
Incremental Retiming for FPGA Physical Synthesis

Deshanand P. Singh
dsingh@altera.com

Valavan Manohararajah
vmanohar@altera.com

Stephen D. Brown
sbrown@altera.com

Altera Corporation, Toronto Technology Center
151 Bloor St. West, Suite 200
Toronto, CANADA, M5S1S4

ABSTRACT
In this paper, we present a new linear-time retiming algo-
rithm that produces near-optimal results. Our implemen-
tation is specifically targeted at Altera’s Stratix [1] FPGA-
based designs, although the techniques described are general
enough for any implementation medium. The algorithm is
able to handle the architectural constraints of the target de-
vice, multiple timing constraints assigned by the user and
implicit legality constraints. It ensures that register moves
do not create asynchonous problems such as creating a glitch
on a clock/reset signal.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Design Aids

General Terms: Algorithms, Measurements, Experimen-
tation, Theory

Keywords: Retiming, Physical Synthesis, FPGA

1. INTRODUCTION
Designs implemented in FPGAs [1] are often dominated

by the delay associated with its configurable interconnect.
While this phenomenon is also true for ASICs, it is more
pronounced for FPGAs because the interconnect contains
programmable switches such as pass transistors, tri-state
buffers and multiplexers in addition to the metal lines them-
selves.

One of the most powerful delay optimization techniques
is Sequential Retiming [3] [4]. This technique moves reg-
isters across combinational circuit elements to reduce the
length of timing-critical paths. The technique of retiming
is ideally suited for FPGA-based implementations because
FPGAs are typically fairly register rich architectures that
contain a single register for every logic cell in the device.

In this paper, we present a practical retiming algorithm
that can be applied to very large circuits with arbitrary tim-
ing constraints. The only other published work that ad-
dresses these issues is presented in [10]. However, a full
description of the algorithm is not provided and a compar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

ison to traditional Leiserson-Saxe retiming is absent. The
algorithm presented here also provides a very general frame-
work to handle arbitrary constraints on the retiming moves
performed. The constraints include:

• Delay optimization in the presence of user-assigned
timing constraints.

• Implicit legality contraints to ensure correct circuit
functionality [11].

• Ensuring that newly created registers are distributed
evenly across the circuit. This constraint is especially
useful for Physical Synthesis flows where newly cre-
ated logic elements are incrementally placed into the
design [8]. The creation of too many logic elements
in a localized region may cause significant difficulty in
finding an incremental placement.

• FPGA architectural constraints such as carry chains.
These chains provide high speed implementations of
arithmetic logic; however, signals propagating along
the chain must be strictly combinational since most
architectures do not allow for registers between chain
elements.

The rest of this paper is organized as follows: First, we
describe background information about the orginal formu-
lation of speed-optimization by retiming so that we may
contrast these techniques with this work. Next we provide
a detailed description of the new retiming algorithm. We
then present results comparing our algorithm to the origi-
nal retiming algorithm and results of our algorithm applied
to a set of industrial circuits in a Physical Synthesis flow
implemented using Altera’s QuartusII [1] software.

2. BACKGROUND

2.1 Retiming
Sequential retiming is a powerful logic optimization tech-

nique for synchronous circuits which uses the property that
flip flops can be taken from the outputs of gates and moved
to their inputs, or vice versa. Using these moves in com-
bination, one can attempt to maximize circuit speed and
minimize area. This technique was first introduced in the
early 1980’s by Leiserson and Saxe [3] [4].

2.2 Notation and Definitions
Retiming algorithms usually require a unique representa-

tion of synchronous circuits. These circuits can be repre-
sented using a directed graph of the form G(V, E). V is the

set of all combinational cells within the circuit. E is a set of
directed edges euv which denote the connection of cell u to
cell v via zero or more registers. Each of the directed edges
is associated with a corresponding weight wuv. This weight
indicates the number of registers on the connection from u

to v.
A retiming of a circuit can be expressed as an integer la-

beling on each combinational cell. A label r(v) is associated
with each cell v. This label indicates the number of registers
that are moved from the inputs of the cell v to its outputs.
Thus for a given retiming, the number of registers on each
wire is given by:

wr,uv = wuv + r(u) − r(v) (1)

This equation simply expresses that in addition to the origi-
nal registers on euv, which is denoted by wuv, r(u) registers
are moved onto the wire and r(v) registers are removed.

