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ABSTRACT 
In this paper we present a pipelining-aware router for 
FPGAs. The problem of routing pipelined signals is 
different from the conventional FPGA routing problem. 
For example, the two terminal N-Delay pipelined routing 
problem is to find the lowest cost route between a source 
and sink that goes through at least N (N > 1) distinct 
pipelining resources. In the case of a multi-terminal 
pipelined signal, the problem is to find a Minimum 
Spanning Tree that contains sufficient pipelining 
resources such that the delay constraint at each sink is 
satisfied. 
 
We begin this work by proving that the two terminal N-
Delay problem is NP-Complete. We then propose an 
optimal algorithm for finding a lowest cost 1-Delay 
route. Next, the optimal 1-Delay router is used as the 
building block for a greedy two terminal N-Delay router. 
Finally, a multi-terminal routing algorithm (PipeRoute) 
that effectively leverages the 1-Delay and N-Delay 
routers is proposed.  
 
We evaluate PipeRoute’s performance by routing a set of 
retimed benchmarks on the RaPiD [3] architecture. Our 
results show that the architecture overhead incurred in 
routing retimed netlists on RaPiD is less than a factor of 
two. Further, the results indicate a possible trend 
between the architecture overhead and the percentage of 
pipelined signals in a netlist. 
 
1. INTRODUCTION 
It is well established that FPGAs are a convenient 
marriage between the flexibility of software, and 
performance levels achievable in hardware. 
Reconfigurable logic units, coupled with a rich 
programmable interconnect structure, can be used to 
implement a variety of applications. However, while 
FPGAs remain extremely attractive for their hardware 
flexibility, the minimum clock period that is achievable 
in present-day FPGAs leaves a lot to be desired. 
 
In the world of microprocessors and custom design, 
pipelining is widely used to reduce the critical path delay 
of a circuit. The development of powerful sequential 
retiming heuristics has contributed to reducing the clock 
period of circuits even further [5,6]. Thus, designers of 
reconfigurable architectures are now paying serious 
attention to providing pipelining resources in the logic 

units and routing fabric that constitute reconfigurable 
architectures.      
 
A number of research groups have proposed pipelined 
FPGA architectures. HSRA [13] is an example of an 
FPGA architecture that has a hierarchical, pipelined 
interconnect structure. A fraction of the switchboxes is 
populated with registered switches to meet a target clock 
period. Also, instead of having a single register on the 
output of a LUT (which is generally the case in existing 
FPGA architectures), a bank of registers is connected to 
each input of the LUT. This helps balance path delays 
introduced by the pipelined interconnect. User 
applications are mapped to HSRA by integrating data 
retiming with a conventional FPGA CAD flow. 
 
A second example of a pipelined FPGA architecture is 
proposed in Singh et al [10]. The routing architecture is 
hierarchical, and the higher-level routing consists of 
horizontal and vertical long lines that surround logic 
blocks. Each long line is pipelined using a bank of 
registered switch-points, and every switch-point can be 
used to delay a long line from 0 – 4 clock cycles. DSP 
designs mapped to this architecture were able to achieve 
throughputs of up to 600 MHz. 
 
RaPiD [3,4] is a coarse-grained one-dimensional (1-D) 
architecture that has pipelined datapath and interconnect 
structures. The datapath consists of 16-bit ALUs, 
multipliers, SRAMs and registers. The registers comprise 
a significant fraction of the datapath, thus providing 
pipelining resources. The interconnect is composed of 
short tracks that are used to achieve local communication 
between logic units, and long tracks that enable relatively 
long distance communication along the datapath. The 
long tracks traverse multiple switch-points, whereas the 
short tracks do not traverse any switch-points. The 
outputs of every logic unit, as well as all switch-points, 
can optionally be registered. Due to the 1-D nature of the 
interconnect, switchpoints have 2 terminals, and are 
bidirectional. Like the architecture proposed in [10], the 
RaPiD architecture is targeted at regular, compute 
intensive applications that are amenable to deep 
pipelining. 
 
The aforementioned architectural examples indicate that 
good progress is being made in the design of pipelined 
architectures.  The challenge now is to develop CAD 
tools that can map user applications to pipelined FPGA 
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architectures. In [12], the authors investigate the benefits 
of integrating placement and retiming by proposing 
retiming aware placement algorithms. The same authors 
present a retiming aware router in [11]. This router 
attempts to place long signals on tracks that have 
registered switches, so that a subsequent retiming step 
can take advantage of the assignment to pipeline the long 
signals. In [11], the goal is to reduce interconnect delay 
by pipelining long signals. Placement and logic retiming 
are closely coupled to give the retiming step an estimate 
of routing delay in [12].        
 
