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ABSTRACT
With the scaling of technology, power grid noise is becom-
ing increasingly significant for circuit performance. A typ-
ical power grid circuit contains millions of linear elements,
making noise analysis and verification challenging in terms
of both run time and memory. We propose a power grid
reduction scheme based on algebraic multigrid principles, in
which the coarser-level grid and the restriction operators are
constructed automatically from the circuit matrices. This
method is suitable for large-scale power grid transient and
AC analysis. Experimental results show an order of mag-
nitude speed-up over flat analysis in addition to practical
tradeoffs for accuracy, CPU time and memory usage.
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1. INTRODUCTION
In general, multigrid methods consist of two complemen-

tary components [1, 3]: Relaxation (smoothing), which re-
duces the high frequency error components using an itera-
tive solver, and coarse grid correction, which reduces the low
frequency error components. It involves mapping the prob-
lem to some coarser grid (restriction), solving the mapped
smaller problem, and mapping the solution back to the orig-
inal fine grid (interpolation). Figure 1 illustrates a recursive
V-cycle [1] of the multigrid method with three nested iter-
ations. At the bottom level, the exact solution is usually
obtained from a direct solver.
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Figure 1: The V-cycle of the multigrid method.

Figure 2: Typical irregularity of power grids (bot-
tom two layers).

Two kinds of multigrid methods, standard and algebraic,
have been proposed in the literature. A typical Standard
Multigrid (SMG) method uses uniform coarsening and lin-
ear interpolation in coarse grid correction and relies on the
choice of the relaxation operator (iterative solver) to reduce
the error components not well approximated by coarse grid
correction. On the other hand, Algebraic Multigrid (AMG)
methods fix the number of iterations during smoothing and
apply coarsening and interpolation to reduce the error com-
ponents not well reduced by smoothing. A general-purpose
AMG solver is very efficient for DC analysis. However, for
transient and AC analysis, the cost in every time or fre-
quency step almost equals that of the DC solve. Therefore, it
is not applicable for transient and AC analysis. The method
in [4, 5] belongs to a SMG-reduction technique, which re-
quires keeping track of power grid geometry for each multi-
grid level. The cost of maintaining this geometrical infor-
mation is large for irregular grids, especially ones with lower
metal layers extracted (Fig. 2), making SMG-based methods
impractical for real industrial designs.
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We propose an AMG-based reduction scheme which is
much more practical than prior approaches. We construct
the restriction and interpolation operators directly from the
circuit Modified Nodal Analysis (MNA) matrices[6]. No ge-
ometrical information is maintained, therefore it enables sig-
nificant memory reduction. Similar to [4, 5], our scheme as-
sumes smooth voltage variation and ignores the relaxation
steps in Fig. 1, therefore it is also a direct solution method.
We show two important applications of the proposed tech-
nique in reducing the runtime complexity of Transient and
AC analysis of the power grid network. Experimental re-
sults show that problem size can be reduced by more than
90% without sacrificing much accuracy.

The following power distribution network model is used
throughout this paper:

• The on-chip power distribution network (grid) is modeled as
a resistive mesh with via resistors connecting metal layers.

• The loads (functional blocks) are modeled as distributed
time-varying current sources in parallel with parasitic ca-
pacitors connected between power and ground. To sim-
plify the analysis, we split every parasitic capacitor into
two grounded capacitors.

• The decoupling capacitors (decaps) are modeled as single
lumped capacitors connected between power and ground.
Similarly, to simplify the analysis, a decap is split into two
grounded capacitors.

• The top-level metal is connected to a package modeled with
inductors or RL elements connected to ideal constant volt-
age sources. For package impedance resonance analysis, a
more detailed RL(K)C model can be used.

