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ABSTRACT
Process variations cause design performance to become un-
predictable in deep sub-micron technologies. Several statis-
tical techniques (timing analysis, gate-sizing) have been pro-
posed to counter these variations during design optimization.
Another interesting approach to improve timing yield is post-
silicon tunable (PST) clock-tree. In this work, we propose an
integrated framework that performs simultaneous statistical
gate-sizing in presence of PST clock-tree buffers for mini-
mizing binning-yield loss (BYL) and tunability costs by de-
termining the ranges of tuning to be provided at each buffer.
The simultaneous gate-sizing and PST buffer range deter-
mination problem is proved to be a convex stochastic pro-
gramming formulation under longest path delay constraints
and hence solved optimally. We further extend the formu-
lation into a heuristic to additionally consider shortest path
delay constraints. We make experimental comparisons us-
ing nominal gate sizing followed by PST buffer management
using [12] as a base-case. We take the solution obtained
from this approach and perform 1) Sensitivity-based statisti-
cal gate-sizing while retaining the PST clock tree 2) Simul-
taneous gate sizing and PST buffer range determination as
proposed in this work. On an average, the BYL obtained
from our approach is 98% lower than the base-case ([12])
and 95% lower than the sensitivity-based algorithm. On an
average the base-case approach [12] gave 22% timing yield
loss (YL), the sensitivity approach gave 19% YL, where as
our proposed algorithm gave only 3% YL. The total PST
tuning buffer range that is allocated through the proposed al-
gorithm is comparable to that obtained from [12]. The pro-
posed algorithm had a 2.2x runtime speedup compared to the
sensitivity-based algorithm.

Categories and Subject Descriptors: B.6.3 [Design Aids]:
Optimization
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1. INTRODUCTION
Process variations are posing a major challenge to IC de-

signers in the nanometer regime. They cause a significant
spread in the performance distribution of designs, making
traditional design and analysis techniques to become in-
accurate. There has been a distinct shift in VLSI design
paradigm to try and develop variability aware methodolo-
gies.

In high performance designs, process variations result in
a spread in the achievable frequency, thereby causing some
chips to fail from meeting the nominal target frequency. In
[18], the authors have mentioned that as much as 30% fre-
quency variation can be observed in high-performance de-
signs. Chips can be binned according to their operating fre-
quency. Each speed bin has a corresponding penalty cost
that is proportional to its slowdown from the target fre-
quency. Thus, there exists a binning-yield loss with each
design depending on the spread in its operating frequency
due to process variations. In this work, we use binning yield
loss (BYL) as an optimization objective in our formulation.

A lot of recent work has focused on statistical techniques
for considering process variability during analysis and op-
timization. One such direction of research has been tim-
ing analysis in presence of variability. Statistical Timing
Analysis has emerged as a powerful tool to predict the tim-
ing distribution of designs [6, 24, 22, 7]. Other recent ap-
proaches have tried to utilize this available statistical infor-
mation about the design to perform statistical optimizations
like gate sizing [13, 17, 1, 3, 10, 14]. Essentially, these are
analysis and optimization techniques that can be used to
counter variability at design time.

Post-silicon tunability is another technique to improve
timing yield in circuits. This would allow the manufac-
turer to tune each chip individually to try and meet the re-
quired performance constraints. Recently, post-silicon tun-
able (PST) clock-tree synthesis [12, 21, 15, 4] has been pro-
posed as one such approach that can be applied to high
performance designs to correct timing violations. It can be
noted that having PST in the design incurs a cost overhead
both in terms of hardware (area) and power, which is termed
as the cost of tunability in the design.

There is no existing work that tries to integrate both
post-silicon and pre-silicon optimization paradigms into one
flow. While performing design time optimization (say gate
sizing) one can leverage the information about the avail-
able post-silicon tunability and vice-versa. The work in [12]
determines the locations of the PST buffers and also their
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ranges. In this work, we do not decide the location of the
PST buffers. The PST clock tree structure as determined
by [12] is taken as an input to our algorithm. We retain the
PST buffer locations and clock tree structure but perform si-
multaneous gate sizing and PST buffer range determination
for improved BYL.

The problem that we address in this work can be formally
stated as: Given a sequential design with a synthe-
sized PST clock-tree (with known tunable buffer lo-
cations), we perform simultaneous gate sizing of the
combinational logic gates and tuning range deter-
mination of each PST buffer, such that the Binning
Yield Loss and Tunability Cost is minimized.

We formulate this problem as a two-step stochastic pro-
gram [16]. We will first develop a formulation considering
only longest path constraints. We will prove that it is a
convex formulation and hence can be solved optimally. We
extend this formulation further into a heuristic considering
shortest path constraints (which are inherently non-convex).
We use the Kelley’s Cutting Plane Method [16] to solve the
formulation. We do not make any assumption about the
nature of the underlying process variations as well as the
correlation modeling strategy.

