
PRGUI: A Visual Tool for Displaying Placement and Routing

James Foltz
Oklahoma State University

Summer Advisor: Dr. Kia Bazargan
University of Minnesota

NSF REU Program
Summer 2004

Foltz 2

Foltz 1

Abstract

 Current two-dimensional (2D) Field Programmable Gate Arrays (FPGA’s) suffer from

large delays of global interconnects and this is even more stringent as circuit sizes (and therefore

FPGA’s) are continuously increasing. One possible solution to address this problem is the

development of the three-dimensional (3D) FPGA’s.

 3D FPGA’s can offer smaller average net delay compared to the 2D case and therefore

they allow implementation of larger circuits while attaining the same performance. In order to

fully analyze 3D architectures one needs appropriate CAD tools. This work is on developing a

Placement and Routing Graphical User Interface (PRGUI), which can be used to visually display

the placement and routing of circuits on 3D FPGA’s.

 Features of PRGUI include the ability to view the entire three-dimensional circuit or

every layer individually. PRGUI has many filtering options for displaying the netlist and timing

critical paths. These features, coupled with its abilities to zoom and rotate make PRGUI a very

powerful program for displaying placement and routing on 3D FPGA’s.

Foltz 2

 A very common and well used device in Electrical Engineering is a Field Programmable

Gate Array (FPGA). An FPGA is a complex logic device, which can be programmed to

implement circuits. It has a simplified architecture, including an array of configurable logic

blocks, input and output pads, switch and connection blocks, and wires to route signals between

the configurable logic blocks (CLB’s). The way an FPGA works is very unique. Take a look at

the figures below. Figure 1 shows a simple digital circuit, OutputDCBA =•+•)()(.

 Figure 1: A simple digital circuit

 Figure 2: The circuit on a 2D FPGA

Figure 2 shows the same circuit implemented on a two-dimensional FPGA. You can clearly see

the Input/Output Pads (I/O Pads), the CLB's, and the wires connecting all the components.

An FPGA is always situated such that the CLB's are surrounded by Input/Output pads. Figure 2

is only one representation of how an FPGA could implement the simple digital circuit in Figure

1. For instance, the locations of the AND and OR gates could be switched, or any of the inputs

or outputs could be moved to any of the open locations, or any other combination, as long as the

CLB’s are situated inside the I/O pads. There are many complex algorithms that determine the

best and most efficient locations of the CLB's, I/O pads, and the wires.

 FPGA's typically exist in a two-dimensional sense, as shown in Figure 2. A two-

Foltz 3

dimensional FPGA is comprised of rows and columns of CLB’s, surrounded by I/O pads.

However, FPGA technology has evolved, and now three-dimensional FPGA's are coming into

play. My summer advisor, Dr. Kia Bazargan, and my grad student, Cristinel Ababei, are

currently working on developing algorithms to determine the most efficient way to layout a

three-dimensional FPGA. Due to the fact that this is a new technology, there is no way to

physically view their work. My project this summer was to create a Graphical User Interface

(GUI) to illustrate the placement and connections between CLB’s and I/O pads in a three-

dimensional FPGA.

 For my project, I created a program in Java. Java was chosen over other languages for

several reasons. It is simple to write code for, it is object-oriented, and it is platform

independent, so the same code can be used on either a Windows or a UNIX computer. My

program is titled PRGUI, which stands for Placement and Routing Graphical User Interface.

PRGUI is quite adept at what it does, and has many abilities. PRGUI can display the entire

three-dimensional FPGA at once, or it can display one layer in a two-dimensional view that the

user specifies. It has many different filtering options for looking at the connections between the

CLB’s and I/O pads. PRGUI also has zooming in and zooming out features, as well as the

ability to rotate the entire circuit and its connections ninety degrees clockwise or

counterclockwise. It also has the ability to display the timing critical path information of the

circuit.

 PRGUI is very long and complex, consisting of 2,856 lines of code. On the following

page Figure 3 shows the classes of the program, the public variables within each class, the

methods used in each class, and the Java libraries imported into the program.

