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ABSTRACT 
Parametric yield loss due to variability can be effectively reduced 
by both design-time optimization strategies and by adjusting 
circuit parameters to the realizations of variable parameters. The 
two levels of tuning operate within a single variability budget, 
and because their effectiveness depends on the magnitude and the 
spatial structure of variability their joint co-optimization is 
required. In this paper we develop a formal optimization 
algorithm for such co-optimization and link it to the control and 
measurement overhead via the formal notions of measurement 
and control complexity. 

We describe an optimization strategy that unifies design-time 
gate-level sizing and post-silicon adaptation using adaptive body 
bias at the chip level. The statistical formulation utilizes 
adjustable robust linear programming to derive the optimal policy 
for assigning body bias once the uncertain variables, such as gate 
length and threshold voltage, are known. Computational 
tractability is achieved by restricting optimal body bias selection 
policy to be an affine function of uncertain variables. We 
demonstrate good run-time and show that 5-35% savings in 
leakage power across the benchmark circuits are possible. 
Dependence of results on measurement and control complexity is 
studied and points of diminishing returns for both metrics are 
identified.   

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Logic Design– optimization 

General Terms 
Algorithms, Design, Reliability 

1. INTRODUCTION 
Increased variability of device parameters necessitates the 
development of a new generation of circuit synthesis CAD tools. 
In addition, the increases in variability and power consumption 
are closely related because of the exponential dependence of 
leakage on some process and environment parameters. Two 
fundamental paradigms are available for dealing with variability: 
statistical design (optimization at design time) and post-silicon 
adaptivity (on-line tuning). To guarantee reliable circuit operation 
with minimal power consumption, next-generation circuit 
synthesis techniques for robustness must explicitly account for the 

availability of post-silicon adaptivity in synthesizing the circuit. 
Two powerful and complementary strategies for reducing leakage 
considering variability are pre-silicon statistical design 
optimization and post-silicon adaptivity. There is a growing body 
of work on statistical circuit analysis methods [1-3] (i.e., SSTA) 
and statistical post-synthesis optimization [4-6], including sizing 
and dual-threshold voltage assignment algorithms. These tools 
show promise in reducing parametric yield loss, or alternatively, 
reducing power consumption while maintaining high yield: in 
some cases, a 25% reduction in power is gained at the cost of 5% 
timing yield loss. The growing magnitude and complexity of 
uncertainty is bound to make post-synthesis optimization 
techniques insufficient in guaranteeing reliable circuit operation 
with reasonable parametric yield. 
Post-silicon design adaptivity, or tuning, currently includes 
several techniques; the primary ones being adaptive body biasing 
(ABB) and adaptive supply voltage (ASV). ABB uses the body 
effect to modulate the threshold voltages of transistors, thereby 
controlling leakage and performance [7-10]. ASV raises the 
power supply (Vdd) for slow (low-leakage) dies, and lowers it for 
fast (high-leakage) dies, ensuring better overall yield [11]. It relies 
on the roughly cubic dependence of leakage power on Vdd in 
CMOS circuits (also impacting dynamic power quadratically). In 
the future, a larger palette of tuning tools is likely to emerge: 
recently, an adaptive-size tapered Pareto buffer was designed with 
control facilitated via a tri-state buffer [12]. 
A widespread industrial adoption of adaptive techniques is not yet 
possible for two reasons. One is that designers do not have the 
tools to help them decide whether, and how much, adaptive 
circuitry is needed, or what type of post-silicon tuning technique 
will be most appropriate. The availability of both design-time 
(pre-silicon) optimization and post-silicon adaptivity leads to a 
rich optimization space in which coordination between the two 
levels is required. Sizing can be used to upsize the gates beyond 
the need of a nominal design to achieve higher timing yield, but 
with increased power. Alternatively, the adaptivity of threshold 
voltage can be used to tighten the speed distribution to improve 
yield. Depending on the magnitude and the spatial structure of 
variability, the two approaches will have different cost-
effectiveness, i.e., they will be characterized by different Pareto 
curves in the space of design objectives.  
Algorithmically, future robust circuit synthesis can be 
conceptualized as a two-stage optimization problem, with 
additional second-stage tuning available upon the realization of 
uncertain variables. In this paper an efficient formulation is 
proposed using the theory of adjustable optimization. This 
optimization paradigm presumes that the decision-maker has a 
chance to update his optimization strategy upon learning 
additional information. If the objective function is linear in the 
decision variables, then, under the conditions that the uncertainty 
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sets are affine functions of some parameters, the optimal policy 
for the second-stage decisions can be computed efficiently. Two 
stage stochastic optimization problems are difficult to solve [13]. 
However, recent developments in the theory of convex 
programming have enabled the solution of robust versions of 
linear and quadratic programs, which can be expressed as second-
order conic programs or semi-definite programs [14, 15]. 
Extending these solution methods to adjustable robust 
programming has been demonstrated in [16]. In this paper, we 
build upon this work to develop an efficient solution to the post 
silicon optimization problem under variability. 
The problem is formulated in the following way. The first-stage 
(design-time) power-delay optimization is done via sizing, and 
second-stage (post-silicon) optimization is achieved by body bias 
tuning. The second stage decision variables are represented as 
affine function of parameter uncertainty. The solution to this 
optimization problem is a design time decision (size of gates in 
the circuit) and an optimal policy that prescribes the amount of 
bias depending on the realizations of uncertain variables (e.g. gate 
length, Vth on a specific chip). Initial experiments prove that the 
optimal synergy between design-time and post-silicon 
optimization depends on the amount and structure of variability. 
If variability is highly spatially correlated within the chip, design-
time optimization will be ineffective and may even lead to large 
yield losses. On the other hand, with the increase of intra-chip 
variability, the effectiveness of post-silicon adaptivity decreases. 
Three measures of complexity that parameterize the solution and 
the optimality of this problem are introduced by us: the control 
complexity (the granularity of control), the measurement 
complexity (the granularity of the monitoring and sensing 
circuitry), and the parameter complexity (a measure of how 
spatially uncorrelated the process variable is). Using these 
metrics, formal quantitative trade-offs between design-time and 
post-silicon adaptivity can be identified. Such capability will also 
be useful for the analysis and development of the fine-granular 
control structures, e.g. for determining the spatial granularity. 
The rest of the paper is organized as follows. Section 2 motivates 
the need for joint co-optimization between design-time and post-
silicon optimization. Section 3 presents the leakage and delay 
models used. The details of the algorithm are presented in Section 
4 followed by the results and analyses in Section 5. 