We make experimental comparisons using nominal gate
sizing followed by PST buffer management using [12] as a
base-case. We take the solution obtained from this approach
and perform 1) Sensitivity-based statistical gate-sizing (sim-
ilar to [3]) while retaining the PST buffer locations and
ranges as determined in the base-case [12] in an effort to re-
optimize the design. 2) Simultaneous gate sizing and PST
buffer range determination as proposed in this work. On an
average, the BYL obtained from our approach is 98% lower
than the base-case ([12]) and 95% lower than the sensitivity-
based algorithm. On an average the base-case approach ([12]
gave 22% timing yield loss (YL), the sensitivity approach
gave 19% YL, where as our proposed algorithm gave only
3% YL. The total PST tuning buffer range that is allocated
through the proposed algorithm is comparable to that ob-
tained from [12]. The proposed algorithm had a 2.2x run-
time speedup compared to the sensitivity-based algorithm.

The rest of the paper is organized as follow: section 2
presents the relevant background information and defini-
tions, section 3 presents the convex problem formulation,
section 4 extends the formulation into a heuristic consid-
ering the shortest path constraints, section 5 presents the
proposed algorithm that is used to solve the formulation,
section 6 and section 7 discuss the experimental results and
conclusions from this work respectively.

2. BACKGROUND AND DEFINITIONS
In this section, we will discuss the relevant background

information that is needed to understand this work.

2.1 Binning-Yield Loss
In high performance designs, process variations result in

a spread in the achievable frequency, thereby causing some
chips to fail from meeting the nominal target frequency. In
[18], the authors have mentioned that as much as 30% fre-
quency variation can be observed in high-performance de-
signs. Chips can be binned according to their operating fre-
quency. The penalty that the chips in a speed bin have to
incur is proportional to the slowdown from the target timing
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Figure 1: Binning Yield Loss with a Convex Penalty
Function
constraint (Tcons). Let us suppose that the timing delay of
the chip is t. We define a BYL penalty function Fpenalty(t)
as follows:

Fpenalty(t) =

{
q(t − Tcons); t ≥ Tcons

0; otherwise
(1)

where q(t−Tcons) is assumed to be a convex function. Let
us suppose the probability density function (pdf) of circuit
delay is p(t) as shown in figure 1. Hence for longest path
constraints, we can define the BYL for the design as:

BY L =
∫ ∞
−∞ Fpenalty(t)p(t)dt =

∫ ∞
Tcons

q(t − Tcons)p(t)dt

(2)
BYL for shortest path constraints can also be defined sim-

ilarly. In the optimization framework proposed in this work,
we will use the above definition for BYL.

2.2 Traditional Gate Sizing
The traditional gate sizing problem tries to minimize the

cumulative sum of gate sizes while assigning a size to each
gate in the circuit such that the timing constraint Tcons at
the primary outputs are met. Let xi denote the size of gate
i. The delay of the gate di is a function of its size and the
sizes of all its fanout gates and hence is denoted as di(�x). In
general, we perform sizing by varying the channel widths of
each transistor in the gate (hence gate size xi is proportional
to the channel width), while the channel lengths are kept
constant. If we denote the arrival time at gate i as ti. The
traditional gate sizing problem can be written as:

Minimize
∑

∀gate i ci × xi

Subject to :

⎧⎨
⎩

tj + di(�x) ≤ ti ∀j ∈ fanin(i); ∀gate i
ti ≤ Tcons ∀i ∈ PO

xi
min ≤ xi ≤ xi

max ∀gate i
(3)

where ci is a positive weighting constant for each gate.
In this simple formulation, we propose to optimize the total
area of the gates which is the most common optimization
objective [10, 14]. Additionally, one gate can perform gate
sizing to minimize the power [13, 17] or yield-loss [1, 3].

2.3 Convex Gate Delay Modeling
As shown in [9, 20], the elmore delay of a gate can be

modeled as a posynomial function of the transistor sizes �x.
We can model each transistor as an equivalent resistor and
capacitor whose magnitudes are proportional to the chan-
nel width w of each transistor. Elmore delay of gate i can
be written as a posynomial functions of these resistors and
capacitors of gate i and the capacitors of its fanout gates.
As shown in [20], gate delay can be written as a function of
its size xi (since it is proportional to the channel width w).
Hence, the posynomial gate delay can be expression as:

di(�x) = a0i + a1i

∑
∀j xj

xi
j ∈ fanout(i) (4)

where a0i and a1i are positive constants that depend on
circuit parameters such as threshold voltage, effective chan-
nel length, supply voltage and oxide thickness. This posyno-
mial gate delay representation can be changed into a convex
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form but making a change of variables xi = eyi . Each ar-
rival time variable ti in the gate sizing formulation can be
represented as ti = ezi . Hence, the gate sizing formulation
can be presented as:

Minimize
∑

∀gate i ci × eyi

Subject to :

⎧⎨
⎩

tj(zj) + di(�y) ≤ ti(zi) ∀j ∈ fanin(i)
ti(zi) ≤ Tcons ∀i ∈ PO

xi
min ≤ eyi ≤ xi

max ∀gate i
(5)

All variables have an exponential representation which
makes the above gate sizing formulation convex in �y [19].

