
Unified Adaptivity Optimization of Clock and
Logic Signals

Shiyan Hu, Jiang Hu

Department of Electrical and Computer Engineering
Texas A&M University

College Station, Texas 77843
Email: {hushiyan, jianghu}@ece.tamu.edu

Abstract— VLSI design is increasingly sensitive to variations
which often degrade the parametric yield. Post-silicon tuning
techniques can compensate for specific variations on the die and
thus significantly improve the yield. Previous works on adaptivity
optimization for post-silicon tuning focus on either logic signal
tuning or clock signal tuning. This paper proposes the first unified
adaptivity optimization on logical and clock signal tuning, which
enables us to significantly save resource. In addition, it does not
need any assumption on variation distributions.

Our unified optimization is based on a novel linear program-
ming formulation which can be efficiently solved by an advanced
robust linear programming technique. Due to the discrete nature
of the problem, the continuous solution obtained from linear
programming is then efficiently discretized. This procedure
involves binary search accelerated dynamic programming, batch
based optimization, and Latin Hypercube sampling based fast
simulation. Our experimental results demonstrate that up to 50%
area cost reduction can be obtained by the unified optimization
compared to optimization on logic or clock alone. In addition,
the proposed discretization approach significantly outperforms
the alternatives in terms of solution quality and runtime.
Keywords: Variation, Post-Silicon Tuning, Logic Signal Tuning,
Clock Signal Tuning, Robustness

I. INTRODUCTION

With continuously shrinking features on the die, VLSI
design is increasingly sensitive to variations such as manufac-
turing process variations. Consequently, circuit performance
is no longer determined solely by deterministic values. It
has significant uncertainty which needs to be considered in
order to achieve high yield. There exist a handful set of
approaches (e.g., [1], [2], [3]) which focus on performing
statistical circuit optimization in the pre-silicon phase. That
is, circuit parameters are determined in design time for yield
optimization. With statistical variation models, they obtain the
statistically optimized design and apply the design to all the
dies. Although the optimized design is of good quality in
statistical sense, the design is not necessarily ideal for each
individual fabricated chip. Specific circuit parameter variations
on the die cannot be mitigated. In addition, reliable statistical
variation models are not easy to obtain [4].

In contrast to pre-silicon statistical optimizations, post-
silicon tuning methodology can tune some circuit parameters
after the chip is fabricated. This enables us to mitigate the
specific circuit parameter variations on the individual chip to

satisfy the design target. As a result, the timing yield can be
significantly improved [5], [4].

Clearly, it is highly desirable to perform circuit adaptivity
optimization for post-silicon tuning. Since making a circuit
element post-silicon tunable necessarily introduces overhead,
adaptivity optimization for post-silicon tuning aims to provide
large tunability with small overhead. Previous works focus on
either logic signal tuning (e.g., [5], [6], [4]) or clock signal
tuning (e.g., [7], [8]). Note that some approaches (e.g., [6], [8])
also consider to perform gate sizing in design time, however,
no joint tuning on logic and clock signal is performed in
post-silicon phase. These approaches are effective, however,
the resource utilization is not necessarily efficient since the
interaction between logic circuit and clock network is not
explored. Performing unified adaptivity optimization on clock
and logic signals has the potential to significantly reduce
overhead while still having large tunability for achieving yield
target.

Common post-silicon tuning techniques include adaptive
body biasing (ABB) [5] and tunable clock buffer (PST buffer)
[7]. In this paper, as an illustration of our methodology, ABB
is used to tune logic signals as in [5], [6], [4] and PST buffer
is used to tune clock signals as in [7], [8]. Our approach can
be easily extended to handle other tuning techniques.

In this paper, a unified adaptivity optimization technique
on clock and logic signals is proposed. The new technique
determines the location and the tuning range of each tunable
circuit element. We propose methods for both continuous
optimization and discrete optimization. Continuous approach
assumes that each circuit element can be tuned to arbitrary
precision. It involves a linear programming with uncertainty
problem, which is solved by a robust linear programming
approach with a parameter easily controlling the tradeoff be-
tween the worst-case design and the nominal design. Discrete
approach discretizes the continuous solution, i.e., maps the
tuning range of each tunable element to a permissible set of
tuning ranges. It involves binary search accelerated dynamic
programming, batch-based optimization, and Latin Hypercube
sampling based fast simulations. Our main contribution is
summarized as follows.