2. DESIGN-TIME / POST-SILICON CO-
OPTIMIZATION: MOTIVATION AND 
CHALLENGES 
The central problem of statistical optimization methods is 
reducing the dual parametric yield loss due to power and timing 
constraints. This is because power consumption has become the 
yield-limiting factor, indirectly affecting the achievable maximum 
clock frequency [17].  In the absence of substantial leakage 
power, parametric yield is determined by the maximum possible 
clock frequency. When realistic leakage power numbers for 
current CMOS technologies are added, the total power starts 
approaching the power limit determined by the cooling and 
packaging considerations. Crucially, the exponential dependence 
of leakage on process spread will mean that the total power will 
cross the cooling (power) limit well below the maximum possible 
chip frequency, since chips operating at higher frequencies have 
exponentially higher leakage power consumption. Due to the 
inverse correlation between speed and leakage, yield is limited 

both by slower chips and chips that are too fast, because they are 
too leaky. 
The fundamental limitation of design-time methods is that they 
impose an overhead on each instance of the fabricated chip since 
they intrinsically lack the ability to “react” to the actual 
conditions on the chip. For example, when using sizing for timing 
optimization they impose a fixed area overhead that may be 
wasteful on some instances of the ICs that would meet timing 
even with smaller driver sizes. Having an adjustable-width driver 
would be ideal, since it could ensure meeting constraints with the 
minimum overhead for each chip. 
The problem that we address in this paper is how to perform 
design-time circuit optimization and post-silicon tuning jointly. 
Why should these two steps be coordinated, i.e., why do we need 
joint co-optimization? The two methods operate from different 
viewpoints: in design-time optimization a decision (e.g., sizing) 
must be made before the realization of uncertainty (gate length), 
while in post-silicon tuning of the decision (the value of bias to 
apply) is made after the realization of uncertainty, i.e., when the 
chip's physical properties have been determined during 
manufacturing.  
However, the two paradigms operate within a single budget of 
uncertainty, and thus meeting constraints can be achieved by both 
methods. But their cost-effectiveness depends on specific 
conditions, such as the spatial correlation of process variability, 
the granularity of adaptivity that can be implemented, and the 
magnitude of leakage power in comparison with the switching 
power. The objective of this paper is to develop formal means and 
optimization methods that will allow joint optimization. The 
specific optimization strategy will jointly consider the amount of 
variability and cost-effectiveness of power reduction strategies, to 
derive a policy that will guide post-silicon tuning, as well as make 
the first-phase design decisions. This will allow to optimally 
partition the design space between these levels of hierarchy. 
Formally, the objective of the algorithm we develop is to 
minimize the expected value of leakage power under a given 
delay constraint T  at a given yieldα : 
min  . . ( )leakE s t P D T α≤ ≥  