2.4 Post-Silicon Tunable Clock Tree
Several recent work [12, 21, 15, 4] have proposed that

PST clock tree can improve the timing yield for designs in
presence of process variations. The central idea is to insert
post-silicon tunable buffers into the clock tree that can be
used to introduce extra slack into the critical paths in order
to correct the timing violations by adjusting the clock skews.
In [12], the authors have proposed an approach for PST
clock-tree synthesis that tries to minimize the total number
of candidate PST clock buffer locations and also reduce the
hardware cost of each PST buffer by computing its required
tuning range. It is important to note here that inserting
redundant PST buffers into the clock tree may results in
significant overhead in chip area. Moreover, since the clock
buffer also have some capacitance, they also increase the
power consumption of the clock tree.

Let us try to understand how a PST clock tree can help
improve timing yield. Given a sequential design, we can
represent it as a graph G = (V, E), where V is a set of flip-
flops (FFs) and E is a set of edges representing timing arcs
between the FFs. An edge eij would represent a combina-
tional logic path between flop i and j. Let us suppose that
Ti and Tj are the clock arrival times at flops i and j respec-
tively (they may not be the same due to clock skew). In
this work, we look to satisfy the longest path constraint in
sequential design for BYL optimization. Let the maximum
delay between all combinational logic paths between FFs i
and j be Dij . Let the setup time for flip-flop (FF) j be T j

set

and Tclk be the nominal clock period. In order to meet the
longest path timing constraint, the circuit needs to satisfy
the following inequality:

Ti + Dij ≤ Tclk + Tj − T j
set (6)

Now, as shown in figure 2 let us suppose that we have a
PST clock tree with tunable buffers B1−B7 as shown. Each
of these tunable buffers k has a tuning delay T Buf

k that can
be in the range of 0 to Rmax

k which has been decided during
the design stage (pre-fabrication):

0 ≤ T Buf
k ≤ Rmax

k (7)

Now, as is evident from figure 2, each FF i can have its
clock arrival time Ti adjusted by tuning appropriate buffers
that lie on the path between the clock tree source and itself.
For example, FF 1 can be affected by PST buffers B1, B2
and B4. Hence, if a path starting at FF 1 violates the tim-
ing constraint (equation (6)) post-fabrication due to process
variability, we can adjust the tuning of the corresponding
buffers to try to bring the path back into feasibility region.
Each FF i is affected by a subset Ci of PST tunable buffers
and hence this technique can be used to redistribute timing
slack between critical and non-critical paths such that max-
imum timing violations can be mitigated. Also, it is easy to

FF FF FF FF FF FF FF

B2

B5 B6

5 7 864321

FF

Path−1

B1

B3

B4 B7

Figure 2: Sequential Design with a PST Clock Tree
note that since many FFs share the same PST buffer, this
tuning needs to be done carefully to ensure that no other
path violates its timing constraint. In essence, we can re-
write equation (6) considering PST tunability as:

(Ti +
∑

k∈Ci

T Buf
k ) + Dij ≤ Tclk + (Tj +

∑
k∈Cj

T Buf
k ) − T j

set (8)

In [21, 11], the authors have proposed a design for PST
buffers using passive loads and inverters. The final tuning
can be done by connecting the required number of passive
banks through a programmable pass bit at each bank. This
design provides tuning proportional to its RC delay which in
turn corresponds to its bank size and silicon area. There is a
hardware and power overhead that is associated with imple-
menting a PST clock tree. The hardware cost is reflective
of the silicon area overhead which is proportional to both
the number of tunable buffers and their respective tuning
ranges (which decides the passive load bank and inverters
that are used). There is also a cost associated with the ac-
tual tuning delay used at each buffer (indicative of the clock
tree power overhead). Thus it is important to compute the
tuning range at each buffer such that the maximum timing
yield improvements can be achieved without having wasted
passive load banks at the PST buffers. We define tunability
cost (TC) as a metric of the overhead of having these passive
load banks and inverters in the PST tree. As explained, this
overhead is in terms of both silicon area and power and is
proportional to the range of the tuning buffers. In this work,
TC is also an optimization objective.

TC =
∑

k∈PST−buffers

Rmax
k (9)

where Rmax
k is the tuning range allocated to PST buffer k.