• According to the best of the authors’ knowledge, this is
the first work on unified adaptivity optimization for post-

1-4244-1382-6/07/$25.00 ©2007 IEEE 125

silicon tuning on clock and logic signals.
• In contrast to most previous works (e.g., [6], [4]), our

approach computes the discrete solution in addition to the
continuous solution. This is desirable due to the discrete
nature of problem.

• Unlike many previous works (e.g., [6]), our new approach
does not assume any variation distributions since reliable
variation model is not easy to obtain in reality.

Computation cost is also an important issue. In our unified
adaptivity optimization approach, the problem size is almost
the same as adaptivity optimization on clock signal alone. This
is due to that logic tuning is applied to the circuit block level
but not to individual gate (compared to e.g., [8]). We have up
to several dozens of circuit blocks. In addition, our continuous
approach does not perform any Monte Carlo simulation and
thus runs very efficiently. Even for the discretization approach
which involves Monte Carlo simulations, since the search
space is largely reduced due to being guided by continuous
solution, together with various acceleration techniques, it still
runs efficiently. Although the works of [7], [8] are also
independent of assumptions on variation distributions, they
tend to be slow as full-fledge Monte Carlo simulations are
frequently called during their optimization procedures.

Our experiments demonstrate that the new continuous uni-
fied adaptivity optimization approach is consistently better
than adaptivity optimization on logic or clock signal alone.
One can achieve up to 50% area cost reduction by our
approach. Our discretization approach also significantly out-
performs the alternatives including nearest rounding approach
and binary batch approach [7] in terms of yield, area and
runtime.

II. PRELIMINARIES AND MOTIVATION

In our adaptivity optimization approach, adaptive body
biasing is applied to tune logic signals and PST buffer tuning
is applied to tune clock signals. Note that as indicated in [4],
due to well-spacing related layout rules and overhead issue, we
apply ABB at circuit block level but not to individual device.

Since making a circuit element (e.g., a gate or a clock
buffer) post-silicon tunable necessarily introduces overhead,
adaptivity optimization for post-silicon tuning aims to provide
large tunability with small overhead. Previous works focus on
logic signal (e.g., [5], [6], [4]) or clock signal (e.g., [7], [8])
separately. Some approaches (e.g., [6], [8]) also consider to
perform gate sizing in design time, however, no joint tuning
on logic and clock signal is performed in post-silicon phase.

These approaches are effective, however, their resource
utilization is not necessarily efficient since the interaction
between logic circuit and clock network is not explored.
Consider that we have a circuit which can achieve 99% yield
by logic signal tuning alone. The observation is that some
slack can be moved from non-timing critical part to timing
critical part by introducing useful skew using clock signal
tuning, and clock signal tuning is often cheaper than ABB
(due to e.g., ABB is applied on a block of gates, a lot of

FF1

FF4FF3

FF2A=10

D=10

C=9E=9

B=10

Fig. 1. A sequential circuit where the arrows show the signal flow directions.
The central square is the clock source and the triangles are clock buffers.

more control signals need to be used, and ABB needs Digital-
to-Analog converters [5]). As a result, usage of clock signal
tuning would lead to less logic tuning and thus significantly
reduce the overhead. On the other hand, solely relying on clock
signal tuning often leads to small improvement on yield. This
is the case since there may be many critical cycles in a circuit,
and when these cycles are heavily overlapped, one can only
move small amount of slack among flip-flops. In addition, a
single clock buffer may drive many flip-flops and tuning it
affects all of them. If some flip-flops are in timing critical
paths, then only small amount of tuning can be applied to this
clock buffer.