This formulation is generic and, different specific optimization 
mechanisms can be studied. In this paper we focus on sizing and 
adaptive body bias for threshold control at the chip level, with 
only a small number of partitions of the chip into individually 
tunable clusters. The widely different spatial scales involved in 
this problem are of some interest and are actively explored. In the 
above formulation, the objective function and the constraints 
depend on both the design time optimization variables (sizes) and 
the post silicon decision variables (body biases). The problem can 
be formally viewed as a two-phase optimization under uncertainty 
with recourse. The key contribution of our approach is the 
derivation of the optimal policy for body biasing as an affine 
function of the realizations of the uncertain parameters (gate 
length, L  , and threshold voltage, thV ). The solution to the above 
optimization problem therefore yields the sizes for the gates in the 
circuit and an optimal body bias policy. 

3. GATE AND CIRCUIT MODELING  
Adjusting the circuit properties to manufacturing conditions can 
be achieved by several techniques, including adaptive buffer 
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sizing, adaptive body biasing, and adaptive supply voltage 
biasing. Because joint timing-leakage optimization is of primary 
concern, adaptive body bias may be the most useful tool. It has 
been demonstrated [7, 11] that body biasing can be employed as 
an extremely effective knob to perform post silicon optimization 
and performance tuning by reducing the leakage for those dies 
that violate power constraints and increasing the frequency of 
those dies that do not meet delay specs.  
The adaptive body bias technique exploits the dependency of the 
threshold voltage of a MOSFET device on its source-to-body 
voltage to achieve dynamic tuning of its delay and leakage power. 
For an NMOS device, the threshold voltage can be expressed as 
[18]: 

0 ( 2 2 )th th SB f fV V Vγ φ φ= + + −  

where 0thV is the threshold voltage of the device with zero body 
bias, γ  is the body bias coefficient, and fφ  is the Fermi 
potential. Decreasing the source potential relative to the body of 
an N-channel device, translates to a negative SBV , and decreases 
the threshold voltage. This technique, known as forward body 
biasing (FBB) reduces the delay of the gate at the expense of 
leakage power. On the other hand, application of reverse body 
bias (RBB) by applying a positive SBV  causes the threshold 
voltage of the device to increase. RBB is thus very effective in 
reducing the leakage power consumption [1]. 
The need to setup a rigorous statistical optimization problem 
under uncertainty requires us to use approximate, linearized delay 
models, such as a piecewise delay of [19]. Let the gate delay be 
represented as i i id d d= + Δ , where id  is the nominal gate 
delay and idΔ  is the term representing the variability in delay. 
The dependence of nominal gate delay on gate sizes can be 
described by the piecewise linear equations:  

1 2 3 [ , ]l l l
i i i i i kd a a w a w l 1 m= − + ∀ ∈∑                                   (1) 

wherem  is the number of fitting regions l  and sia are the fitting 
coefficients. This model captures the dependence of delay on the 
size of the gate width iw , and its load kw∑ . The accuracy of the 
approximation is reasonable: the average error is less than 5% for 

3m = . The size range considered is 1-8x of the minimum size 
gate.  
Analytical models are used to relate the impact of variability 
sources on power and delay. The variability is assumed to come 
from two major sources. Transistor gate length (L ) exhibits 
strong lithography induced variability. Threshold voltage ( thV ) 
variation due to oxide thickness and dose variation is also taken 
into account. The impact of L  on thV  due to drain-induced 
barrier lowering is predicted by the device model directly, which 
permits modeling L  and thV  as independent random variables. 
Both L  and thV  are assumed to follow the normal distribution. 
An additive statistical model that decomposes the variability, of 
both L  and thV , into the global (chip-to-chip) and local (intra-
chip) uncorrelated variability components is used. For gate length:  
L L L L= + Δ + Δ0 g l                                                              (2) 