3. SIMULTANEOUS GATE SIZING AND PST
BUFFER RANGE DETERMINATION FOR
MINIMIZING BYL AND TC

In this work, we address the following problem:
Given a sequential design with a synthesized PST
clock-tree (with known tunable buffer locations), we
perform simultaneous gate sizing of the combina-
tional logic gates and tuning range determination
of each PST buffer, such that a combined objective
function of the binning yield loss and tunability cost
is minimized.

In this section, we first develop the formulation consider-
ing only longest path constraints and prove it to be optimally
solvable. Later, we will extend the formulation to consider
shortest path constraints as well.

3.1 Effect of Variability on Gate Sizing
Process variations cause significant spread in circuit pa-

rameters like Leff , tox and Vth. These in turn make the gate
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delays unpredictable. Typically, the circuit parameters that
are affected by variations can be treated as random vari-
ables, making gate delay a function of these random vari-
ables. Let us denote the random vector denoting all the
variable circuit parameters be �Ω where each parameter can
have its own density function and these can be correlated
in arbitrary ways. Thus, the coefficients in the gate delay
model presented in equation (4) would now become a func-
tion of the underlying random field. In this light, the delay
of gate i in the convex gate sizing formulation (as presented
in equation (5)) also becomes a random variable and can be
denoted as:

di(�y, �Ω) = a0i(�Ω) + a1i(�Ω)
∑

∀j e
yj

eyi
j ∈ fanout(i) (10)

In presence of process variability, we can therefore redefine
the objective of gate sizing to be BYL minimization. Let
us suppose that �ω represents the nominal values of each of
the varying parameters. We attempt to perform gate sizing
at these nominal parameter values such that the BYL is
minimized. This problem can be formulated as:

Minimize BY L(�y)

Subject to :

⎧⎨
⎩

tj(zj) + di(�y) ≤ ti(zi) ∀j ∈ fanin(i)
ti(zi) ≤ Tcons ∀i ∈ PO

xi
min ≤ eyi ≤ xi

max ∀gate i
(11)

We try to meet the timing constraint Tcons at these nom-
inal parameter values. Additionally, in order to control the
total sizing area, we could add a constraint

∑
ci × eyi ≤

Areamax to the formulation above. The gate sizing formu-
lation used in this work is similar to that proposed in [2].

3.2 PST Clock Tree Structure and
Assumptions

In this work, we assume that we are given a synthesized
PST clock tree as well as the location of the tunable clock
buffers. We do not make any assumption about the structure
of the clock tree (it can be balanced or unbalanced), clock
skews or the location of the tunable buffers. We use the PST
clock tree alongwith the buffer locations obtained from [12]
as an input to our algorithm.

3.3 Problem Formulation
The simultaneous gate sizing and PST buffer range deter-

mination problem can be formulated as a Two-Stage Stochas-
tic Program [16]. The sequential design can be viewed as a
set of FFs and logic gates. Each pair of FFs can share a
combinational logic path between them. Each such path
needs to meet the timing constraint in order to make the
design feasible.

For every pair of FFs i, j that are connected through com-
binational logic, we define a variable Dij that represents the
delay of the longest path between them. We can compute
Dij using the inequalities similar to that in the gate sizing
formulation on the combinational logic between these two
FFs:

tp(zp) + dq(�y) ≤ tq(zq) ∀p ∈ fanin(q)
tq(zq) ≤ Dij q is fanin of FF : j

xq
min ≤ eyq ≤ xq

max ∀gate q
(12)

For each pair of FFs i,j, we can write the constraints
mentioned above through inequalities (12) and compute the
longest path delay Dij .

3.3.1 Variables of Interest
There are three sets of variables in the problem formu-

lation. The first set are the gate-size variables represented
by �y, where the size of gate i is given by eyi . The second
set of variables represented by �r, where the tuning buffer
ranges for each PST buffer i is given by eri . The third set
of variables are represented by �zi, where the arrival time at
each gate i is given by ezi .

3.3.2 Objective of Interest
A general objective function can be to minimize a combi-

nation of BYL, TC (which is representative of the area and
power overhead incurred in PST clock tree) and also the
total gate-size (similar to traditional gate-sizing problem).
Since the tuning range at each PST buffer is proportional
to the area and power overhead, TC can be represented by
the sum of the total range of all PST tuning buffers. Hence,
a general objective function of interest could be written as:

Minimize (BY L(�y, �r)) + TC(�r) +
∑

i

Gate − Sizes) (13)

Minimize (BY L(�y, �r)) +
∑

k

αkerk +
∑

i

βie
yi) (14)

BYL is a function of both (�y, �r) as explained later. This
objective function allows to explore the trade-off between
BYL, TC and the total gate-size area by appropriately scal-

ing the constants �α and �β.