The motivation of the unified optimization is further illus-
trated by the example of Figure 1. Figure 1 shows a sequential
circuit consisting of 4 flip-flops FF1, FF2, FF3, FF4, two
clock buffers, and five combinational paths A, B, C, D, E. The
nominal delay for each combinational path is shown and all
clock skews are zero. Suppose that the clock period is 10 and
each combinational path has 10% variation off the nominal
delay value. For simplicity, assume that we need to guarantee
the worst-case design satisfying the timing constraint. Since
three combinational paths A, B, D may have timing violations,
we need to tune them by ABB. If clock tuning is also used, we
can tune the right clock buffer to introduce 1 unit delay, i.e.,
FF2 and FF4 both have skew of 1. One can see that A, B do
not need ABB due to the additional slack. That is, tuning the
right clock buffer and D is sufficient, which certainly saves
overhead. It is also clear that tuning clock signal alone may
not make both A and D satisfy the timing constraint.

III. OVERALL FLOW

A two-stage optimization approach is proposed to decide
the location and the tuning range of each tunable element in
the unified adaptivity optimization. The first stage is called
Continuous Optimization which is to efficiently compute a
post-silicon tunable design with the assumption that one can
achieve arbitrary tuning precision for any tunable element.
The second stage is called Discretization, which is to map
the obtained continuous tuning range for each tunable element

126

min cb,12 + nfbb,12 − nrbb,12 (1)

s.t. (S1 + d1) + (T12 − n12Dp12 − n′
12Dp12) − (S2 + d2)

≤ Tcp − Tsetup, (2)

(S1 + d1) + (t12 − n12Dp12 − n′
12Dp12) − (S2 + d2)

≥ Thold, (3)

cb,12 = mb1Cb1 + cb1 + mb2Cb2 + cb2 + mb3Cb3 + cb3 ,(4)

nfbb,12 = n12Cp12 + cp12 , (5)

nrbb,12 = n12′Cp12 + cp12 , (6)

d1 = mb3Db3 + mb1Db1 , (7)

d2 = mb3Db3 + mb2Db2 , (8)

0 ≤ n12 ≤ Un12 , (9)

−Un12 ≤ n′
12 ≤ 0, (10)

0 ≤ mb1 , mb2 , mb3 ≤ Um, (11)

S1, S2, T12, t12 are random variables. (12)

into the permissible (i.e., discrete as in reality) set of tuning
ranges.

IV. CONTINUOUS OPTIMIZATION

A. Linear Programming Formulation

A sequential circuit is represented as a timing graph where
each node represents a flip-flop and a directed edge from node
u to node v represents the combinational logic paths from u to
v. We only describe the mathematical formulation for a single
edge (together with two nodes) in a timing graph. Other edges
can be similarly handled. Suppose that in a clocked circuit,
two flip-flops FF1 and FF2 are connected by combinational
paths. The clock delay at FF1 is S1 and at FF2 is S2. The
long (resp. short) critical combinational path delay between
FF1 and FF2 is T12 (resp. t12). All of S1, S2, T12, t12 are
random variables.

Without loss of generality, we assume that the combina-
tional path p12 connecting FF1 and FF2 passes one circuit
block. [4] demonstrates that in body biasing, delay reduction
is linear with body voltage tuning. This fact is used here. To
tune the path by ABB, we assume that the delay reduction
due to body biasing along p12 is n12Dp12

1. By linear fitting
to the delay-area overhead data [4], Dp12 is the slope of fitted
line. For convenience, we call it “unit” delay reduction. n12

denotes the amount of ABB unit delay reduction applied to
the circuit. The delay reduction comes with the area overhead
due to e.g., control logic, extra well space, and extra power
wires. It is measure by n12Cp12 + cp12 , where Cp12 , cp12 are
also obtained from linear fittings. We call Cp12 unit area
overhead, and constant cp12 comes from e.g., shared control
logics for the block of tunable elements. Similarly, we assume
that the delay increase due to post-silicon tuning of PST clock
buffer bi is mbiDbi with the area overhead mbiCbi + cbi

where Dbi (resp. Cbi) is the unit delay reduction (resp. the
unit area overhead) for tuning a PST clock buffer, and cbi

is constant indicating the overhead of control signals. The

1Note that if reverse body biasing is used, the delay is increased, i.e., delay
reduction becomes negative.

unified adaptivity optimization problem can be formulated as
in Eqn. (1)-Eqn. (12).