The impact of process parameter variability on gate delay is  

captured using a first-order parametric delay model: 

1 2 3th SBd S L S V S VΔ ≅ Δ + Δ + Δ                                          (3) 

where LΔ  and thVΔ  are the parameter deviations and SBVΔ  is 
the applied body bias. The sensitivities are the first-order 
derivatives of delay with respect to the specific variable 
(L , thV , SBV ). 

Using a modeling approach similar to [20], the subthreshold 
leakage current of a gate is expressed as an exponential function 
of the random parameters as: 

exp( )o th SBI I a L b V c V= ⋅ Δ + Δ + Δ                                    (4) 

where oI  is the nominal value of leakage per unit width. We 
obtain a good fit using this model (Figure 1), the rms error being 
~8%. For a circuit block the expression for leakage can be 
expressed as: 

,exp( )tot i i i i i th i i SB
i

I w a L b V c Vβ= ⋅ ⋅ Δ + Δ + Δ∑  

where the nominal gate leakage is 0,i i iI wβ= ⋅ . 

Following [21], we assume that the impact of random component 
of variation on chip-level leakage value can be captured by a 
constant multiplier that we take to modify the value of iβ , in the 
above expression.  
The essence of adjustable optimization framework is that the 
variable that is allowed to be tuned is not determined arbitrarily 
but is dependent in some way on the realizations of uncertain 
variables. As was mentioned before and will be justified in the 
next section, a computationally tractable solution to a statistical 
adjustable problem requires that SBVΔ be an affine function of 
uncertain parameters, L  and thV :  

0 1 2 ,SB g th gV L Vπ π πΔ = + Δ + Δ                                            (5) 

Here, the coefficients 0π , 1π  and 2π  are to be determined in the 
process of optimization. Such a parameterization is physically 
equivalent to compensating for the variation in leakage due to L  
and thV , by applying body bias [22]. Though, the value of body 
bias is not a random variable, based on (5), it can be treated 
mathematically as one. With that observation, let us define: 
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Figure 1. Comparison of the normalized leakage of 
inverter predicted by SPICE and the analytical leakage 
model.   
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2
,( , )i i i i g i th g i SBX N a L b V c Vμ σ= = Δ + Δ + Δ  

The mean and variance of a lognormal XY e=  in terms of the 
mean and variance of the normal random variable  

2( , )X N μ σ=  are [23]: 

 
2

( ) exp( )
2

E Y
σ

μ= +                                                               (6) 

2 2( ) exp[2( )] exp(2 )Var Y μ σ μ σ= + − +                              (7) 

 Observing that : 

,( ) ( exp( ))tot i i i g i th g i SB
i

E I E w a L b V c Vβ= ⋅ ⋅ Δ + Δ + Δ∑  

and ,( )i i g i th g i SB oE a L b V c Vμ π= Δ + Δ + Δ =  

we can write the expected value of total block leakage as: 
2( ) exp( /2)tot i i o i

i

E I wβ π σ= ⋅ ⋅ +∑                                      (8) 

4. DESIGN TIME / POST SILICON CO-
OPTIMIZATION ADAPTABLE ROBUST 
OPTIMIZATION 
In the optimization strategy we develop, the optimal body bias is 
determined after the realization of uncertainty of the process 
parameters. On-chip measurements are used to measure the actual 
parameter values and their deviations from nominal values. Then, 
the policy derived during optimization can be used to choose an 
optimal forward or reverse body bias. RBB can be applied to 
reduce yield loss in the high frequency (high leakage bins), and 
can be used with FBB to tighten the distribution at the low 
frequency bins. 

