(RTU4A-1)

The Effect of Substrate Noise on VCO Performance

Nisha Checka, David D. Wentzloff, Anantha Chandrakasan, Rafael Reif

Microsystems Technology Laboratory, MIT 60 Vassar St. Rm. 39-625 Cambridge, MA, (USA) 02139

Outline

- Motivation/Background
- Noise Characterization Test Chip
- VCO Results
 - Effect of Bias Current
 - Effect of Guard Rings
- Conclusions

What is Substrate Noise?

- Digital circuits inject noise into substrate during switching
- Noise propagates to analog section via substrate
- Effect on analog circuits: substrate contacts, pickup through large capacitive nodes, backgate effect

Motivation

UWB transceiver chip <u>– TSMC 0.18 μm mixed mode process</u>

Noise Characterization Test Chip

- TSMC 0.18 µm mixed-mode process (non-epi substrate)
- $\rho_{sub} \approx 10-15 \ \Omega cm^3$
- Triple-well process (~ 20 dB isolation)

Die Microphotograph of Test Chip RFIC - Long Beach June 12-14, 2005

Experimental Setup

- Multiple injection/sensing locations
- Three VCO center frequencies

Parameters

- VCO center frequency
 - 900 MHz, 2.4 GHz, 5.2 GHz
- VCO bias current
- Isolation
 - No guard ring, guard ring

Noise Coupling Paths

Noise Reception

Noise couples through GND line and inductor-substrate capacitance RFIC - Long Beach June 12-14, 2005

Inductors

900 MHz

2.4 GHz

L = 11.4 nH C = 220 fF $A\approx 340~x~340~\mu m^2$

L = 3.19 nH C = 100 fF $A \approx 220 \text{ x} 220 \ \mu \text{m}^2$ $A \approx 140 \ \text{x} 140 \ \mu \text{m}^2$

L = 655 pH C = 38 fF

Noise coupling through inductor decreases

10

Noise -- Inductor Component

Inductor Noise Coupling

11

Parameters

- VCO center frequency
 - 900 MHz, 2.4 GHz, 5.2 GHz
- VCO bias current
- Isolation
 - No guard ring, guard ring

Effect of VCO Bias Current

	P_c/P_n (dB)	I _{vco}
	9.9 dB	1.81 mA
of carrier to noise	26.3 dB	2.71 mA
r for 5.2 GHz VCO	23.1 dB	3.41 mA

RFIC - Long Beach June 12-14, 2005

Parameters

- VCO center frequency
 900 MHz, 2.4 GHz, 5.2 GHz
- VCO bias current
- Isolation
 - No guard ring, guard ring

Effect of Guard Rings

- Guard rings only surround active devices
 - Can only attenuate ground component of noise

Guard Rings and Inductor-Sub Noise

Guard ring has no effect on inductor component

Test: VCO powered off. Noise injected at 900 MHz

Effect of Guard Ring for 5.2 GHz VCO

Received Noise for 5.2 GHz VCO

RFIC - Long Beach June 12-14, 2005

7

Guard Ring Attenuation

- 900 MHz: -23.4 dB to -13.1 dB
- 5.2 GHz: -13.5 dB to 0.64 dB

VCO Locking

- As f_{noise} approaches f_{VCO} , and if P_{noise} is comparable to $P_{carrier}$, VCO can lock to f_{noise}

VCO Locking

• As f_{noise} approaches f_{VCO} , and if P_{noise} is comparable to $P_{carrier}$, VCO can lock to f_{noise}

5.2 GHz VCO Spectrum

VCO Locking

• As f_{noise} approaches f_{VCO} , and if P_{noise} is comparable to $P_{carrier}$, VCO can lock to f_{noise}

RFIC - Long Beach June 12-14, 2005

5.2 GHz VCO Spectrum

Resonant Gain Behavior

Received Noise for 5.2 GHz VCO

VCO Locking Range

$$f_{lock}^{[1]} \approx \frac{f_o}{2Q} \frac{I_{noise}}{I_{carrier}}$$

No GR/GR	f _{center}	Locking Frequencies	Range
No GR	4.3148 GHz	4.3145-4.315 GHz	50 kHz
GR	4.314 GHz	4.3137-4.3139 GHz	20 kHz

5.2 GHz VCO and Injection Locking

No GR/GR	f_{center}	Locking Frequencies	Range
No GR	2.027 GHz	2.0275-2.02755 GHz	50 kHz
GR	2.031 GHz	2.03065-2.03068 GHz	30 kHz

2.4 GHz VCO and Injection Locking

No GR/GR	f _{center}	Locking Frequencies	Range
No GR	812.89 MHz	812.9-812.905 MHz	5 kHz
GR	805.13 MHz	Doesn't Lock	-

900 MHz VCO and Injection Locking

Guard rings improve VCO locking

23

RFIC - Long Beach June 12-14, 2005

[1] (Razavi, JSSC, 39(9))

Conclusions

- Phase noise of a VCO is adversely affected by substrate noise
 In extreme, VCO can lock to noise
- Bias current plays important role
- Guard rings are effective at lower frequencies, less useful at higher frequencies