Foltz 4

Figure 3: A graphical view of the data in PRGUI
Classes are shown by a , Methods are shown by a , Public Variables are shown by a

Screenshots taken from JCreator, copyright Xinox Software, http://www.jcreator.com

Foltz 5

 The following information is a basic summary of each class, what it contains, and what

its job is inside PRGUI.

• aboutFrame: This class creates the JInternalFrame that is shown when the user selects
Help About, and has the information contained there

• BNameHolder: This class contains an array that stores the Block Names of the various
blocks, in order of appearance in the .p input file

• BNHolder: This class contains an array that stores the Block Numbers of the various
blocks, in order of appearance in the .p input file

• BNSink: This class contains a two-dimensional array that stores the Block Names of the
Sink blocks of each Net, in order of appearance in the .net input file

• BNSource: This class contains an array that stores the Block Names of the Source blocks
of each Net, in order of appearance in the .net input file

• CPArray: This class contains a two-dimensional array that stores the Critical Path
information, in order of appearance in the .kcp input file

• critPathFrame: This class creates the JInternalFrame that is shown when the user selects
Critical Paths Show Critical Paths… from the menu, and has the information
contained there

• netListFrame: This class creates the JInternalFrame that is shown when the user selects
NetList Filtering And Viewing Options… from the menu, and has the information
contained there

• NumberofComponents: This class merely has an integer, count, that contains the number
of blocks in the entire circuit

• PRGUI: PRGUI is the main method, and it contains the all the public variables that are
called from multiple classes, including the location of the files imported, the dimensions
of the FPGA, zoom factor, rotation information, and more. It also creates an instance of
the JDesktopPane and makes it visible

• PRGUIDesktopPane: This class creates and defines the JDesktopPane used in PRGUI.
Within this class, all of the Menus are created, and their actions are also defined. This
class is also where ALL information is read into the program. It is the only class that has
the IOException thrown.

o actionPerformed: This method carries out the specified action when a specific
option is selected from the JMenuBar

o createMenuBar: This method creates the JMenuBar and its components within it
o helpFrame: This method reads in “help.txt” and displays it in a JTextArea, within

its own JInternalFrame
o initFrame: This method creates the JInternalFrame that is PRGUI
o loadFiles: This method creates the JInternalFrame shown when the user selects

File Load Circuit Files…
o newCritPath: This method reads in the .kcp file chosen by the user and processes

the data contained within the file
o newNetList: This method reads in the .net file chosen by the user and processes

the data contained within the file
o newPlacement: This method reads in the .p file chosen by the user and processes

the data contained within the file

Foltz 6

• PRGUIFrame: This class defines the JInternalFrame created in
PRGUIDesktopPane.initFrame()

• PRGUIPanel: This class draws EVERYTHING in PRGUI. It draws everything in both
2D and 3D modes, including the blocks, nets, critical paths, etc. It has many if
statements that specify what it draws, that depend on the public variables in PRGUI

• XHolder: This class contains an array that stores the X location of the various blocks, in
order of appearance in the .p input file

• YHolder: This class contains an array that stores the Y location of the various blocks, in
order of appearance in the .p input file. This number is converted to Java coordinates –
the .p file contains XY coordinates in the 1st Quadrant, whereas Java uses XY coordinates
in the 4th Quadrant.

• YJavaHolder: This class contains an array that stores the Y location of the various
blocks, in order of appearance in the .p input file. This class is different than the YHolder
class because it does NOT change the coordinates to Java code. It is used for the rotation
multiplication needed to rotate the circuit

• ZHolder: This class contains an array that stores the Z location of the various blocks, in
order of appearance in the .p input file

 PRGUI is very complex. When it is first opened, PRGUI displays an empty

JDesktopPane. This is shown below in Figure 4. As can be seen, the menus across the top read

Figure 4: A newly opened instance of PRGUI

File, View, NetList, Critical Paths, Zoom, Rotate, and Help. The first thing that should be done

Foltz 7

to use PRGUI is to load circuit files. Under the File menu, there are two options, as shown in

Figure 5: Load Circuit Files… and Quit. Quit is self explanatory, it exits the program. When