4.1 Adaptable Robust Optimization 
First we introduce the theoretical foundation for robust adjustable 
optimization. We use robust optimization as the bedrock of our 
strategy. A robust LP can be defined as the problem of 
minimizing the worst-case realization of a linear objective over a 
set of linear constraints with uncertain coefficients [24]:  

[ , , ]

min{ sup ( ) : [ , , ] }
A b c Z

Tc x Ax b A b c Z
ζ

ζ
≡ ∈

≤ ∀ ≡ ∈                      (9) 

Here the uncertainty in the matrix coefficients is represented as 
[ , , ]A b cζ ≡ varying in the nonempty compact convex uncertainty 

setZ . 
The above problem requires all decisions to be made prior to the 
actual realization of the uncertain parameters. However, in many 
real-life cases not all the decisions can be made simultaneously: 
only some variables may become known earlier. In this case, the 
remaining decision variables can be adjusted to the realizations of 
uncertain data. It is obvious that if the opportunity to adjusting 
some variables is given, the optimal solution will be better (or at 
least, no worse) than for the problem above. Problems with 
similar structure have been known as multi-stage stochastic 
problems with recourse. However, robust problems are not 
stochastic problems, and when certain conditions are imposed on 
the uncertainty set, demonstrate superior computational 
properties. 
We can re-write the problem of (9) in terms of the non-adjustable 
variables u  and the adjustable variables v . This leads to the 
adjustable robust problem:  

( )min{ : ( [ , , , ] ) : }T uc U V b c Z v Uu Vv bv ζ∀ ≡ ∈ ∃ + ≤        (10) 

In this formulation, the adjustable variables v  are allowed to 
depend on the realization of ζ . 

Still, it is shown in [16] that the general robust problem with 
adjustable parameters is NP-complete, unless restrictions are 
applied on how exactly the adjustable variables tune themselves 
to uncertain data. It is shown that a computationally feasible 
adjustable robust linear problem can be achieved if the adjustable 
variables are constrained to be affine functions of the uncertain 
variables. This is equivalent to: 
v w Wζ= +  

From this we see that the adjustable variables can be tuned once 
the realization of uncertain data is known. However, if we are to 
be able to identify an optimal policy and do that computationally 
efficiently, the dependency cannot have general form, but must be 
constrained. This ultimately leads to the affinely adjustable robust 
linear program 

( )min{ : ( ) [ , , , ] }T uc Uu V w W v b U V b c Zv ζ ζ+ + ≤ ∀ ≡ ∈       (11) 

In particular, for uncertainty sets specified using linear or second-
order cone constraints, the above problem can be reformulated as 
an LP or a second-order conic program respectively [16].  

4.2 Co-Optimization: Problem Formulation 
We now map our design-time and post-silicon tuning problem 
into a robust adjustable linear program. Our objective in 
formulating the problem is to set up a robust linear program with 
adjustable parameters. Robust programs have been recently used 
for several CAD problems [5], and are very efficient.  
The task of co-optimization is effectively finding the solution to a 
two-stage optimization problem with recourse. Denoting column 
vectors by boldface letters, we formulate the problem as that of 
minimizing the overall expected leakage power (or current) with 
expectation being taken over the population of manufactured 
chips while satisfying timing constraints under a statistical timing 
model: 
min ( ) . . ( ( , ) )tot SBE I s t P D V T αΔ ≤ ≥w                            (12) 

In this formulation the objective and constraint functions are 
dependent both on design-time variables (gate sizes) and post-
silicon optimization variables ( SBVΔ ).  

We begin by writing the expression for mean leakage as: 
( ) T
totE I = g w  

where g  is an 1N ×  vector with entries 
2exp( /2)i i o ig β π σ= + . The objective function is thus linear in 

the gate sizes and non-linear (exponential) in SBVΔ . We will deal 
with this by adopting a linearization approach in which we locally 
linearize the objective's dependence on SBVΔ  at the fixed value 
of vector of gate sizesw . 
Let us, for convenience form a single vector of decision 
variables [ ]TSBV= Δx w . The gate delay model introduced in 

the previous section can allow us to express path timing 
constraints in the form of: 
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( , ) T
SBD V a xΔ =w . 