2. CONSTRUCTION OF RESTRICTION
AND INTERPOLATION MATRICES

Using this model, the entire power distribution system
becomes a large-scale linear circuit. The transient behavior
of the system can be described using MNA equations as
follows:

G0x0 + C0ẋ0 = u0 (1)

where x0 is an N-dimensional real vector of node voltages
and inductor currents (a simple reformulation can remove
voltage source current variables from x0); G0 (size N × N)
is the grid conductance matrix; C0 (size N × N) includes
the decoupling capacitance, load parasitic capacitance and
package inductance terms, and u0 includes the loads and
voltage sources. G0 is symmetric, while C0 is a diagonal
matrix because all capacitors are grounded and there is no
mutual inductance in our power grid model. N can be on
the order of millions for a normal power grid circuit. Our
objective is to reduce such a large sparse system equations
to a smaller system representing the coarse-level grid sub-
ject to a smooth approximation error [7]. The smaller set of
equations should describe an equivalent circuit of the origi-
nal system.

For one-level of multigrid reduction, the restriction oper-
ator can be constructed as an N × M matrix R01, where
M < N . Therefore the equation at the coarse level becomes

G1x1 + C1ẋ1 = u1 (2)

where

G1 = RT
01 G0 R01 and C1 = RT

01 C0 R01, (3)

x1 = RT
01x0 and u1 = RT

01u0. (4)

As is done in most AMG method, the interpolation operator
is chosen as P10 = RT

01. Then we interpolate from the coarse-
level solution to the fine level using

x0 = P T
10x1 = R01x1 (5)

By performing the interpolation operation, the voltage on a
node p (i.e. x0(p)) in the fine grid can be determined as a
linear combination of nodal voltages of its neighborhood.

In general, variables representing important boundary con-
ditions should be preserved. For our power grid model, these
variables include all ideal voltage source nodes, all nodes
in the top-level metal layer that are connected to pack-
age/pins, all package inductance or RL-in-series branches
and all nodes in the bottom-level metal layer that are con-
nected to critical loads. The equation for these boundary
nodes/branches are put at the beginning of the original G
and C matrices, which makes them easy to preserve. For
the rest of the variables, AMG grid reduction algorithm can
be applied to determine the coarse-level grid points.
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Figure 3: Shorting node p to its strongly connected
neighbor q1.

The coarse grid has to be chosen to represent smooth er-
rors and has to be able to interpolate these errors onto the
fine grid. It is shown in [7] that smooth error varies slowly
in the direction of strong connections. In our case, a strong
connection between node p and q in G means a relatively
large conductance value at the off-diagonal entries (p, q) and
(q, p), compared to the diagonal entries at (p, p) and (q, q).
Therefore, we choose

mespq = (gpq/Gp + gpq/Gq)/2 (6)

as a measure of connection between node p and q, where Gp

and Gq are self conductance at node p and q. If mespq > ψ,
node q is chosen in the coarse grid and p in the fine grid
and will be interpolated as x(p) = x(q), where ψ is a thresh-
old chosen to control the reduction rate and accuracy. This
is equivalent to shorting node p to q when the resistor con-
nected between them is small. The corresponding restriction
matrix for shorting node p to q1 in Fig 3 becomes:

R5×4 =

q1 q2 q3 q4


1
1

1
1

1




q1
q2
p
q3
q4

(7)

This reduction scheme iteratively removes relatively smaller
resistors in the grid, therefore the number of nonzeros in the
coarse-level matrix RT GR decreases.

The algorithm for nested iteration and calculating the re-
striction matrices Rij from the original conductance matrix
G0 (size N × N) can be summarized as follows:
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1 Set i = 0, choose the reduction threshold ψ and number of
reduction levels L.

2 Set j = i + 1.

3 Initialize Rij as an N × N sparse matrix, initialize a size
N array KEEP and set zero.

4 Mark every boundary node/branch k as “keep”, i.e. set
KEEP(k)=1 and set R(k, k) = 1. Note that this corre-
sponds to the first K rows of matrix R and array KEEP
because they are the first K rows of Gi.

5 Go through each row (node) p in Gi as follows. If node p is
marked as neither “keep” or ”remove”, i.e. KEEP(p)==0,
then calculate mespq for every nonzero entry Gi(p, q) (q >
p) using Eqn. (6), find the maximum qm. If the mespqm >
ψ, set R(qm, qm) = 1, R(p, qm) = 1 and mark node qm as
“keep”, node p as “remove”, i.e. set KEEP (qm) = 1 and
KEEP (p) = −1, and then mark all neighboring nodes of p
and qm as “keep”.