Given these definitions, the problem of retiming synchronous
circuits can then be expressed as finding a label for each
combinational cell such that the delay of the longest com-
binational path is less than a target clock period φ. This
problem can be formally expressed as:

• All retiming labels r(v) must be integers. It is im-
possible to move fractional numbers of flip-flops from
inputs to outputs.

• After retiming, all weights must be non-negative. That
is wr,uv ≥ 0 or:

r(u) ≥ r(v) − wuv (2)

This equation exists to ensure that retiming is physi-
cally possible or negative numbers of registers may be
produced by the retiming algorithm.

• Let P represent a path from u → v in a directed graph
representation of the synchronous circuit. Every path
in the circuit with delay D(P) greater than φ must
have at least one register along that path.

D(P) > φ −→ Wr,P ≥ 1

D(P) > φ −→ r(u) ≥ r(v) − WP + 1 (3)

The quantity WP represents the sum of the weights of
the edges along the path P .

This formulation can be solved by a solution to a set of
constraint equations. They can be efficiently solved by sin-
gle source shortest path algorithms such as Bellman-Ford
or the algorithm FEAS described in [3]. Many techniques
have recently been developed for making retiming practi-
cal for large circuits [7]. Note that solving these constraint
equations does not optimize the clock period, but rather it
gives us the answer to a decision problem that asks if the
target clock period φ can be achieved by retiming. In order
to optimize the clock period, a binary search is performed
to check individual values of φ.

For an FPGA circuit netlist containing n elements, with
at most k inputs, the worst-case complexity of this optimal
retiming algorithm is O(n2log(n)). The approaches in [6] [7]
dramatically reduce the runtime penalty for retiming algo-
rithms, but the worst-case bound is unchanged.

3. INCREMENTAL MULTI-CONSTRAINT
RETIMING

The basic idea behind our retiming scheme is to perform
a timing analysis of the circuit and dertermine which regis-
ters are on critical or near-critical paths. For each of these
registers, ri, we perform the following actions:

• If the register ri’s input is connected to a critical or
near critical path, then attempt to push ri backward.

• If the output of ri is connected to a crtical or near
critical path, then attempt to push ri forward.

Before describing our algorithm in more detail, we’ll more
formally describe timing analysis and notions of criticality.

3.1 Timing Analysis
The most simple timing analysis technique is referred to as

static timing analysis. This operation is applied to a DAG
representation of the combinational portion of the circuit
netlist. Each vertex and edge in the graph is annotated
with delay information corresponding to the propagation
times through combinational elements and the connections
between these elements. The arrival time at any node, j, is
defined as the maximum signal propagation time from any
input of the combinational network to the node j. A re-
cursive relation for the arrival times, Aj , can be defined as
follows:

Aj = maxi∈FI(j){Ai + delay(i, j)} + delay(j) (4)

The critical path delay (Tcrit) determines the maximum
operating frequency of the circuit and is defined as the max-
imum arrival time over all nodes in the circuit.

The critical path delay is a useful metric for evaluating
the effectiveness of the various timing driven techniques de-
scribed in this paper; however, these techniques usually re-
quire knowledge of the parts of the circuit that directly in-
fluence the critical path delay so that these areas can be
optimized. To accomplish this objective, the concept of the
required time for a node, i, is defined as the latest time that
an input to i can transition without causing the propagation
time to any node reachable from i to become critical. In a
similar manner to the arrival time, a recursive relation can
be defined to find the required times:

Ri = minj∈FO(i){Rj − delay(i, j)} − delay(i) (5)

The arrival times and required times can be used to calcu-
late the slack of a given connection. The slack is defined as
the amount of delay that can be added to a given connection
without affecting the critical path delay:

slack(i, j) = Rj − Ai − delay(i, j) (6)

A related measure, termed the criticality is defined as:

criticality(i, j) = 1 −
slack(i, j) − MinimumSlack()

max{Tcrit, Treq}
(7)

Connections on near-critical paths have criticality values
close to 1, while non-critical connections have values close
to 0.

The procedure described above generates criticality infor-
mation in the presence of a single user constraint Treq. The
timing analyzer in Altera’s QuartusII’s CAD system gen-
eralizes this technique to handle multiple user constraints.
These constraints include:

LUT D Q
ri

D Q
Rst

D Q
Rst

D Q
Rst

Figure 1: Asynchronous Constraint.

• Required times on each clock domain present in the
design.

• Required times from IO pins to registers and from reg-
isters to IO pins.

• Implicitly computed required times between related
clock domains (ie. clocks and gated versions of the
clock).