Now consider the probabilistic chance constraint 
( ( , ) )SBP D V T αΔ ≤ ≥w  specified for the entire circuit. We 

can heuristically re-write the circuit-level probabilistic timing 
constraints in terms of path-based constraints. We assume that a 
corresponding confidence level jη  can be selected using the 
strategy outlined in [25]. Then, we require: 

( ( , ) )   i SB jP D V T jηΔ < ≥ ∀ ∈ Πw  

where Π  is the relevant path-set. Relying on the linear vector 
representation introduced above we can write: 

( ( , ) ) ( )i SB jP D V T P T jηΔ ≤ = ≤ ≥ ∀ ∈ ΠTw a x  

If a  is distributed normally, ( , )N a Σ , the coefficients of x  
belong to an ellipsoidal uncertainty set [24]. Then, it can be 
shown that the above constraint is equivalent [14] to:  

(  T T 1/2
jk ) T j+ Σ ≤ ∀ ∈ Πa x x x                                         (13) 

where 1( )j jk φ η−=  and φ  is the cumulative distribution 
function (cdf) of the standard normal distribution. The path delay 
constraints of Eq. 13 represent a set of second-order conic path 
timing constraints [14]. Second-order conic programs are convex, 
and there exist extremely efficient techniques to solve SOCPs that 
exploit their special structure [26]. While the worst-case 
complexity of interior-point methods for SOCP is polynomial, for 
most practical instances the run-time behavior is much better. In 
our case, the empirically observed complexity is close to ( )O N . 

It has been shown that adjustable robust linear programs can be 
made computationally tractable only if the adjustable (second- 
stage) decision variables are affine functions of uncertain 
variables [16]. Without loss of generality, consider only the global 
sources of variation gLΔ  and ,th gVΔ , and a single value of body 
bias SBVΔ  for all the gates on the chip. Then, the affine policy is 
given by: 

0 1 2 ,SB g th gV L Vπ π πΔ = + Δ + Δ                                          (14) 

This dependence can be used to express the expected value of 
leakage current as: 

( ),

2 2 2 2 2
0, 0 1, 1 2, 2exp ( ) ( ) ( )

g th gi i i i L i Vg f f fβ π π σ π σ= + +                 (15) 

where 0,if , 1,if , and 2,if  are linear functions of 0π , 1π , and 2π  
respectively.  

The final robust adjustable optimization problem ( , )ABB w π  

can now be expressed as: 

1/21

min  

( )( )

T

T T
j j j T jφ α−+ Σ ≤ ∀ ∈ Π

g w

a x x x
                                (16) 

where 
( ),

2 2 2 2 2
0, 0 1, 1 2, 2exp ( ) ( ) ( ) [1, ]

g th gi i i i L i Vg f f f i Nβ π π σ π σ= + + ∀ ∈  

Note that the original problem has now been cast as an 
optimization problem in 0π , 1π , and 2π  and gate widths, iw . 
The solution to this problem is an optimal policy 

0 1 2( , , )P π π π=  and the vector of gate width w  such that the 

timing constraints are satisfied. 

4.3 Problem Solution 
To enable a computationally efficient solution, we solve the 
problem in (16) as a two phase optimization program. The first 
phase consists of solving a weighted sizing problem assuming 
fixed body bias and the second phase consists of solving for the 
body bias value assuming fixed gate size. This is performed in an 
iterative manner using successive approximations until the 
solution converges. We transform the path based formulation into 
a node based formulation [25] to solve the problem efficiently. 
This problem is solved iteratively by computing optimal sw in the 
first stage and optimal sπ  in the second stage until the solution 
converges. At an iteration l  the w -phase consists of solving 

( 1)( , )lABB −w π  to obtain ( )lw  and the π -phase solves the 

problem ( )( , )lABB πw  to obtain ( )lπ . Initially, for 

0l = , 0 [1, ]j j kπ = ∀ ∈  corresponding to zero body bias.   

Solving w -phase does not pose a problem as the objective 
function is linear in gate widths, w and the delay constraints are 
second order cones. It can therefore be solved readily as an 
SOCP. However, the π -phase objective is non-linear in the 
decision variables. To address this issue we propose to expand the 
objective function using a first order Taylor series. The π - phase 
optimization problem solved at iteration l  is approximated as: 

0 1 2

1/2

0 1 2

1

min

. .

( )( )

T T T

T T
j j j

F

s t F

T j Paths

π π ππ π π

φ α−

≥ ∇ + ∇ + ∇

+ Σ ≤ ∀ ∈

(g w) (g w) (g w)

a x x x

          (17) 

where 
0π∇ ,

1π∇ and 
2π∇ are the gradients computed w.r.t 0π , 

1π , and 2π  respectively. The complete algorithm optim_abb is 
presented in Figure 2.  