Note that d1 in Eqn. (7) and d2 in Eqn. (8) are clock
delay tuning at FF1 and FF2, respectively, and nfbb,12 and
nrbb,12 are area overhead due to forward body biasing and
reverse body biasing, respectively. cb,12 is the area overhead
due to clock tuning. They are introduced for the clarity of the
formulation. S1, S2, T12, t12 are the random variables obtained
from statistical timing analysis. Only mb1 , mb2 , mb3 , n12, n12′

are the decision variables in the formulation. Loosely speaking,
mb1 , mb2 , mb3 are the amount of unit tuning applied on each
clock buffer, n12 is the amount of unit forward body bias
tuning applied on each circuit block (noting that they are non-
negative), and n′

12 is the amount of unit reverse body bias
tuning applied on each circuit block (noting that they are non-
positive). They can be any real values within certain ranges
when solving the above linear programming problem. Tcp is
the clock period, and Tsetup and Thold are the setup hold and
the hold time of FF2, respectively. Constants Un12 , Um are the
maximum tuning ranges which are allowed for each tunable
element.

Eqn. (2) and Eqn. (3) contain random variables. To solve
the linear programming with uncertainty, they will be cast
into deterministic constraints using a technique proposed in
the robust linear programming literature [9]. With theoretical
guarantee, this technique enables us to specify a tradeoff
parameter controlling the probability of constraint violation
which is strongly related to timing yield. Such an approach
has also been successfully used in [10] for clock scheduling.
In our approach, we sample the subcircuits for simulations and
use the results to decide the tradeoff parameter. That is, our
usage of robust linear programming is adaptive. The details
are omitted due to space limitation.

V. DISCRETIZATION

In reality, it is very rare that a tunable delay element,
either ABB or PST buffer, can be tuned continuously. In
other words, the tuning is often allowed only for certain
discrete steps. The second stage of the algorithm is to map the
solution of the linear programming problem into a permissible
(discrete) solution. Rounding up the tuning range of every
tunable element to the continuous solution will obtain a
discrete solution which satisfies the yield target but with more
area cost overhead. In contrast, rounding down these tuning
ranges could obtain a discrete solution with smaller area but
not satisfying the yield target. With considerable size of the
tuning step, nearest rounding may result in large error and a
dedicated discretization algorithm is highly desirable. In our
discretization process, we are to decide which one of the two
choices should be used at each tunable element. This process
consists of PST clock buffer tuning range rounding (i.e., clock
rounding) and logic circuit tuning range rounding (i.e., logic
rounding). Clock rounding is first performed and returns a set
of solutions where all clock tuning ranges are discretized while
logic tuning ranges are still continuous. Logic rounding is then

127

performed to some of the above solutions to discretize their
logic tuning ranges.

A. Discretizating PST Clock Buffers

A dynamic programming approach is first used to determine
discrete tuning range for each PST buffer in the clock tree. We
define a partial clock tuning solution to be an incomplete de-
termination for the discrete tuning ranges of all clock buffers.
A partial clock tuning solution becomes clock-complete when
the discrete tuning ranges of all clock buffers are determined.
A clock buffer is processed if its discrete tuning range has been
determined. The algorithm starts with the root of the clock
tree, and performs a breadth-first traversal on the clock tree.
During the process, we set the tuning range for each tunable
clock buffer to each of two possible choices (up-rounding and
down-rounding). The acceleration technique is necessary.

1) Solution Characterization: A set of partial solutions,
denoted by A, keep being updated during the process of
dynamic programming. Each solution α ∈ A is associated
with a (C, Y) pair, where C denotes the cumulative area
overhead and Y denotes the estimated yield. C is computed
by summing the overhead of all processed PST buffers. To
compute the yield of the circuit, discrete tuning range for every
tunable element needs to be known. Since some of them are
not processed, we will use their continuous tuning ranges for
yield estimation. This makes sense as our goal for performing
discretization is to obtain a discrete solution with yield and
overhead close to the continuous solution.