6 Remove all column r in Rij if KEEP (r) == −1.

7 Compute Gj = RT
ij Gi Rij ; i = i+1; if i == L, then stop;

otherwise, goto step 2.

3. APPLICATIONS IN POWER GRID ANAL-
YSIS

Our proposed reduction scheme is directly applicable to
fast transient and AC analysis.

3.1 Transient Analysis
By applying the Backward Euler integration formula [6]

to Eq. (1), we have:

(G + C/h)x(t + h) = u(t + h) + x(t)C/h (8)

where h is the time step for the transient analysis. h is
usually kept constant so that matrix A = G + C/h is in-
dependent of time. Since C is diagonal (as is discussed in
Section 2), our proposed AMG reduction algorithm can be
directly applied to matrix A with smooth approximation er-
ror. Since A is fixed, such a reduction is performed only at
the first time step. For the coarsest level matrix AL, only
one single initial factorization is required. The following
time steps require only a forward/backward solution at the
coarsest-level and then a mapping back to the original grid:

x = RxL = R01R12R23 · · ·RL−1,LxL (9)

The chain of matrix multiplications R =
∏L−1

i=0 Ri,i+1 also
needs to be calculated only at the first time step.

3.2 AC Analysis
It is often interesting to analyze the impedance of the

power grid and the package together. A recently published
package-level power distribution network impedance (reso-
nance) analysis work [2] performs Fourier transforms of the
time domain voltage and current waveforms. However, such
a time-domain based method is very time-consuming, es-
pecially when the package is taken into account because
the transient analysis needs to be performed for thousands
of clock cycles before reaching the package resonance fre-
quency. Alternatively, we perform AC analysis on our re-
duced power grid and the package directly in the frequency
domain.

In AC analysis, the circuit MNA equation becomes

(G0 + jωC0)x = (G0 + jωC0)(xR + jxI) = Re(u0)+ Im(u0)
(10)

where x = xR +jxI is a complex vector of node voltages and
inductor currents. u0 contains complex current and voltage
sources. Let the real vector X = [xR xI ]

T , we can rewrite
Eqn (10) as[

G0 −ωC0

ωC0 G0

] [
xR

xI

]
=

[
Re(u0)
Im(u0)

]
(11)

For some frequency range [ωlow, ωhigh] of interest, Eqn (11)
can be solved with a desired frequency step. The interesting
frequency range for power grid and package analysis is usu-
ally from 10MHz to 5GHz. Typically, such an AC analysis
is formidable since the matrix size in Eqn. (11) is double that
of the transient matrix and it requires one factorization at
every frequency step. Our proposed technique reduces the
complexity of the system matrices, hence making such an
analysis feasible.

In our method, the restriction matrix R =
∏L−1

i=0 Ri,i+1

can be constructed by performing the reduction on the G0

matrix. Since matrix G0 is fixed for all frequencies, such
a reduction only needs to execute once. We reduce ma-
trix C0 using the same matrix R and justify this as follows.
C0 is a diagonal matrix which contains package inductors
and grounded capacitors. All inductor branches have been
preserved as boundary conditions during the construction
of R, so the reduction won’t affect these branches. When
two nodes with grounded capacitors are shorted during the
reduction, applying RT C0R will automatically add up the
two capacitances to one of the two nodes that is kept in the
coarse-level grid, hence this reduction will conserve the total
load capacitance of the grid. Therefore, at the coarsest level
L, Eqn. (11) becomes[

RT G0R −ωRT C0R
ωRT C0R RT G0R

] [
xRL

xIL

]
=

[
RT Re(u0)
RT Im(u0)

]

(12)
Similarly, we can obtain the fine-level solution by interpola-
tion:

xR = RxRL and xI = RxIL (13)

The magnitude and phase of every node can then be found.
For package and power grid analysis, a significant amount
of reduction (allowing larger approximation error) for AC
analysis is attractive because the AC analysis of even the
coarsest-level grid can provide close estimates of resonance
frequencies. A more accurate AC analysis can be performed
on the fine-level grid focusing the region near these reso-
nance frequencies, rather than sweeping a wider range of
frequency. The AC analyses explain important frequency
behaviour of the power grid and the package, which is of
practical interest.