4.4 Handling of intra-chip variation 
The policy described above cannot account for random parameter 
variation. Since the structure of the policy needs to be specified at 
optimization time, we need to know the number of measurements 
we can make on chip to account for the intra-chip random 
variation. Assume that we can make lk  measurements and vk  
measurements of thV . Assuming that we are allowed a single 
choice of SBVΔ : 

0 ,
1 1

l v

l

k k

SB i i k i th i
i i

V L Vπ π π +
= =

Δ = + Δ + Δ∑ ∑                            (18) 

The notion of measurement complexity l vk k k= +  is used here 
to represent the amount of information we are able to obtain about 
the structure of variability. As we demonstrate in the results 
section, a higher value of k  implies a lower leakage value. 
However, it is achieved at the cost of increased run-time and 
diagnostic overhead. 
Similarly, we can introduce the notion of control complexity n  
which refers to the number of body bias values that are allowed. 
Control complexity reflects the degree of controllability over the 
body bias assignment and also the circuit overhead. It is currently 
assumed that the granularity of body bias assignment is at the 
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block level. This is because tuning individual gates is clearly too 
expensive from the physical design perspective (extra routing 
overhead, voltage conversion). Spatial clustering may also be 
used as the gates that are spatially proximate are more likely the 
benefit from an equal body bias assignment.  

5. EXPERIMENTS AND RESULTS 
We are now in a position to put together the complete design-time 
and post silicon co-optimization flow. We start by choosing the 
level of measurement complexity and control complexity. These 
along with the distributional information about the uncertain data 
are the inputs to the above algorithm. The algorithm optim_abb 
produces a set of gate sizes and an optimal policy for selecting 

SBVΔ  for the given structure of variation and the control and 
measurement complexity. When the chip is fabricated, the actual 
realizations of the uncertainty are known hence the value of body 
bias is determined from the policy from (18).  The optimization 
problem was solved using the conic optimization package 
MOSEK [27].  The experiments were run on a 32-bit, 3.7 GHz. 
Intel Xeon processor with 4GB of memory. The benchmark 
circuits were synthesized to a cell library that was characterized 
for a 70 nm process using Berkeley Predictive Technology Model 
[28]. For NMOS (PMOS) transistors, the threshold voltage is 
0.10V (-0.10V). The assumed magnitude of thV  and L variability 
is /σ μ = 8% and 5% respectively. The optimal solution (sizes 
and policy) produced by the algorithm were evaluated using 
Monte Carlo analysis to estimate the expected value of leakage 
power by sampling from the distribution of the uncertain 
parameters thV  and L . 

Three measures of complexity are used to characterize the 
optimality of the solution: the control complexity n  which 
represents the granularity of control, the measurement 
complexityk   which refers  to the  granularity  of the  monitoring 

and sensing circuitry, and the parameter complexity ρ , defined as 

the ratio 2 2/l totσ σ . Thus, ρ  is a measure of how spatially 
uncorrelated the process variable is.   
Figure 3 illustrates the effectiveness of our algorithm in reducing 
the spread of the circuit delay and ameliorating the problem of the 
dual ended squeeze on parametric yield. This is achieved by 
increasing the delay of faster chips by applying RBB. Since these 
chips have high leakage power consumption, our algorithm 
reduces power limited yield loss. From the Figure it can be seen 
that the yield is improved by about 5%.  Application of FBB to 
slow chips serves to tighten the delay distribution further. Since 
the circuit is guaranteed to meet the timing yield target even for 
zero FBB, applying forward body bias does not improve timing 
yield but increases the number of chips in the higher frequency 
bins.  
Figure 4 compares the leakage power of the circuits obtained by 
employing only design time optimization and the joint design 
time and post silicon algorithm outlined in the paper. As 
expected, using post silicon optimization enables a more optimal 
solution compared to design time only optimization. However as 
the complexity of variability increases, the benefit of using post 
silicon optimization decreases. This can be attributed to the fact 
that as the amount of uncorrelated variability increases, design 
time optimization performs better, but to utilize the adaptability 
provided by post silicon optimization, more measurements need 
to be made and more complex control system used (larger number 
of individually tuned clusters of logic on a chip). Therefore, 
increasing measurement complexity k  improves the quality of 
the solution (reduces expected value of leakage). This is also 
depicted in Figure 4. However, this comes at the cost of increased 
run-time and diagnostic overhead. This is shown in Figure 5, 
which indicates that the run-time of the algorithm increases as 
k is increased. 
Table 1 documents the results obtained across the benchmarks. 
All solutions were evaluated using Monte Carlo analysis. 1000 
samples were generated for each random parameter. The circuits 
were optimized for the same delay target, which is evaluated 
using Monte Carlo. We observe that for a reasonable choice of 
measurement complexity, using our algorithm, an average  saving  

Figure 2. The two phase algorithm optim_abb for post silicon 
optimization using ABB.  