Load Circuit Files… is selected, the user is greeted with a new

window, shown in Figure 6. From this menu, the user can see the

 Figure 5: File Menu current files loaded, though in Figure 6, no files are loaded, so the

file information is blank. When one of the

buttons is selected, a new window appears,

allowing the user to browse their computer for

the proper file to load into PRGUI. This

window is shown in Figure 7. After the circuit

files are loaded, the default circuit settings for

PRGUI are displayed. This can be seen in

Figure 8 on the next page. By default, PRGUI

shows qualitative information about the circuit Figure 6: Load Circuit Files…

it is currently displaying. PRGUI displays the names of the files currently loaded, the total

number of cells (blocks) in the circuit,

the total number of nets (connections) in

the circuit, the total number of layers in

the circuit, and it displays the entire

circuit in a three-dimensional view, with

used blocks being white in color, and

unused blocks being light grey in color.

 Figure 7: Select a file to load The coordinates of three corners can

Foltz 8

Figure 8: PRGUI in default setting mode, just after the loading of files

be seen in Figure 8. These are important so the user can understand the orientation of the circuit

after it rotates.

 Figure 9 shows the options under the NetList menu. The two options are Filtering And

Viewing Options… and Hide NetList. The NetList is the viewing of the Nets, otherwise know as

the connections in the circuit. It does not display proper

routing information – what it does is if Block A is

 Figure 9: NetList Menu connected to Block B, a straight line is drawn connecting

them. In reality this is not the way the FPGA is wired, as the wires exist only between blocks, so

the connections must be routed through the circuit as such. When Filtering and Viewing

Options… is selected, a new window pops up. This is shown on the next page in Figure 10. By

default, the Hide NetList option is selected. There are many filtering options for the NetList.

The following is a list of the options and an overview of what each one displays.

Foltz 9

• Show NetList For Only Local
Traffic: If this option is selected,
PRGUI will show all the
connections in the circuit that begin
and end on the same layer.

• Show NetList For Only Outgoing
Traffic: If this option is selected,
only the nets that begin and end on
different layers will be displayed.

• Show NetList For All Traffic: If
this option is selected, all the nets in
the entire circuit are displayed.

• Show All Nets That Connect Layer
#__ And Layer#__: If this option is
selected, the user inputs two layer
numbers, and the nets that connect
the two layers specified are

 Figure 10: Filtering And Viewing Options… displayed.
• Show All Nets That Are Between Layer#__ And Layer#__: If this option is selected, the

user inputs two layer numbers, and the nets that begin and end on layers between the two
numbers specified are displayed.

• Show All Nets That Span__ Layers: If this option is selected, the user inputs a number,
and the nets that connect layers that far apart are displayed.

Figure 11, below, shows a circuit in three-dimensional view with Show NetList For All Traffic

shown. The local traffic is colored cyan, and the outgoing traffic is colored yellow.

Figure 11: A circuit in 3D view with all nets shown

Foltz 10

 Figure 12 shows the options available under the Critical Paths menu. The two options are

to Show Critical Paths… and to Hide Critical Paths. Critical paths

are very important in analyzing a circuit. The most critical path in

 Figure 12: Critical the circuit is the path with the longest input to output delay. The
 Paths Menu
delay comes both from processing the logic and from signals traveling through the wires. The

operating frequency is determined from the critical path, as the whole circuit must go as slow as

the critical path for the circuit to work properly. When a user wishes to view the critical path

information, and selects Show Critical Paths… from the menu, the window shown in Figure 13

pops up. The default setting is currently

selected, to Hide Critical Paths. The first

option for viewing the critical paths is to

Show The__ Most Critical Path. When a

user selects this option and inputs which

 Figure 13: Show Critical Paths… critical path they wish to see. As can be

seen in Figure 13, the file currently loaded has information for the ten most critical paths, so the

user can view the first through the tenth critical path. The other option for viewing the critical

paths is to Show The First__ Most Critical Paths. When this option is selected, the user inputs

how many of the first critical paths they wish to view. In this case, they can view up to the first

ten critical paths at once. When a critical path is shown, it is displayed in red, and the blocks it

connects are highlighted in red. The first most critical path is displayed in the circuit shown in

Figure 14 on the next page.