The subject of this paper is the development of an 
algorithm called PipeRoute that routes retimed 
application netlists on pipelined FPGA architectures. In 
retimed netlists, all pipelining registers are explicitly 
enumerated, and it is therefore possible to calculate the 
number of clock cycles that separate the signal’s source 
from each of its sinks. A pipelined FPGA architecture is 
one that has pipelining resources in the interconnect 
structure. These pipelining resources supplement the 
registers that are already provided in FPGA logic blocks. 
PipeRoute takes a retimed netlist and a pipelined FPGA 
architecture as inputs, and produces an assignment of 
signals to routing resources as the output. To the best of 
our knowledge, PipeRoute is the first routing algorithm 
that is capable of routing retimed netlists on pipelined 
FPGA architectures. Furthermore, the strength of the 
PipeRoute algorithm lies in the fact that it is architecture-
independent. The algorithm is capable of routing 
pipelined signals on any FPGA architecture that can be 
abstractly represented as a graph consisting of routing- 
and pipelining-nodes.     
 
2. PROBLEM BACKGROUND 
The FPGA routing problem is to determine an 
assignment of signals to limited routing resources while 
trying to achieve the best possible delay characteristics. 
Pathfinder [7] is one of the most widely used FPGA 
routing algorithm. It is an iterative algorithm, and 
consists of two parts. The signal router routes individual 
signals based on Prim’s algorithm, which is used to build 
a Minimum Spanning Tree (MST) on an undirected 
graph. The global router adjusts the cost of each routing 
resource at the end of an iteration based on the demands 
placed on that routing resource during the iteration. 
During the first routing iteration, signals are free to share 
as many routing resources as they like. However, the cost 
of using a shared routing resource is gradually increased 
during later iterations, and this increase in cost is 
proportional to the number of signals that share that 
resource. Thus, this scheme forces signals to negotiate 
for routing resources. A signal can use a high cost 
resource if all remaining resource options are in even 
higher demand. On the other hand, a signal that can take 
an alternative, lower cost route is forced to do so because 
of competition for shared resources. Circuits routed 

using Pathfinder’s congestion resolution scheme 
converge quickly, and exhibit good delay characteristics.  
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Fig. 1: A multi-terminal pipelined signal 
 
In the case of retimed netlists, the routing problem is 
different from the conventional FPGA routing problem. 
This is because a significant fraction of the signals in a 
netlist are deeply pipelined, and merely building an MST 
for a pipelined signal is not enough. For example, 
consider the pipelined signal sig in Fig. 1 that has a 
source S and sinks K1, K2 and K3. The signal is 
pipelined in such a way that sink K1 must be delayed 3 
clock cycles relative to S, sink K2 must be 4 clock cycles 
away, and sink K3 must be 5 clock cycles away. A route 
for sig is valid only if it contains enough pipelining 
resources to satisfy the delay constraints at every sink. 
Due to the fact that there are a fixed number of sites in 
the interconnect where a signal can be delayed by a clock 
cycle (hereafter referred to as “delay sites”), it can be 
easily seen that a route that is found for sig by a 
conventional, pipelining-unaware FPGA router may not 
contain enough delay sites to satisfy the delay constraint 
at every sink. Thus, the routing problem for pipelined 
signals is different from that for unpipelined signals. For 
a two-terminal pipelined signal, the routing problem can 
be stated as: 
 
Two-terminal N-Delay Problem: Let G=(V,E) be an 
undirected graph, with the cost of each node v in the 
graph being wv >= 1. The graph consists of two types of 
nodes; D-nodes and R-nodes. Let S,K∈V be two R-nodes. 
Find a path PG(S,K) that connects nodes S and K, and 
contains at least N (N ≥ 1) distinct  D-nodes, such that 
w(PG(S,K)) is minimum, where 

w(PG(S,K)) =   6    wv 
                                                      v∈V(PG(S,K)) 
Further, impose the restriction that the path cannot use 
the same edge to both enter and exit any D-node. 
 
We call a route that contains at least ‘N’ distinct D-nodes 
an “N-Delay” route.  R-nodes represent wires and IO 
pins of logic units in a pipelined architecture, whereas D-
nodes represent registered switch-points. A registered 
switch-point can be used to pick up 1 clock cycle delay, 
or no delay at all. Every node is assigned a cost, and an 
edge between two nodes represents a physical connection 
between them in the architecture. Under this framework, 
an abstraction of the routing problem for a simpler two-
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terminal signal is to find the lowest cost route between 
source and sink that goes through at least N (N ≥ 1) 
distinct D-nodes (N is the number of clock cycles that 
separates the source from the sink). Note that a lowest 
cost route can be self-intersecting i.e. R-nodes can be 
shared in the lowest cost route. We have shown that the 
two-terminal N-Delay problem is NP-Complete 
(Appendix A). In the more complex case of a multi-
terminal signal, the problem is to find an MST that 
contains enough D-nodes such that each sink is the 
correct number of clock cycles away from the source. 
 