1. set 0 [1, ]i i kπ = ∀ ∈  
2. get Timing Target T  
3. set D T< such that ( 1)( , )lABB −w π is feasible. 
4. chose delay increment Dδ  
5. set 1l =  
6. if D T<  

solve w - phase ( 1)( , )lABB −w π setting delay constraint 
to D . 

 else 
print ( 1)l−w and ( 1)l−π as the optimal solution and stop 

7. setD D Dδ= +  
8. if D T<  

solve π -phase ( )( , )lABB πw setting delay constraint 
to D .  

 else 
print ( )lw  and ( 1)l−π as the optimal solution and stop 

9. setD D Dδ= +  
10. set 1l l= + and goto step 6 
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Figure 3. PDFs of delay distributions produced by design- 
time only optimization and joint optimization. Joint 
optimization is successful in tightening the distribution.  
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Table 1: Leakage power savings obtained by the joint post-silicon and design-time optimization. 

of 20% savings in leakage power consumption can be obtained 
compared to design time only optimization.  Table 1 also cites the 
runtimes of the algorithm. It can be seen that the run time 
behavior is extremely good (about 2 minutes) even for the largest 
benchmark circuit. 
Finally, we explore the dependence of the quality of the solution 
obtained from post silicon optimization on the measurement 
complexity and control complexity.  Increasing k  improves the 
leakage power but there is a point of diminishing returns beyond 
which the improvement is insignificant. This is depicted in Figure 
6. 
Increasing the number of circuit clusters with individually 
adjustable threshold voltages (i.e., increasing the control 
complexity) improves the results of optimization, Figure 7. As 
with measurement complexity, this improvement in leakage 
power is achieved at a cost. A larger value for control complexity 
implies greater overhead, such as in biasing circuitry and routing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design time optimization 
E(Ileak) ( Wμ ) 

Joint design-time and post-silicon optimization 
( 8k = ) 

E(Ileak) ( Wμ ) Leakage power      
savings (%) 

Circuit No. of 
gates 

0.5ρ =  0.8ρ =  
0.5ρ = 0.8ρ =  0.5ρ =  0.8ρ =  

Runtime 
(s) 

 
C432 261 328 301 246 291 25.00 3.32 8
C499 641 908 845 568 622 37.44 26.39 15.2
C880 615 560 470 388 405 30.71 13.83 12.5
C1355 685 684 603 557 595 18.57 1.33 21.1
C1908 1238 1203 1167 926 1040 23.03 10.88 31
C2670 2041 1706 1669 1405 1530 17.64 8.33 55
C3540 2582 2718 2584 2142 2473 21.19 4.30 63
C5315 3753 3801 3700 3544 3598 6.76 2.76 108
C6288 2704 2918 2902 2454 2685 15.90 7.48 132

Average savings 21.8 8.73  

Figure 4. Comparison of design time only optimization and 
joint design time and post silicon optimization. Joint 
optimization always does better than design time only 
optimization.  
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Figure 6. The expected value of leakage power decreases as 
we increase measurement complexity but the benefits level 
off for high values of k .  
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Figure 5. The runtime increases as the measurement 
complexity is increased, as optimal policy depends on more 
measurements. 
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6. CONCLUSION 
In this paper we have developed a theoretical foundation for joint 
design-time and post-silicon optimization. The problem is cast as 
an adjustable robust linear program and solved in a 
computationally efficient way. Results indicate that the designer 
can greatly benefit from synergistic application of design time 
and post silicon optimization techniques due to the ability of post 
silicon optimization solution to tune itself to the realization of 
uncertain data.  
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Figure 7. The expected value of leakage power decreases as 
we increase control complexity n. A larger n corresponds to 
more allowable values of body bias. 
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