2) Solution Propagation: Suppose that we are to decide
the tuning range of a PST buffer b. A new solution α′

will be formed for each of the two possible choices (up-
rounding and down-rounding). Because all PST buffers are
processed according to the breadth-first order, when b is
processed, the cumulative area overhead can be updated by
C(α′) = C(α) + C(b), where C(b) is the area overhead due
to b. Y (α′) is obtained by simulations, precisely, a fast yield
estimation through Latin Hypercube sampling based Monte
Carlo simulations [11].

3) Acceleration by Pruning: The acceleration comes from
the observation that we do not need to always update the yield
of every partial solution during solution propagation.

After processing a node u, we obtain a set of partial
solutions Au, each of which satisfies the yield target. Suppose
that the next node to be processed is v. For each solution
in Au, a new solution is generated by rounding up the PST
buffer tuning range at v. Denote the resulting solution set by
Av,+. Late yield update is applied on them. That is, their
yields are not computed at this moment since we know that
they must satisfy the yield target. For each solution in Au,
a new solution is also generated by rounding down the PST
buffer tuning range at v. Denote the resulting solution set by
Av,−, which is sorted by C values. We are to perform yield
estimation on Av,− since some of them may not meet the yield
target. Our yield estimation is performed in a binary search
fashion. That is, we first estimate the yield for the middle
solution. If it satisfies the yield target, the middle solution for

the half solution set with smaller C will be tested. Otherwise,
the current solution and the half solution set with smaller C
will be pruned, and the middle solution for the half solution
set with larger C will be tested. The process is repeated for
log |Av,−| times. Denote the resulting solution set by A′

v,−
and then Av = Av,+

�A′
v,−. During solution propagation,

when the size of the solution set A is larger than a threshold
w, top w/2 solutions with smallest C values are kept and all
other solutions are pruned for further speedup.

B. Discretizing Logic Circuits

Section V-A returns a set of solutions, denoted by A, which
are sorted according to C values. For each solution in A, clock
tuning ranges have already been discretized while logic tuning
ranges are not. This subsection deals with discretizing the logic
tuning ranges and selecting which rounding solution to return.

The solution set A can be large and it is time consuming
to perform logic rounding on each solution. Thus, similar to
Section V-A.3, a binary search fashion algorithm is applied on
the solution set A. That is, the middle solution is first rounded
(by logic rounding) followed by the middle solution in one
half of A. Finally, the solution (where both clock rounding
and logic rounding have been performed) to be returned is
the one with the smallest overhead while satisfying the yield
target. We only describe how to round a single solution.

Recall that our body bias tuning is applied at the circuit
block level (i.e., the whole circuit block has the same tuning
range), we will discretize the tunable ranges for tunable circuit
blocks. Each tunable circuit block is assigned with a timing
criticality related reducibility which measures the possible area
overhead reduction while still satisfying yield target. A large
reducibility means the large possibility of area reduction. Since
larger slack means that we have larger room for area reduction,
and the area overhead is also proportional to the number of
tunable gates, the following cost function is used for a path p
passing through a block B.

reducibility(p) = slack(p)× tunablegates(p), (13)

where slack(·) is the sum of the slack of the gates along p in
B and tunablegates(·) is the number of tunable gates along
p in B. Note that the nominal slack is used as an estimation
for the slack, which makes sense since variations in the block
should have similar impact on all paths passing through it.
Since all critical combinational paths are given as the input
to our algorithm, the paths passing through a block can be
easily identified. The reducibility of a block is then defined as
the minimum reducibility cost for all paths passing through it
since we need to guarantee that (almost) all paths could satisfy
the timing constraint. That is,

reducibility(B) = min
p

reducibility(p). (14)

To perform logic rounding, a batch-based optimization
technique is used after the reducibility costs for all blocks
are computed. This technique is also used in [7] for clock
tuning which is shown to be much more efficient than greedy
approach.