A simple solution to the pipelined routing problem 
would be to address pipelining in the placement phase. 
The pipelining registers in a netlist could be mapped to 
registered switch-points in the architecture, and a 
simulated annealing placement algorithm could 
determine an optimal placement of the pipelining 
registers. After the placement phase, a conventional 
FPGA router could be used to route the signals in the 
netlist. However, a placement of a netlist that maps 
pipelining registers to registered switch-points eliminates 
portions of the routing graph. This is because a registered 
switch-point that is occupied by a particular pipelining 
register cannot be used by signals other than the signals 
that connect to that pipelining register. As a 
consequence, the search space of a conventional FPGA 
router is severely limited, and this results in solutions of 
poor quality. It is therefore clear that a pipelining-aware 
placement phase is not sufficient to successfully route 
pipelined signals.           
 
In sections 3, 4 and 5, we present a greedy heuristic 
search algorithm for routing signals on pipelined FPGA 
architectures, and an explanation of how we use 
Pathfinder’ s Negotiated Congestion (NC) algorithm [7] 
in conjunction with our heuristic to resolve congestion. 
Section 6 describes the target architecture that we used in 
our experiments, while Section 7 describes the placement 
algorithm we developed to enable our routing approach. 
We describe our experimental setup and test strategy in 
Section 8, followed by results in Section 9. Finally, in 
Section 10, we discuss some of many directions for 
future efforts, and conclude this work. 
 
3. ONE-DELAY ROUTER 
In the previous section, we pointed out that the problem 
of finding the lowest cost route between a source and 
sink that goes through at least N distinct D-nodes is NP-
Complete. However, we now show that a lowest cost 
route between a source and sink that goes through at 
least 1 D-node can be found in polynomial time. In a 
weighted, undirected graph, the Breadth First Search 
(BFS) algorithm is widely used to find the lowest cost 
route between a source and sink. The remainder of this 
section evaluates several modifications of conventional 
BFS that can be used to find a lowest cost 1-Delay route. 
Our first modification is Redundant-Phased-BFS. In this 

algorithm, a phase 0 wavefront is launched at the source. 
When the phase 0 exploration hits a D-node, it is locally 
terminated there (i.e. the phase 0 exploration is not 
allowed to continue through the D-node, although the 
phase 0 exploration can continue through other R-nodes), 
and an independent phase 1 wavefront is begun instead. 
When commencing a phase 1 wavefront at a D-node, we 
impose a restriction that disallows the phase 1 wavefront 
from exiting the D-node along the same edge that was 
used to explore it at phase 0. This is based on the 
assumption that it is architecturally infeasible for the D-
node that originates the phase 1 wavefront to explore the 
very node that is used to discover it at phase 0. When a 
phase 1 wavefront explores a D-node, the D-node is 
treated like an R-node, and the phase 1 wavefront 
propagates through the D-node.  
 
If the number of D-nodes that can be explored at phase 0 
from the source is ‘F’ , up to F independent phase 1 
wavefronts can co-exist during Redundant-Phased-BFS. 
The search space of the phase 1 wavefronts can overlap 
considerably due to the fact that each R-node in the 
graph can be potentially explored by up to F independent 
phase 1 wavefronts. Consequently, the worst-case run-
time of Redundant-Phased-BFS is F times that of 
conventional BFS. Since F could potentially equal the 
number of registers in the FPGA, the worst-case run-time 
of Redundant-Phased-BFS could get prohibitive.        
 
An alternative to Redundant-Phased-BFS that can be 
used to find a lowest cost 1-Delay route between a 
source and sink is Combined-Phased-BFS. This 
algorithm attempts to reduce run-time by combining the 
search space of all the D-nodes that can be explored at 
phase 0 from the source. The only difference between 
Redundant-Phased-BFS and Combined-Phased-BFS is 
that the latter algorithm allows each R-node to be visited 
only once by a phase 1 wavefront. As a consequence, the 
run-time of Combined-Phased-BFS is only double that of 
conventional BFS. In addition, an important effect of the 
dichotomy that we have created due to phase 0 and phase 
1 wavefronts is that R-nodes that constitute the phase 0 
segment of a 1-Delay route can be reused in the phase 1 
segment of the same 1-Delay route. We rely on 
Pathfinder’ s [7] congestion resolution scheme to adjust 
the history cost of such R-nodes, so that in a later 
iteration a 1-Delay route with no node reuse between 
phase 0 and phase 1 segments can be found.                 
 