• Point-to-point timing assignments and multi-cycle con-
straints. In this way users can inform the timing an-
alyzer that even though a path is fairly long, it may
not be critical since it may take multiple clock cycles
before its output is needed.

3.2 New Algorithm
The incremental multi-constraint retiming algorithm uses

sets of constraints to optimize a circuit in a legal and efficent
way. The sets used are:

• TC is a set of all user-defined timing constraints.

• AREA is a set of area constraints for the circuit. This
includes a global constraint on the maximum area in-
crease allowed. As described previously, it may also
include constraints to ensure that registers are created
evenly across the design.

• ARCH is a set of architectural constraints that defines
rules for handling carry chains and various restrictions
of secondary signals in the target FPGA.

• IMPLICIT is a set of constraints automatically gen-
erated to ensure that the circuit functions correctly
after the application of retiming. An example of this
constraint is shown in Figure 1. In this example a
register feeds the asynchronous reset signal of several
other registers in the design. Retiming theory allows
us to move the source register backwards. However,
doing so may introduce a glitch on the signal that
feeds the asynchronous lines. This situation could po-
tentially cause disasterous malfunctions. These types
of implict legality contraints are described in detail
in [11].

• USER is a set of user constraints where they inform
our algorithm that portions of logic are not to be touched
regardless of the potential benefit.

We also define a set:

Chard = AREA∪ ARCH ∪ IMPLICIT ∪ USER

Figure 2 shows the pseudocode for the incremental multi-
constraint retiming algorithm. It contains two main loops
of K iterations each. Experiments have shown that a value
of K = 32 works well for most circuits so it is used for
all experiments described in this paper. In the first loop,
only backward retiming moves are accepted while the sec-
ond loop attemps only foward retiming moves. Notice that
retiming moves are only attempted for registers that have
critical connections. Experimentation has also shown that
we can label a connection, c, as being critical if it satisfies
the requirement that criticality(c) > 0.825.

In the first loop, we attempt a backward move on all regis-
ters that have critical inputs. The moves are only accepted
if they do not violate any constraint in the set Chard. Af-
ter all moves are completed, we execute a call to the timing
analysis engine in QuartusII. If the worst-case slack has been
improved in comparison to the best netlist seen so far, then
the current netlist is assigned as the new best netlist. After
finishing K iterations of making backwards moves on input-
critical registers, we set the current netlist to be equal to
the best netlist seen while performing the backwards iter-
ations. Again, the best netlist is the one with the highest
worst-case slack. Thus this algorithm is designed to modify
a circuit so that it is as close as possible to meeting user tim-
ing constraints. Other cost functions such as minimizing the
number of paths that cannot meet their timing constraint
are also useful to a designer. In fact, our commercial code
uses a blend of many different functions to decide on the
“best” netlist.

The second loop is identical to the first except that it
moves registers that are output-critical forward in the netlist.
At the end of this loop, the current netlist is set to be the
best netlist found in either the forward or backward pass.
It is this netlist that is returned to the QuartusII netlist
optimization flow, described later.

The incremental multi-constraint retimer heavily uses the
concept of forward and backward register moves. Although
these moves are theoretically simple, there are several inter-
esting practical issues that we had to address.

Notice that the worst case complexity of the retiming al-
gorithm is O(Kn), where n is the number of nodes in the
circuit. Given that K is a constant, the algorithm has linear
time complexity O(n).

Figure 3(a) shows the typical situation present in a for-
ward push of a register ri. For the forward push to occur, a
register has to be present at each input of the combinational
element g. If this is not the case, then the push forward sim-
ply does nothing and returns. If a register is present at each
input of the combinational element, then the push is only
legal if the registers all have compatible control signals [2].
In the case shown in the figure, the enable signals to ri and
rj must satisfy the constraint that Eni = Enj .