3.3.3 Two-Stage Stochastic Program
The first stage of the problem formulation can be written

in general form as:

Minimize (BY L(�y, �r) +
∑

k αkerk +
∑

i βieyi)

Subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ti + Dij ≤ Tclk + Tj − T j
set ∀FFs(i, j)

tp(zp) + dq(�y) ≤ tq(zq) ∀p ∈ fanin(q)
tq(zq) ≤ Dij q is fanin of FF : j

}
∀FFs(i, j)

xq
min ≤ eyq ≤ xq

max ∀gate q∑
k eyk ≤ Xmax ∀gate k

0 ≤ erm ≤ Rmax
m ∀m ∈ PST Buffer∑

m erm ≤ Rangemax ∀m ∈ PST Buffer
(15)

Let us try to understand the constraints in the above for-
mulation. The first constraint in inequalities of (15) rep-
resents the longest-path constraint (equation (6)) between
each pair of FFs that share a path between them. Here,
Ti, Tj , Tclk and T j

set are known constants that correspond
to clock arrival times. The longest path delay Dij can be
determined from the next three inequalities that represent
the gate sizing formulation for the logic paths between FFs
i and j. We note that a gate can show on multiple paths,
hence there would be several such sizing constraints on each
gate. But since the first stage problem considers all these
constraints together, there is no discrepancy that can come
in. The total sum of gate sizes for the design can be bounded
to be less than a constant Xmax using inequality 5 above.
Each PST buffer m can be bound to have a maximum al-
lowed tuning range Rmax

m . In order to limit the total tunabil-
ity cost, we can also have a bound on the total cumulative
tuning range given by Rangemax. These are represented by
the last two inequalities. This is the most general form of
the first stage problem.

In presence of process variability, the delay between each
pair of FFs i-j that have a combinational logic path between
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them, becomes a random variable that can be represented
as Dij(�y, �r, �Ω) that depends on the gate-sizes �y, the tuning
buffer range �r and the random field due to process variations
�Ω (that may have some correlation between its components).
Let us define a random variable P that denotes the penalty
of violating the timing constraint (Tclk) as:

P (�y, �r, �Ω) =

{
q(Dij(�y, �r, �Ω) − Tcons); Dij ≥ Tcons

0; otherwise
(16)

where q(.) is the convex penalty function that was defined
in equation (1).

In equation (2), BYL was defined as the expected value of
the timing-violation penalty. For a given (�y, �r) and a sample
ω of the random field Ω, let p(�y, �r, �ω) be the value of the ran-
dom variable P . By definition, p(�y, �r, �ω) denotes the timing-
violation penalty for a given (�y, �r) at that variability sam-
ple ω. Hence, BYL would be the average timing-violation
penalty over all such samples ω which is the expected value
of the random variable P for a given (�y, �r). Therefore:

BY L(�y, �r) = E[P (�y, �r, �Ω)] (17)

We can evaluate the timing-violation penalty p(�y, �r, �ω)
given a fixed �y, �r and a variability sample �ω through an-
other convex formulation that can be written as:

p(�y, �r, �ω) = Minimize
∑

F F (i,j) q(T viols
ij )

Subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Ti +
∑

k∈Ci
T Buf

k ) + Dij(�y, �r, �ω) ≤ Tclk+

(Tj +
∑

k∈Cj
T Buf

k ) − T j
set + T viols

ij ∀FFs(i, j)

tp + dq(�y, �ω) ≤ tq ∀p ∈ fanin(q)
tq ≤ Dij(�y, �r, �ω) q is fanin of FF : j

}
∀FFs(i, j)

T viols
ij ≥ 0 ∀FFs(i, j)

0 ≤ T Buf
k ≤ erk ∀k ∈ PST Buffer

(18)

Let us try to understand this formulation. Given a value
of �y, �r and a variability sample �ω implies that the delay of
each gate i (di(�y, �ω)) is known. Also, since �r is given, the
range of each tuning buffer k is will be erk . As mentioned
before in subsection 2.4, Ti and Tj are the clock arrival times
at FFs i and j respectively and are known values. For each
FF i, we know the set of tuning buffers Ci that can affect
the clock arrival time at this FF. In the above formulation,
the problem variables are T Buf

k which is the actual tuning
at PST buffer k that is used to reduce the timing violation.
The longest path delay Dij for each pair of FFs (i, j) is a
variable and the arrival time ti at each gate i is a variable.
Additionally, we define a variable T viol

ij for each pair of FFs
(i, j) that represents the timing violation along the longest
path between those FFs. The timing-violation penalty at
each FF pair (i, j) can be computed as q(T viols

ij ). The ob-
jective of this problem is to minimize the sum of timing-
violation penalty across all pairs of FFs (i, j) by appropri-
ately assigning delay tuning to each PST buffer within the
range given by the variables �r. Essentially, this formulation

tries to determine the best combination of tuning set ( �T Buf )
that should be applied at the PST buffers such that the total
timing-violation penalty for the design is minimized.

For a given value of �y, �r, the optimal objective to this
formulation gives us p(�y, �r, �ω) which is the desired quantity
to compute BYL(�y, �r).