128

C. Fast Simulations For Timing Yield Estimation

Discretization involves simulations for yield estimation. In
simulations, the tuning range of a tunable element needs to
be fixed. This is implemented as modifying the corresponding
constraints in the linear programming formulation. For exam-
ple, discretizing n12 in Eqn. (2) to 10 is implemented as setting
n12 ≤ 10 in Eqn. (9). During discretization, we may frequently
estimate the new timing yield of the circuit (for not-yet
discretized tuning ranges, their continuous tuning ranges are
used). The commonly-used Monte Carlo simulation approach
is very time consuming. Thus, fast Latin Hypercube (LH)
sampling based Monte Carlo simulations are used. Compared
to simple sampling, LH sampling allows us to sample the space
more evenly to avoid crowded samples. By this, one can use
much fewer samples in Monte Carlo simulations while still
having high yield estimation accuracy [11]. Refer to [11] for
the details.

VI. EXPERIMENTS

The continuous linear programming algorithm and dis-
cretization algorithm are implemented in C++ and are tested on
a Pentium IV computer with a 3.0GHz CPU and 2G memory.
ISCAS’89 benchmark circuits and a cell library of 130nm
technology are used in the experiments.

In our experiments, the yield target is set to 99.0%. In our
continuous approach, yield estimation is implicitly used in the
robust linear programming technique. In our discretizartion ap-
proach, Latin Hypercube sampling based Monte Carlo simula-
tions are used for yield estimation. These yield estimations are
very fast, but may have small errors. In order to compensate for
such errors, we set the yield constraint in the optimization to be
99.5% which is slightly higher than our target of 99.0%. This
target compensation idea can compensate for estimation errors
and make our results satisfy the yield target in practice. After
optimization, 5000 Monte Carlo simulations are performed
to evaluate the timing yield for the obtained circuits. Their
runtime is not included in the algorithms since they are not in
optimization.

A. Continuous Adaptivity Optimization

Our first experiment is to investigate the difference between
the unified optimization and the optimization on logic or clock
signal adaptivity alone. Recall that our continuous optimiza-
tion problem is solved using a robust linear programming
technique. A single tradeoff parameter is used to achieve
different cost-yield tradeoff and no Monte Carlo simulation
is needed during optimization. The optimization for logic or
clock adaptivity alone follows the above procedure except
that additional constraints are introduced to ensure that the
optimization is not performed for both clock and logic signals
simultaneously. The results are summarized in Table I. Note
that due to the target compensation idea, all results satisfy the
yield target 99.0%. We make the following observations:

• Unified optimization saves large amount of area com-
pared to optimization on logic signal or clock signal
alone. For s5378, 50.5% area cost reduction is obtained.

• Clock Signal Adaptivity leads to small improvement on
yield. Thus, linear programming often returns no feasible
solutions for the same tradeoff parameter as in the unified
optimization and Logic Signal Adaptivity. This is the case
since there may be many critical cycles in a circuit, and
when these cycles are heavily overlapped, there is only
slight of amount of slack can be moved among flip-flops.
In addition, a single clock buffer may drive many flip-
flops and tuning it affects all of them. If some flip-flops
are in timing critical paths, then only small amount of
tuning can be applied to the clock buffer.

• Since the runtime only comes from formulating the linear
program and solving it using the robust linear program-
ming technique, all algorithms run very efficiently.

B. Discretization

We then perform discretization algorithm to the continuous
solution obtained from the unified optimization. Since there
is no previous work on unified optimization on the adaptivity
of logic and clock signals, we compare our approach to the
following two simple methods. The first approach is called
Binary Batch algorithm which is in the same spirit as [7].
Initially, we plan to compare to a greedy algorithm where each
circuit block is tuned separately. However, we found that this
approach is intolerably slow. The batch based optimization [7]
gradually increases the tuning range of a set of blocks where
the blocks are picked according to the criticality. In order to
further improve its efficiency, binary search is performed on
the tuning steps (i.e., tuning range can be increased by various
multiples of discrete tuning steps) to largely reduce the total
number of Monte Carlo simulations. The second algorithm for
comparison is a Nearest Rounding approach. In this approach,
the tuning range of each tunable element is simply rounded to
the nearest discrete tuning range. All approaches involve Latin
Hypercube sampling based Monte Carlo simulations [11] and
200 LH samples are used in simulations for a yield estimation.
Note that the yield constraint is pushed to 99.5% by our target
compensation idea.