In some cases, it is extremely beneficial to perform a for-
ward push, but the secondardy signals of ri and rj are in-
compatible. Suppose that we were presented a case such
as that shown in Figure 3(a) where Eni 6= Enj . In this
case we could transform the circuit into an equivalent form
shown in Figure 3(b). This transformed circuit uses dedi-
cated multiplexer logic to implement the the clock enable
functionality of ri and rj . Thus the registers ri and rj no
longer need enable signals of any sort so the forward push
can proceed with no compatibility issue at all. This type of
register decompostion is done only when it is needed since

proc IncMCRetiming
call T imingAnalysis(TC);
BestSlack = MinimumSlack();
BestNetlist = CurrentNetlist();
for K iterations do

foreach register ri in the circuit do
ifri has a critical input then

push ri backward ;
if any constraint in Chard is violated then

undo push of ri;
end if

end if
end for
call T imingAnalysis(TC);
if MinimumSlack() > BestSlack then

BestSlack = MinimumSlack();
BestNetlist = CurrentNetlist();

end if
end for
SetCurrentNetlist(BestNetlist);
for K iterations do

foreach register ri in the circuit do
ifri has a critical output to g then

push ri forward across g;
if any constraint in Chard is violated then

undo push of ri;
end if

end if
end for
call T imingAnalysis(TC);
if MinimumSlack() > BestSlack then

BestSlack = MinimumSlack();
BestNetlist = CurrentNetlist();

end for
SetCurrentNetlist(BestNetlist);
return CurrentNetlist();

Figure 2: Incremental Multi-Constraint Retiming.

D Q

En

D Q

En

Eni

Enj

Si

Sj

LUT

rj

ri

g

(a) Forward Push.

D Q

Eni

Si

Sj

LUT

ri

D Q

Enj

rj

g

(b) Reg Decomposition.

Figure 3: Forward Push Techniques.

the additional multiplexer logic may produce a significant
area penalty if done too often.

An important aspect of retiming that is often overlooked is
the computation of reset/power-up states for newly created
registers. In Altera’s Stratix FPGA, every register in the
device1 is set to logic 0 at power-up and when the register’s
asynchronous reset signal is asserted. We can simulate a

1Register in IO-cells can reset/power-up to either 1 or 0

D Q

Rst

RST

ri

(a) Emulation of
Reset-HIGH Regs.

D Q

Rst

RST

ri

D Q

Rst

RST

rj

LUT

D Q

Rst

RST

rnewLUT

(b) Correct Initial State after For-
ward Push.

Figure 4: Initial State Handling.

register that will reset/power-up to a value of 1 by using
the circuit shown in Figure 4(a).

Figure 4(b) shows an example of computing the reset/power-
up state of a register pushed across a LUT. In this exam-
ple, we assume the LUT implements the functionality of
a NAND gate and the input registers have reset/power-up
states equal to logic 0. Thus the output of the LUT is set
to value of logic 1 when the input registers are reset or at
FPGA power-up. We must ensure that this reset/power-up
condition is maintained after the forward push is executed.
This goal can be accomplished by inserting reset-high cir-
cuitry, as shown in Figure 4(a), at the output of the LUT.

D Q

En

D Q

En

Eni

EnjLUT

rj

ri

(a) Backward Push.

D Q

En

D Q

En

Eni

Enj

LUT

rj

ri

LUT’

(b) Using Duplication.

Figure 5: Backward Push Techniques.

Figure 5(a) depicts the situation in which a backward push
is typically performed. A register needs to be present on
each fanout of the combinational element to sucessfully per-
form the backward push. In addition these registers need to
have compatible secondary signals and reset/power-up con-
ditions. Again, there are situations where a backward push
can be beneficial, but the compatibility issues may prevent
the push. In this situation, we simply duplicate the logic
element so that the fanouts all have compatible registers.
This type of duplication is shown in Figure 5(b). The push
backward of register ri can now proceed with no regard to
compatibility issues with rj or other registers.

The push routines also have special case logic when deal-
ing with logic elements in carry chains. Consider the carry
chains shown in Figure 6. If we were to attempt a forward
or backward push of a register across a single element in the
chain, then the chain would become illegal if the push was
successful because registers would be inserted on the special
interconnect between cells in the chain. As discussed previ-
ously, this dedicated connection can only transmit combina-

Table 1: Incremental vs. Optimal Retiming.

cct LUTs IncRt OptRt Orig
alu2 197 24ns 23ns 43ns

mult32a 116 12ns 12ns 96ns
s9234.1 461 28ns 28ns 32ns
mm9a 142 68ns 68ns 71ns
s838 167 32ns 32ns 35ns

oc–cordic 1513 4ns 4ns 7ns
elliptic 3602 32ns 32ns 72ns

s38584.1 6281 36ns 36ns 39ns
frisc 3539 33ns 32ns 92ns
hc11 3860 80ns 80ns 120ns

fip–des 15388 32ns 31ns 36ns

tional signals. Since an architectural constraint is violated,
the push would eventually be aborted. Thus pushes for ele-
ments involving chains would never be accepted. However,
many designs are datapath-heavy and the critical path does
go though arithmetic elements like adders and multipliers.