The two formulations defined by inequalities (15) and (18)
form a classic Two-Stage Stochastic Programming formula-
tion [16], where the former is called the first-stage problem

and the latter second-stage problem. We would like to point
out that even though the proposed formulation considers
clock arrival times (Ti, Tj) to be constant, our formulation
can be extended to consider uncertainty in clock tree as
well. In that case, the second stage formulation would con-
sider the clock arrival times (Ti(�ω), Tj(�ω)) to be dependent
on the randomness (Ω).

3.4 The problem formulation is convex in (�y,�r)

Theorem: The proposed two-stage stochastic programming
formulation is convex.
Proof: Detailed proof omitted for brevity.

4. SHORTEST PATH DELAY CONSTRAINTS
The formulation discussed in the earlier sections presents

a provably optimal technique considering only longest path
(setup time) constraints. However, for a pair of FFs i and
j, we also need to satisfy the shortest path (hold time) con-
straints. Given the shortest path delay Dshort

ij between the
two FFs, we can write the shortest path delay constraint as:

Ti + Dshort
ij ≥ Tj + T j

hold ∀FFs(i, j) (19)

where T j
hold is a constant denoting the hold-time for FF j,

Ti and Tj are clock arrival times. As can be seen, this is
a non-convex constraint considering the convex gate delay
models given by equation 10. Hence, considering shortest
path constraints in the formulation proposed in the earlier
section would break the convex nature of the problem. We
will now present an efficient heuristic to consider the short-
est path constraints in our formulation while preserving its
convexity.

Let us suppose that we are given p paths which are can-
didates for shortest path delay violation (can be determined
from static timing analysis). The cumulative delay of the
gates on each of these paths would give us the delay of the
path. We will make a linear approximation on the gate de-
lay model for these gates wrt the gate sizing variable. Given
a gate m (with size eym) and its fanout gate n (with size
eyn), we can approximate its gate delay as a linear function
of the sizing variables (y). This model is constructed such
that it is a lower bound to the convex gate delay model given
by equation 4. Therefore, the shortest path delay is under-
predicted by our linear gate delay model approximation and
any valid solution will always satisfy the shortest path delay
constraint. Let us suppose that the path delay of the pth

shortest path is denoted by D
shortp

ij , we can compute the
linear gate delay and the shortest path delay as:

D
shortp

ij =
∑
m

dlin
m ∀gates m on path p (20)

dlin
m = a0m + a1mym +

∑
∀fanout−n

bnyn (21)

where a0, a1 and bn are constants. Under these assump-
tions, it can be seen that the shortest path constraint as
given by equation 19 is now convex and can be added to our
proposed formulation without breaking the convex nature of
the problem.

Let us now understand, how we can extend the two-stage
stochastic programming formulation to also consider short-
est path delay constraints. Given the p paths which are
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candidates for shortest path delay violation, the first stage
formulation as given by equations 15 can be modified to
additionally consider the constraint:

Ti + D
shortp

ij ≥ Tj + T j
hold ∀paths p ∀FFs(i, j) (22)

where D
shortp

ij is defined using equations 20 and 21.
The BYL will now consists of both longest path delay vi-

olation and shortest path delay violation. The second stage
problem given by equations 18 can be modified to consider
the BYL due to shortest path delay violation. The timing
violation penalty can now be computed as:

p(�y, �r, �ω) = Minimize
∑

F F (i,j)

q(T viols
ij , T violh

ij ) (23)

where T viols
ij represents the timing violation in the longest

path constraints and T violh
ij represents the timing violation

in the shortest path constraints. The second stage formu-
lation can consider additional constraints for shortest path
delay violation as given by:

(Ti+
∑

k∈Ci

T Buf
k )+D

shortp

ij (�y, �r, �ω)+T
violh
ij ≥ (Tj+

∑
k∈Cj

T Buf
k )

+ T j
hold ∀paths p ∀FFs(i, j)

T violh
ij ≥ 0 ∀FFs(i, j)

(24)

where T Buf
k is the tunable delay introduced due to PST

buffer k. This constraint gives us the timing violation in the
shortest path constraint T

violh
ij for path p.

This completes the extension of the two-stage stochas-
tic programming formulation to consider the shortest path
constraints in addition to the longest path constraints. Al-
though, we preserve the convex nature of the formulation,
the error introduced due to the lower bounding linear ap-
proximation on the gate delay models for shortest path con-
straints makes this a heuristic technique.

5. SOLVING THE TWO-STAGE
STOCHASTIC PROGRAM

In this work, we have used Kelley’s Cutting Plane Method
[19] to solve the two-stage stochastic programming formu-
lation. We would like to point out that this is just one
technique that can be applied to solve this convex formula-
tion. Any other convex optimization scheme can be used as
well. For the sake of brevity, we will not include details of
the method in this paper.