 Another important ability PRGUI has is it can display a single layer in a two-dimensional

view. This capability is useful for users wishing to get a more in-depth view of the connections

Foltz 11

Figure 14: A circuit in 3D view with all nets and the first most critical path shown

on one specific layer. Figure 15 shows the options available under the View menu. By default,

PRGUI displays all the layers in a three-dimensional view. However,

when Show 2D Layer… is selected, the user is greeted with the

 Figure 15: View Menu window shown in Figure 16. This window asks the user to specify

which layer they wish to view, and shows them the layers available in the current circuit. In

Figure 16, the FPGA has eight layers, so the user can

input a layer from zero to seven. After a layer number

is inputted and OK is selected, PRGUI displays the

chosen layer in a two-dimensional view. Whatever
 Figure 16: Show 2D Layer…
settings were previously selected in three-dimensional

view mode remain intact in the two-dimensional view. For example, Figure 14 shows a circuit

with all the nets shown and the first most critical path displayed. Using the same circuit with

Foltz 12

those settings and viewing the first layer of the circuit in two-dimensional view mode yields the

circuit shown in Figure 17, below. As can be seen, it is similar in many ways to the three-

Figure 17: A circuit in 2D view with all nets and the first most critical path shown

dimensional view mode. The circuit information is still displayed, the coordinates are displayed,

the used blocks are white and the unused blocks are light gray, the local nets are cyan, and the

critical path is still red. However, there are many differences as well. The entire critical path is

shown, not just the part on the current layer. The blocks it runs to are still highlighted, but those

on a layer above the one currently being displayed are highlighted yellow, those below are

highlighted green, and those on the current layer are highlighted red. The outgoing nets are also

different too. If a connection is going to or coming from a layer above the layer being displayed,

half of the connection is shown on the current layer in yellow. If a connection is going to or

coming from a layer below the layer being displayed, half of the connection is shown on the

current layer in green. Since only half of the connection is displayed, it appears to just suddenly

Foltz 13

stop. However, if the user goes to the other layer that the connection is going to or coming from,

from that point the connection would be completed to its beginning or destination. This is due to

the limitations of a two-dimensional view.

 Two very important abilities of PRGUI are the options to zoom in and out and rotate.

These options are very useful for the user to get a more in depth view of a particular part of a

circuit, or to get a better overall view of the circuit. Figure 18 shows the Zoom menu. As can be

seen, the zoom commands are associated with the keyboard shortcuts

CTRL-Z for Zoom In and CTRL-X for Zoom Out. PRGUI can zoom in,

 Figure 18: zoom out, and rotate with any of its connections shown. It is very adept at
 Zoom Menu
what it does. If the circuit is zoomed in enough, the block numbers are displayed on each block.

This is shown below in Figure 19. Figure 20 shows the options available under the Rotate menu.

Figure 19: Left: Block Names visible in 2D Right: Block Names visible in 3D

There are only two options for rotation. The circuit

can be rotated either ninety degrees clockwise or

counterclockwise. When used in combination with Figure 20: Rotate Menu

Foltz 14

the zoom options, rotation is a very powerful tool for viewing and analyzing a circuit from many

different aspects.

 One final menu in PRGUI is the Help menu. It has two options, shown in Figure 21. The

options are Help and About. Help brings up a help menu with a text file detailing

the options available in PRGUI. About brings up a menu that displays personal

information about the author, and the circumstances for which PRGUI was created. Figure 21:
 Help Menu
These options are useful for users wishing to know more about PRGUI.

 PRGUI is an excellent way for a user to visually see the layout of a three-dimensional

FPGA. It has many filtering options for displaying the netlist, and for displaying the critical

paths. It has the ability to display the entire circuit in a three-dimensional view, or to view one

layer at a time in a two-dimensional view. With these options and the zoom and rotation

features, PRGUI is a very powerful Graphical User Interface for displaying placement and

routing information in a three-dimensional FPGA.