The discretization results are summarized in Table II. Note
that the runtime for computing continuous solution is included
for Nearest Rounding and Our Discrete Solution. We make the
following observations.

• Nearest rounding often leads to large rounding error, i.e.,
timing yield is significantly decreased. For s5378, yield
is below 90%.

• Since Binary Batch approach is not guided by our contin-
uous solution, the solution quality is quite low compared
to other approaches. It often doubles the area compared
to the discretization approach. In addition, it takes much
longer time to run. This is again due to that continuous
solution is not used. For the other two approaches, we
only have two choices (i.e., rounding-up or rounding-
down) at each tunable element, which means that the
search space has been greatly reduced.

• Our discretization approach achieves good balance be-
tween solution quality and runtime. Due to our target

129

TABLE I

CONTINUOUS OPTIMIZATIONS ON ISCAS’89 BENCHMARK CIRCUITS. #BK REFERS TO THE NUMBER OF BLOCKS AND #BUF REFERS TO THE NUMBER

OF CLOCK BUFFERS. AREA REDUCTION IS OBTAINED BY COMPARING THE AREA OF OUR DISCRETE SOLUTION WITH THE MINIMUM AREA OF LOGIC

SIGNAL ADAPTIVITY AND CLOCK SIGNAL ADAPTIVITY.

Circuit Logic Signal Adaptivity Clock Signal Adaptivity Unified Adaptivity
Name #FF #Gates #Bk #Buf Area Yield CPU (s) Area Yield CPU (s) Area Yield CPU (s) Area Red.
s838 32 446 25 45 185.1 99.7% 5.5 - - - 103.7 99.8% 5.5 43.9%

s1238 18 508 25 23 204.1 99.8% 1.1 218.5 99.8% 1.1 112.2 99.9% 1.1 45.0%
s1423 74 657 25 72 216.2 99.4% 51.2 - - - 206.5 99.7% 51.5 4.5%
s1488 6 653 25 16 230.8 99.1% 1.2 - - - 201.9 99.3% 1.2 12.5%
s5378 179 2779 25 128 207.5 99.3% 60.9 213.7 99.2% 61.2 102.7 99.5% 61.1 50.5%
s15850 534 9835 49 239 1081.7 99.4% 342.5 - - - 703.6 99.3% 341.7 34.9%
s35932 1728 16065 64 438 2077.5 100.0% 1007.8 - - - 1532.8 99.7% 1012.5 26.2%
s38417 1636 22179 64 393 1728.2 99.3% 570.5 - - - 1339.7 99.5% 569.4 22.5%
s38584 1426 19279 64 357 2593.2 99.7% 667.5 - - - 1820.8 99.5% 668.5 29.8%

TABLE II

DISCRETE SOLUTIONS FOR ISCAS’89 BENCHMARK CIRCUITS. RUNTIME FOR COMPUTING NEAREST ROUNDING AND DISCRETE SOLUTION INCLUDES

THE RUNTIME FOR COMPUTING CONTINUOUS SOLUTIONS. AREA REDUCTION AND SPEEDUP ARE OBTAINED BY COMPARING TO BINARY BATCH.

Circuit Binary Batch Nearest Rounding Our Discrete Solution
Name Area Yield CPU (s) Area Yield CPU (s) Area Yield CPU (s) Speedup Area Red.
s838 259.9 99.8% 552.7 86.5 90.5% 5.7 105.3 99.5% 242.0 2.3× 59.5%

