Substrate Noise Analysis and Experimental Verification for the Efficient Noise Prediction of a Digital PLL

Nisha Checka, Anantha Chandrakasan, Rafael Reif

Microsystems Technology Laboratory, MIT 60 Vassar St. Rm. 39-625 Cambridge, MA, (USA) 02139

Outline

- Background
- Conventional substrate noise simulation
- Noise macromodels
- Substrate Noise Analysis Tool (SNAT)
 - -Overview
 - Measurement comparison
- Summary

Background: Noise Generation

- Digital circuits inject noise into substrate during high speed switching
- Noise Sources:
 - > Vdd/gnd bounce
 - Switching inputs/outputs
 - Bulk current

Background: Noise Generation

- Noise travels to analog section via conductive substrate
- Effect on analog circuits: power/gnd noise, pick-up through depletion capacitances, vary bias through V_T fluctuation, backgate effect

Motivation

UWB transceiver chip

 $-\,TSMC$ 0.18 μm mixed mode process

Figures courtesy F. Lee

Simulation with Substrate Model

- Model for single inverter
- Substrate model (add'l 8 nodes):
 - NMOS: 3 elements
 - PMOS: 5 elements
- Example: Intel Pentium[®] 4 (Prescott) Microprocessor has 125 million transistors
 - ~ 500 million nodes for substrate!
 (excluding substrate model)

Model needs to be simplified to yield reasonable simulation timesSolution: Extract noise behavior into equivalent macromodel

Noise Macromodel Derivation

- Represent each noise source with equivalent source in macromodel
 - Represent V_{dd} /gnd bounce with I_{VDD} and I_{VSS} and Z_{VDD} and Z_{GND}
 - Represent switching inputs/outputs with V_{sw} and Z_{INT}
 - Represent bulk current with IBULK
- C_D represents circuit decoupling capacitance

Substrate Noise Analysis Tool

- Inputs
 - Circuit description: netlist or gate level description
 - Technology information: as detailed as substrate doping profiles, as coarse as substrate resistivity and type
- Outputs:
 - Time domain substrate noise
 - Noise spectrum

Granularity Level

Inputs: Circuit Description

Inputs: Technology Description

Measurement Comparison

- Test circuit: Digital PLL (~ 15K gates)
 - Designed in TI's 90nm technology
 - $f_{clkref} = 80 \text{ MHz}, f_{out} = 480 \text{ MHz}$
 - Substrate noise sensors added around DPLL

Granularity Levels

Inputs: Technology Description

Noise Spectrum

- Top sensor
- SNAT Simulation:
 - Technology Description: SubstrateStorm generated model
 - ~ 30 minutes to generate netlist
 - ~ 51 hours to simulate
 - Circuit Description: SPICE netlist (no parasitics)
 - ~ 6 minutes

Comparison of Measurements and SNAT Simulation

Error

Most error at 80 MHz (f_{clkref}) and 480 MHz (f_{out})

Parasitics

- Incorporate effect of pad parasitics REFCLK pad and CLKOUT pad
 - Pad to substrate capacitance
 - Capacitance to substrate of ESD structures
- Highest accuracy level 11.7% error in RMS voltage

Sensor 1 - Percent Error from Measurements

Noise Spectrum

- Top sensor
- SNAT Simulation:
 - Technology Description: SubstrateStorm generated model
 - ~ 30 minutes to generate netlist
 - ~ 51 hours to simulate
 - Circuit Description: SPICE netlist with parasitics
 - ~ 6 minutes

Comparison of Measurements and SNAT Simulation

Effect of Substrate Model

Granularity Levels

Inputs: Circuit Description

Substrate Model

Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive

Error

- Parasitics included
- SNAT-generated substrate model (<15 mins) vs. SubstrateStorm-generated model (51+ hrs)

Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive

Error

- Parasitics included
- SNAT-generated substrate model (<15 mins) vs. SubstrateStorm-generated model (51+ hrs)

Time Domain – Effect of Substrate Model

Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive

Substrate Model

- SNAT does not consider capacitive effects of wells and junctions
 - Treats substrate as purely resistive

Substrate Transfer Functions

Error

- Parasitics included
- Substrate models:
 - SNAT + no layout substrate model (<10 seconds)
 - SNAT + layout substrate model (<15 mins)
 - SubstrateStorm generated model (51+ hrs)

Measurement Comparison

- Test circuit: Digital PLL (~ 15K gates)
 - Designed in TI's 90nm technology
 - $f_{clkref} = 80 \text{ MHz}, f_{out} = 480 \text{ MHz}$
 - Substrate noise sensors added around DPLL

Right Sensor

Substrate transfer function varies with sensor location

Summary

- Substrate Noise Analysis Tool (SNAT)
 - Works at any point in design cycle
 - Measured substrate noise performance of the TI DPLL
 - 11.7% error in RMS voltage
 - Can achieve a dramatic speed-up in run-time with a doubling in the error
 - Coarsest macromodel simulation can get used to yield noise order of magnitude estimate in minutes

Acknowledgements

- MARCO Interconnect Focus Center
- Texas Instruments, Inc.
 - Fellowship support
 - Neeraj Nayak, Mohamed Mahmoud, Chris Barr, Baher Haroun

Macromodel Simulation

Original circuit

Example

- Granularity level
 - Circuit: gate level netlist

Example: One bit adder

Noise Simulation

- Represent each digital block with equivalent macromodel
- Construct macromodel for entire chip

Sample macromodel for entire digital system (assuming epi substrate)