 0.51 0.85 0.86 3.51 3.52 -0.16% -0.86% -0.15%
ckt2 258 10 0.15 0.15 0.92 5.31 0.85 0.86 3.51 11.23 -0.24% -1.12% -0.22%
ckt3 905 25 0.32 0.43 2.25 19.51 1.68 1.70 19.8 41.1 -0.41% -4.43% -0.37%
ckt4 5255 30 0.52 0.89 3.13 661.46 1.92 2.23 28.2 243.6 -0.62% -6.83% -0.58%
ckt5 20505 30 0.52 1.08 5.98 1356.66 1.92 2.53 28.2 957.9 -1.04% -12.91% -0.83%

TABLE I

SIMULATION EFFICIENCY COMPARISON BETWEEN ORIGINAL AND SYNTHESIZED MODEL.
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Fig. 17. Frequency responses of a 2-bit transmission line attwo ports.

Circuits #Elements PRIMA(sec) HMOR(sec)
ckt1 84 0.042 0.6
ckt2 258 0.077 11.7
ckt3 905 0.16 17.8
ckt4 5255 1.73 44.4
ckt5 20505 32.37 96.8

TABLE II

THE COMPARISON OF REDUCTIONCPUTIMES.

(or moments). In hierarchical reduction method, if we reduce
one node at a time, it becomes the Gaussian elimination
process. All the polynomial operations with fixed order have
fixed computing costs. The efficiency difference is mainly due
to expensive recursive operations used in graph operations,
which can be further improved, and multi-point matching.
However the multi-point matching makes our method closed-
loop, which gives us the good control on the model accuracy.
For PRIMA, the model accuracy can’t be determined without
several trials using different reduction orders.

We finally present a scalability comparison in TableI by
the time-domain transient simulation for the following aspects:
(i) runtime of simulation; (ii) realization efficiency (realized
model size); and (iii) accuracy in terms of delay. Several
different sized RLCM circuits are used. We compare the our
method with the time-constant based circuit-reduction [3]and
projection-based reduction PRIMA implemented at [21]. The
same number of poles are used for the reduction when we
compare our H-reduction with PRIMA. The reduced model

by time-constant reduction is obtained with the similar model
size as H-reduction.

First, we find our realized RLCG circuit model size is up
to 10X smaller on average than the SPICE compatible circuit
from PRIMA. Therefore, similar simulation speedup (8X) is
observed when we run both circuits in SPICE3. When we
further compare the simulation time of our reduced models
with the PEEC circuits, a significant speedup (up to 2712X
for ckt5) is obtained. Furthermore, the waveform accuracy
in terms of delay is given in Column 12-14. The reduced
models are very accurate with the worst case delay error
being -1.04% even with 478X (957.9Kb vs.1.92Kb) reduction
ratio in terms of model size. But for the same reduction ratio
as our reduction, we find the time-constant based reduction
introduces large error (up to12.91%) because too many nodes
are to be eliminated and the reduction criteria cannot be
satisfied.

Note that the sparsification in the VPEC model can dramat-
ically reduce the number of mutual inductive couplings, but
can also maintain the accuracy [44]. As a result, we use this
technique during our reduction for larger circuits. For example,
in the case of ckt5 (the largest one) in TableI, we obtain
a 97.5% sparsification from 19,900 to 498 mutual-inductors.
Due to this sparsification, it reduces the reduction time by 10X
(365.4s to 47.8s).

X. CONCLUSION

We have proposed a new hierarchical multi-point reduction
algorithm for wideband modeling of high-performance RF
passive and linear(ized) analog circuits. In the theoretical
side, we showed that the s-domain hierarchical reduction is
equivalent to the implicit moment matching arounds = 0
and showed that the hierarchical one-point reduction is nu-
merically stable for general tree-structured circuits. Wealso
showed that the hierarchical reduction preserves reciprocity
of passive circuit matrices. In the practical side, we have
proposed a hierarchical multi-point reduction scheme for high-
fidelity, wideband modeling of general passive and active
linear circuits. A novel explicit waveform matching algorithm
is proposed for searching dominant poles and their residues
from different expansion points, which is shown to be more
efficient than the existing pole search algorithm. The pas-
sivity of reduced models are enforced by state-space based
optimization method. We also proposed a general multi-port
network realization framework to generate SPICE-compatible
circuits as the macro models of the reduced circuit admittance
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matrices. The resulting modeling algorithm can generate the
multiple-port passive SPICE-compatible model for any linear
passive networks with easily controlled model accuracy and
complexity. Experimental results on a number of passive RF
and interconnect circuits have shown that the new proposed
macro modeling technique generate more compact models
given the same accuracy requirements than existing approaches
like PRIMA and time-constant methods.
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