We address this situation by moving groups of registers
across carry chains as shown in Figure 6. For example when
we attempt to move register ri forward across a carry chain,
we ensure that every input to the chain is fed by a register.
If this condition can be satisfied and all registers have com-
patible secondary signals, then the enire group of registers is
pushed across the chain in a single atomic operation. Thus
the netlist is never illegal at any time. Similarly, backward
pushes across carry-chain elements are handled using these
group moves.

C
ar

ry
 C

ha
in

ri

(a) Group Backward Push

C
ar

ry
 C

ha
in

ri

(b) Group Forward Push

Figure 6: Group Pushes.

4. RESULTS
The first question that needs to be answered is: How does

the incremental algorithm compare to the optimal retiming
algorithm? Table 1 presents the relevant results. We applied
optimal retiming and incremental retiming to a number of
MCNC circuits and various free-IP cores that have been
synthesized into netlists of 4-LUTs. In this experiment a
constant delay is assumed for every logic element and a sep-
arate constant is used for each wire in the circuit. The 3rd,
4th and 5th columns of Table 1 show the critical path de-
lays for the incrementally retimined circuit, the optimally
retimed circuit and the unretimed circuit, respectively. In
each case, the incremental retiming algorihtm matches the
performance of the optimal retiming algorithm or is very
close. This is an excellent result because the incremental

approach can be applied in many more situations than the
conventional optimal algorithm.

In addition to experiments using the MCNC circuits with
constant delay models, we also measured the performance of
our incremental multi-constraint retiming algorithm with in-
dustrial circuits targeted to Altera’s Stratix [1] FPGAs. Be-
fore presenting these results, a brief description of the CAD
flow is needed. Our strategy involves a three-step Physical
Synthesis approach, as shown in Figure 7, that tightly cou-
ples timing-driven circuit optimizations, such as retiming,
with the placement step of the FPGA CAD flow. Within
the placement phase there is still the freedom to add new
elements to the netlist of logic elements, and the routing
delays can be accurately approximated for many architec-
tures. In this manner, critical portions of the circuit can be
restructured to account for the routing delays.

Detailed Placement

Timing-Driven Circuit Restructuring

Incremental Placement

Technology Mapping

Synthesis

Circuit Description 1

2

3

Routing

Figure 7: Physical Synthesis Flow.

The first step of the three-step approach executes the
conventional FPGA CAD flow of HDL → synthesis →
techmapping → placement. In the second step, routing de-
lays for every connection are estimated by calculating their
fastest possible route. Any timing-driven netlist optimiza-
tion technique can then be applied to perturb the circuit
to reduce the critical path(s). Although numerous netlist
optimizations are used collectively in our commercial flow,
the experiments in this work deal only with the use of incre-
mental retiming. Every additional logic element or register
introduced is given a preferred placement location [8] [9].
These are simply suggestions for “good” physical locations
that will optimize timing. Preferred locations for new reg-
isters are set to be the same as the logic element that they
were pushed across. As discussed previously, we will some-
times create multiplexer logic or perform logic duplication
to make a retiming push possible. In these cases, the new
logic element is given a preferred location that is identical
to that of the original. These preferred locations could form
an illegal placement, but we rely on a final fixup stage to
remove the illegalities.

The final step of our Physical Synthesis flow occurs af-
ter the preferred locations have been generated. The job of
the Incremental Placement (ICP) engine is to perturb the
preferred locations as little as possible to ensure that the fi-
nal placement respects all FPGA architectural constraints.
These constraints include features such as the limited num-
ber of logic elements/inputs/secondary signals per clustered
logic block. A detailed description of the incremental place-

ment algorithm used in this study is presented in [8].
Figure 8 shows the results of applying incremental multi-

constraint retiming in our three-step CAD flow. This flow is
implemented in Altera’s QuartusII software and the FPGA
used in this experiment is Altera’s Stratix device [1] [5]. The
circuits used are a set of industrial benchmarks. The incre-
mental algorithm provides excellent performance speedups
averaging 7% and reaching 50% in some cases. The runtime
is very small in comparison to the entire CAD flow.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Circuit

P
er

fo
rm

an
ce

 S
pe

ed
up

 %

Average Speedup = 7%

Figure 8: Results on Industrial Circuits.

Finally, we consider the performance of our algorithm in
the presence of multiple timing constraints. We use three
different types of constraints in this experiment:

• TCO is the maximum propagation time from an active
clock edge to a signal change at an output pin.