s1238 222.0 99.9% 135.7 100.9 91.7% 1.4 115.0 99.7% 83.7 1.6× 48.2%
s1423 353.2 99.1% 685.3 229.3 97.5% 52.0 223.1 99.3% 248.5 2.8× 36.8%
s1488 545.9 99.3% 187.2 213.3 97.2% 1.6 214.6 99.4% 86.7 2.2× 60.7%
s5378 303.5 99.7% 935.8 89.8 89.2% 61.4 117.5 99.7% 465.8 2.0× 38.7%
s15850 1297.1 99.3% 4158.5 655.3 90.2% 346.7 778.0 99.5% 2310.2 1.8× 40.1%
s35932 2970.6 99.7% 19532.7 1729.2 95.8% 1024.3 1711.9 99.6% 9844.2 2.0× 57.6%
s38417 2513.1 99.8% 7822.1 1512.9 93.1% 576.8 1578.2 99.2% 4343.6 1.8× 37.2%
s38584 3189.2 99.8% 14102.5 1702.9 91.0% 676.8 1955.2 99.8% 5948.3 2.4× 38.7%

compensation idea and the effectiveness of LH sampling
based Monte Carlo simulations, the exact yield always
satisfies the target which is 99.0%. This is not the case for
Nearest Rounding. For s1423 and s35932, our approach
returns solutions with better yield and smaller area cost
compared to Nearest Rounding. As our discretization
approach maintains a set of solutions in computation
(in both clock and logic rounding), it runs slower than
Nearest Rounding approach. However, due to various
acceleration techniques, our approach is still more ef-
ficient than [7]. Note that Binary Batch is actually a
faster version of [7], and our discretization approach is
consistently better than Binary Batch in terms of both
area and runtime.

VII. CONCLUSION

To the best of the authors’ knowledge, this work is the
first one considering unified adaptivity optimization on logic
and clock signals, which saves much area cost compared
to optimization on logic or clock signals alone and it does
need any assumption on variation distributions. Our contin-
uous optimization is based on a novel linear programming
formulation which is efficiently solved by a robust technique
where no Monte Carlo simulation is needed. To compute the
discrete solution, the continuous solution is used to guide the
discretization process to greatly reduce search space. This pro-
cess involves binary search accelerated dynamic programming,
batch based optimization, and Latin Hypercube sampling
based fast simulation. Our experimental results demonstrate

that up to 50% area cost reduction can be obtained by the
unified tuning and the discretization significantly outperforms
the alternatives in terms of solution quality and runtime.

REFERENCES

[1] M. Mani, A. Devgan, and M. Orshansky, “An efficient algorithm for
statistical minimization of total power under timing yield constraints,”
in DAC, pp. 309–314, 2005.

[2] A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov, “Circuit optimiza-
tion using statistical static timing analysis,” in DAC, pp. 321–324, 2005.

[3] J. Singh, V. Nookala, Z.-Q. Luo, and S. S. Sapatnekar, “Robust gate
sizing by geometric programming,” in DAC, pp. 315–320, 2005.

[4] S. Kulkarni, D. Sylvester, and D. Blaauw, “A statistical framework for
post-silicon tuning through body bias clustering,” ICCAD, pp. 39–46,
2006.

[5] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De, “Adaptive body bias for reducing impacts of die-
to-die and within-die parameter variations on microprocessor frequency
and leakage,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp.
1396–1401, 2002.

[6] M. Mani, A. Singh, and M. Orshansky, “Joint design-time and post-
silicon minimization of parametric yield loss using adjustable robust
optimization,” ICCAD, pp. 19–26, 2006.

[7] J.-L. Tsai, L. Zhang, and C.-P. Chen, “Statistical timing analysis driven
post-silicon-tunable clock-tree synthesis,” ICCAD, pp. 575–581, 2005.

[8] V. Khandelwal and A. Srivastava, “Variability-driven formulation for
simultaneous gate sizing and post-silicon tunability allocation,” ISPD,
pp. 11–18, 2007.

[9] D. Bertsimas and M. Sim, “The price of robustness,” Operations
Research, vol. 52, no. 1, pp. 35–53, 2004.

[10] V. Nawale and T. Chen, “Optimal useful clock skew scheduling in the
presence of variations using robust ILP-formulations,” ICCAD, pp. 27–
32, 2006.

[11] K. Fang, K. Fang, and L. Runze, “Design and modelling for computer
experiments,” CRC Press, 2005.

130