This method relies on the computation of a lower bound to
BYL(�x) and is the most critical step in Kelley’s Algorithm.
We will briefly discuss some details regarding this step of the
method. At a given solution of the first stage problem, i.e.
(�y,�r), computing the BYL(�y,�r) amounts to estimating the

expected value of the timing-violation penalty P (�y, �r, �Ω). In
the scenario when there are no PST clock buffers in the de-
sign, the problem of computing the timing-violation penalty
would amount to computing the timing pdf that can be done
using STA technique ([6, 24, 22, 7]). But in our case, we also
have PST clock buffers, where the amount of tuning required
at each buffer for best timing yield would vary depending on
each variability sample ω. To our best knowledge, there are

no current STA techniques that can handle timing analysis
in presence of PST clock buffers.

Consequently, in this work we resort to using a Monte-
Carlo based STA technique were for each sample ω of the
random field, we formulate the second-stage problem as pro-
posed using inequalities (18) and compute the actual timing-
violation penalty p(�y, �r, �ω). This is repeated for every vari-
ability sample ω such that the expected value of timing-
violation penalty which equals BYL(�y,�r) is eventually com-
puted. We note here that since we need to generate each
βi once at a time, this STA process is repeated for every
variable �y and �r. It is easy to note that this step becomes a
major bottleneck in the performance of our algorithm and
makes the entire computation slow.

However, the proposed algorithm is free to use any effi-
cient STA technique that can predict timing pdf in presence
of PST clock buffers. In the future, when such a STA tech-
nique has been developed, it can be plugged into the proposed
algorithm. In our results section, we will show that almost
all the computational time for our algorithm goes into this
Monte-Carlo based STA computation.

6. EXPERIMENTAL RESULTS
The overall formulation considering shortest and longest

path constraints was implemented in SIS [5]. We performed
experiments on the ISCAS benchmark suite. We generated
a valid placement for each benchmark using CAPO. The
correlation information between gates was generated using
the model proposed in [6]. We assumed that process vari-
ability caused threshold voltage to have a Gaussian distri-
bution with a mean value of 0.2V and a standard deviation
of 15% from the mean. We used 90nm technology param-
eters (from [23]) to compute the coefficients of the convex
gate delay expression (as a function of its size) as given by
equation (4). The PST clock tree structure used in our ex-
periments is obtained using the algorithm proposed in [12].
Each PST buffer was allowed to have a maximum tuning
delay of 5 psec.

In order to solve the first-stage convex formulation, we in-
tegrated MOSEK [8] with SIS. The formulation proposed in
section 5 was also implemented in SIS. As mentioned in that
section, we implemented a Monte-Carlo based STA scheme
to compute the BYL during each iteration of the cutting
plane algorithm. In figure 3, we can see that the upper
bound (objective) representing the BYL at the current so-
lution improves in each iteration and quickly converges to
the lower bound.

There is no scheme in the literature that does simultane-
ous gate sizing and PST buffer management. We have run
three set of experiments to evaluate our algorithm:

1. A nominal gate sizing scheme followed by PST buffer
management as proposed in [12]: We first run gate siz-
ing assuming nominal process parameter values. On
this solution, we perform PST buffer management (lo-
cation and tuning range determination of each PST
buffer) using the algorithm proposed in [12].

2. Taking the solution from experiment 1 ([12]), we retain
the PST clock buffer structure (location and ranges)
but try to re-optimize the design using a sensitivity-
based statistical gate-sizing approach similar in spirit
to that proposed in [3]: This approach is an iterative
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bench Tcons [12] [12] + Sensitivity [12] + Convex Stochastic
name (psec) BY L Area Buf.Range BY L Area Buf.Range BY L Area Buf.Range
s27 450 4165 402 9 3293 403 9 4 418 16
s298 700 30854 4135 4 28477 4187 4 414 4146 5
s344 1000 38850 3822 3 14289 4006 3 377 3838 3
s382 700 54916 5073 6 95364 5273 6 116 5162 7
s400 850 71823 5370 3 61400 5441 3 1638 5418 8
s499 1350 232523 6614 15 260749 6706 15 8766 6714 17
s526 900 58750 8091 8 2210 8152 8 568 8133 10
s635 2500 253551 7730 3 111368 7853 3 1308 7784 1

Table 1: Comparison of Binning Yield-Loss, Area and Total PST Buffer Range in (psec)

bench Tcons [12] [12] + [12] +
Senstivity Convex Stochastic

s27 450 0.23 0.18 0.03
s298 700 0.16 0.11 0.02
s344 1000 0.24 0.15 0.03
s382 700 0.16 0.11 0.02
s400 850 0.26 0.18 0.05
s499 1350 0.24 0.26 0.03
s526 900 0.26 0.09 0.02
s635 2500 0.17 0.12 0.05
Average 0.22 0.19 0.03

Table 2: Comparison of Yield-Loss

scheme where at each step, we evaluate the BYL im-
provements that can be achieved per unit size increase
for each gate. The most sensitive gate is chosen as the
next gate to be upsized.