4. EXPERIMENTAL RESULTS
We have implemented our AMG based reduction algo-

rithm in C++ and performed both transient and AC anal-
ysis on several large-scale power grid circuits. We ran these
experiments on an Intel Pentium-III 700MHz machine with
4GB memory. All testcases were in a 0.13 micron CMOS
technology with seven metal layers.

Table 1 lists the reduction of total number of nodes and
total number of nonzeros (NNZ) in the MNA matrix with
twenty iterations. For both cases, less than 10% of nodes
remains at the coarsest level grid and the number of nonzeros
in the coarsest level matrix decrease similarly.
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Node bottom- bottom-
level Redc NNZ level Redc

num node num NNZ
T1 0.4M 17K %95.8 1.9M 160K %91.6
T2 1.3M 83K %93.6 5.6M 770K %86.3

Smoothing threshold = 0.2, 20 nested iterations

Table 1: Grid reduction results.

total CPU time (min) peak memory
RAMG AMG time steps RAMG AMG

T1 31.8 1146.0 1000 476M 360M
T2 80.7 1694.4 500 1.7G 1.0G

Threshold = 0.2, 20 nested iterations

Table 2: Transient simulation results.

We performed transient analysis using our method (named
as RAMG) and compared the performance to a general-
purpose AMG solver in Table 2. Neither case was able to
run using direct solvers due to memory limitations. We ran
T1 with 1000 time steps and T2 500 steps. The results show
a speedup of 36X and 21X for each testcase, with a memory
increase of 32% and 70% respectively. The slow run time
of the AMG solver is due to the fact that it is an iterative
solver and does not re-use the reductions at every time step.
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Figure 4: Comparison of waveforms.

Fig. 4 shows the Vdd voltage waveform for several clock
cycles at one of the loads in T1. The voltage difference at
the first peak is around 25mV out of the Vdd level of 1.2V,
which is below 5%.

Table 3 shows the percentage of node reduction, total
CPU time and average voltage waveform accuracy with re-
spect to various thresholds ψ for testcase T2. We measure
the waveform at a node near the center of T2, and compute
the average percentage error over time with respect to the
waveform obtained from the AMG solver. Both percentage
of node reduction and total CPU time show that, for this
testcase, some optimal threshold resulting in less CPU time
and more node reduction lies between 0.1 and 0.3 (exclu-
sive). The waveform accuracy is below 3% for all cases.

We ran AC analysis for a testcase T3 with seven metal
layers and 0.15 millions of nodes in the power grid and com-
pared the results with an exact solution obtained from an
exact solver over the frequency range from 10MHz to 5GHz
with a total of 28 frequency sampling points. Table 4 shows
the average CPU time per frequency point for various re-
duction threshold using our method “RAMG” and the exact
method. We can see significant speedup of our method over
the exact method.The magnitude at a pair of nodes connect-
ing one of the loads in the bottom metal layer is computed

ψ reduction CPU time (min) avg err
0.3 87.2% 220.9 1.68%
0.2 93.6% 80.7 2.38%
0.15 92.8% 71.0 2.79%
0.1 91.9% 97.0 2.83%

Table 3: Performance v.s. threshold.

T3 average CPU time per frequency step (sec)
RAMG ψ=0.1 ψ=0.2 ψ=0.3 ψ=0.4 ψ=0.5

2.53 2.17 5.38 24.4 95.3
Exact 350.2

Table 4: AC simulation results for testcase T3.

and shown in Fig 5. For the case of ψ = 0.5, where 44%
nodes remain at the coarsest level, the curve is almost iden-
tical to the exact one, showing the resonance frequency at
around 500MHz.
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Figure 5: Impedance magnitude.

5. CONCLUSION
In this paper, we presented an effective power grid reduc-

tion approach based on AMG principles. This method offers
superior speed and accuracy tradeoffs for large-scale power
grid analysis. The significant order of magnitude reduction
in runtime and memory for AC and transient analyses for
such large systems is instrumental to shortening the grid
design and optimization process.
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