• TSU is the maximum propagation time from a change
on an input pin to reach a register in the circuit.

• TMAX is the maximum propagation time from a reg-
ister transition to reach another register in the circuit.

Each constraint can have one of two values.

• EASY is a value that can be easily achieved.

• HARD is a value that is impossible to obtain. An
example would be setting TMAX to 1ns. Currently,
our FPGAs do not operate at GHz speeds.

(a) TSU = HARD, TCO = EASY , TMAX = EASY

%Imp(TSU) %Imp(TCO) %Imp(TMAX)
c1 +58% +1.3% +4.1%
c2 +0% +0% +0%

(b) TSU = EASY , TCO = EASY , TMAX = HARD

%Imp(TSU) %Imp(TCO) %Imp(TMAX)
c1 +41% +1% +58%
c2 -75% +7% +178%

(c) TSU = EASY , TCO = HARD, TMAX = EASY

%Imp(TSU) %Imp(TCO) %Imp(TMAX)
c1 0% 0% 0%
c2 +4.8% +5% +20%

Table 2: Contrained Performance.

Tables 1(a), 1(b) and 1(c) present results for two indus-
trial circuits under a variety of different constraints. Note
that we performed experiments with a large number of in-
dustrial circuits (≈ 200), but we present only two examples
because they clearly illustrate the tradeoffs executed by the
algorithm. The entire large set of benchmarks show the
same behavior as these two representative examples. Ta-
ble 1(a) presents the speedups possible when the TSU con-
straint is set to be the most important and the others are
set to values that are easy to meet. The speedups reported
compare a run of QuartusII with incremental retiming and
the hard TSU constraint to a default run of QuartusII with
only the hard TSU constraint. In this way, we report only
the speedups due to retiming and not the other parts of the
CAD flow that are also trying to optimize for this constraint.
Similarly, Tables 1(b) and 1(c) present the results for hard
TMAX and TCO constraints respectively. These results show
that the behavior of the retiming algorithm changes in the
presence of user assigned constraints and that the behavior
is to try to improve the part of the circuit with the tightest
constraint. In Table 1(b), we show that circuit c2 achieves a
178% TMAX improvement, but with a 75% TSU degradation.
This represents the realistic situation in which the required
TSU = EASY can still be met, even when increased by a
large amount. Notice that in cases of the hard TCO and
TSU constraints, one of the circuits could not be improved
compared to the default QuartusII run. In these cases, the
paths between registers and IOs are already short and it is
difficult for retiming to improve them.

5. CONCLUSIONS
We have presented a linear time retiming algorithm that

performs almost as well as optimal retiming algorithms. The
algorithm directly attacks portions of the design that are
deemed critical by Altera’s Timing Analysis tool. This con-
cept enables the algorithm to optimize portions of logic that
are missing their timing constraints, rather than just opti-
mizing the portions that have the longest delays. The incre-
mental algorithm has benefits in the FPGA environment be-
cause it allows for handling device architectural constraints
and implicit legality constraints that ensures functionality.

6. REFERENCES
[1] Altera. Altera Databook.

[2] K. Eckl, J.C. Madre, P. Zepter and C. Legl. A Practical
Approach to Multiple-Class Retiming. DAC, 1999.

[3] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous
circuitry. Journal of VLSI and Computer Systems, pages
41–67, 1983.

[4] C. Leiserson and J. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[5] D. Lewis, V. Betz et al, The Stratix Routing and Logic
Architecture. FPGA 2003.

[6] N. Maheshwari and S. S. Sapatnekar. Efficient retiming of
large circuits. IEEE Transactions on VLSI Systems,
6(1):74–83, 1998.

[7] N. Shenoy and R. Rudell. Efficient implementation of retiming.
In ICCAD 1994, pages 226–233, November 1994.

[8] D. Singh and S. Brown Incremental Placement for
Layout-Driven Optimizations on FPGAs. ICCAD 2002.

[9] D. Singh and S. Brown. Integrated Retiming and Placement
for FPGAs. FPGA 2002.

[10] P. Suaris, D. Wang and N. Chou. Smart Move: A
placement-aware retiming and replication method for Field
Programmable Gate Arrays. ASIC 2003.

[11] B. van Antwerpen, M. Hutton, G. Baeckler and R. Yuan. A
Safe and Complete Gate-Level Register Retiming Algorithm.
In IWLS 2003, pages 140–147, 2003.