3. Taking the solution from experiment 1 ([12]), we retain
only the locations of the PST clock buffers and run our
simultaneous gate sizing and PST buffer range deter-
mination algorithm: The PST clock tree obtained in
experiment 1 is taken as an input, though we reallocate
the range of each of the PST buffers while performing
gate sizing as proposed in this work.

The aim of these experiments is to show that our proposed
algorithm can provide significant improvements over the de-
sign obtained from [12]. Furthermore, comparison with ex-
periment 2 shows that the simultaneous gate sizing and PST
buffer range determination algorithm proposed in this work
is significantly more effective than performing a statistical
resizing of the design.

In order to compute the BYL for each experiment, we im-
pose the process parameter variations (Ω) on the final de-
sign solution through monte-carlo simulation and compute
the minimal timing violation considering tunability for each
sample (ω). The average BYL over all ω was taken as the
BYL for the design.

Table 1 compares the three approaches in terms of the
BYL, the total area after gate sizing and the tuning buffer
range. We can see that our proposed convex-stochastic
approach resulted in significantly lower BYL compared to
the other two cases. Since the nominal gate sizing is not
variability-aware, experiment 1 resulted in the highest BYL.
On an average, the BYL obtained from our approach is 98%
lower than the solution from experiment 1 ([12]) and 95%
lower than experiment 2, the sensitivity-based algorithm.

The final gate-size area obtained for our approach is on an
average 1.25% lower than that obtained from experiment 1
(nominal gate sizing followed by [12]) and 0.62% higher than
experiment 2, the sensitivity approach. Hence, the convex-

bench Sensitivity Convex Stochastic Speedup
#itera. time #itera. time

s27 14 0.5 10 0.9 0.6
s298 16 13.7 9 11.6 1.2
s344 24 24.3 7 14.6 1.7
s382 40 53.9 19 41.3 1.3
s400 18 28.3 13 19.5 1.5
s499 35 87.1 19 72.2 1.2
s526 15 52.0 14 40.1 1.3
s635 109 378.0 7 43.3 8.7
Average 2.2x

Table 3: Comparison of Total Run-Time (min) and
Number of Iterations
bench Avg. Iter. Time Avg. STA time / Iter %
s27 5 4 80.0
s298 77 74 96.1
s344 125 117 93.6
s382 130 127 97.7
s400 90 85 94.4
s499 228 225 98.7
s526 172 165 95.9
s635 371 351 94.6
Average 93.8

Table 4: Contribution of Monte-Carlo Based STA
time to Iteration Time (sec)

stochastic algorithm gives better BYL for similar total gate-
size area. From figure 4, we can see that our approach gives
much lower BYL for the same total gate-size area as com-
pared to the sensitivity-based algorithm.

The total PST tuning buffer range that is allocated through
the proposed algorithm is comparable to that obtained from
[12]. Hence, our algorithm is able to identify PST buffer
ranges that result in BYL reduction without putting any
additional overhead in terms of PST buffer cost while per-
forming simultaneous gate sizing.

Table 2 reports the traditional timing YL that were ob-
tained for the solutions from all three approaches. It can
be seen that on an average the nominal-sizing followed by
[12] gave 22% yield-loss, while the sensitivity approach gave
19% yield-loss whereas our proposed algorithm gave only 3%
yield-loss. These results show that even though we do not
directly optimize for timing yield loss (we optimize BYL),
we get better and more robust design solutions.

From figure 5, it is evident that the convex stochastic
algorithm has a much faster rate of convergence than the
sensitivity-based algorithm. The runtimes for each bench-
mark are reported in table 3 alongwith the number of iter-
ations. It can be observed that our approach converges to a
better solution in fewer iterations and on an average is 2.2x
faster than the sensitivity-based algorithm.
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Figure 4: BYL vs. Area Generated at Different Iter-
ations of Kelley’s and Sensitivity-Based Algorithms

As pointed out earlier in this paper, the maximum run-
time in our approach is taken in computing the BYL using
Monte-Carlo based STA. This is due to the fact that none
of the current STA techniques are able to perform timing
analysis considering tunability. Our proposed algorithm is
independent of the STA algorithm used and can be used in
combination with an efficient PST aware STA scheme devel-
oped in future. From table 4 it can be seen that almost 93%
of the computational runtime goes into the STA process.

7. CONCLUSION AND FUTURE WORK
In this work, we have proposed a novel framework that

performs simultaneous gate sizing and PST clock tree buffer
range determination in order to get lower BYL and tunabil-
ity costs. An extension to this work would be to include
power in the optimization formulation as well as develop
an STA scheme that considers post-silicon tunability during
timing analysis.
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