A step-by-step illustration of how Combined-Phased-
BFS works is shown in Figs. 2A through 2E. For the sake 
of simplicity, assume all nodes in the example graph 
have unit cost. The source S is explored at phase 0 at the 
start of the phased BFS. The number 0 next to S in Fig. 
2A indicates that S has been explored by a phase 0 
wavefront. In Fig. 2B, the neighbors of S are explored by 
the phase 0 wavefront initiated at S. The 2nd-level 
neighbors of S are explored by phase 0 in Fig. 2C, one of 
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which is D-node D1. Note that we make a special note of 
D1’ s phase 0 predecessor here, so that we do not explore 
this predecessor by means of the phase 1 wavefront that 
is commenced at D1. In Fig. 2D, the neighbors of D1 
(excluding R1) are explored at phase 1. The phase 0 
exploration also continues simultaneously, and note how 
nodes R4 and R7 have been explored by both phase 0 
and phase 1 wavefronts. Finally, in Fig. 2E, the sink K is 
explored by the phase 1 wavefront initiated at D1. The 
route found by Combined-Phased-BFS is shown in 
boldface in Fig. 2E, and is in fact an optimal route 
between S and K.  
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Fig. 2A: Phase 0 exploration commences at node S. 
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Fig. 2B: The neighbors of S are explored at phase 0.  
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Fig. 2C: 2nd-level neighbors of S are explored at phase 
0, and in the process D-node D1 is discovered.  
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Fig. 2D: D1 starts a phase 1 exploration. The phase 0 
exploration continues simultaneously, and D2 is 
discovered.  
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Fig. 2E: K  is explored by phase 1 wavefront 
commenced at D1. 

 
Unfortunately, Combined-Phased-BFS fails to find a 
lowest cost route on some graph topologies. An example 
of a failure case is shown in Fig. 3. Here the node S is 
both the source and sink of a signal, and each node is unit 
cost. Combined-Phased-BFS will fail to return to S at 
phase 1 because R-nodes on each possible route back to S 
have already been explored by the phase 1 wavefront. In 
effect, Combined-Phased-BFS isolates nodes S, R1, R2, 
D1 and D2 from the rest of the graph, thus precluding the 
discovery of any route back to S at all. 
 

The reason for the failure of Combined-Phased-BFS is 
that a node on the phase 1 segment of the lowest cost 
route is instead explored by a phase 1 wavefront 
commenced at another delay site. For example, in Fig. 3 
we consider the route S-R1-D1-R3-R5-R4-D2-R2-S to be 
lowest cost. Node R4 is explored by the phase 1 
wavefront commenced at D2, thus precluding node R4 
from being explored by the phase 1 wavefront started at 
D1. However, if we slightly relax Combined-Phased-BFS 
to allow each node in the graph to be explored by at most 
two phase 1 wavefronts that are independently started at 
different D-nodes, then the phase 1 wavefronts started at 
D1 and D2 will now be able to overlap, thus allowing the 
lowest cost route to be found.   
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Fig. 3: A case for which phased BFS fails. Observe how 
the phase 1 exploration has got isolated from the phase 
0 exploration 

 
An important consequence of the nature of the transition 
from phase 0 to phase 1 at a D-node is shown in Fig. 4. 
In this case, S is the source of the signal, and K is the 
sink. Observe that a phase 0 exploration explores D1 
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from R1. Consequently, the phase 0 exploration is 
precluded from exploring D1 from R4. This prevents the 
optimal 1-Delay route to K from being found. To address 
the nature of transitions from phase 0 to phase 1, we 
allow any D-node to be explored at most two times at 
phase 0. In Fig. 4, D1 can be explored at phase 0 from 
R1 and R4, thus allowing the optimal 1-Delay path S-
R2-R3-R4-D1-R1-K to be found.   
 

S
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R1 D1
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0

   
Fig. 4: D1 is explored at phase 0 from R1, thus 
precluding the discovery of the 1-Delay path to the sink 
K. 

 
The following rules summarize 2Combined-Phased-BFS: 
 
• An R-node can be explored at most once at phase 0.  
• A D-node can be explored at most twice at phase 0. 
• An R-node can be explored by at most two distinct 

phase 1 explorations. The cases in which two phase 
1 explorations are distinct are: 

o The two phase 1 explorations are initiated 
by two different D-nodes, OR 

o The two phase 1 explorations are initiated 
by the same D-node, but the R-nodes that 
were used to explore the D-node at phase 0 
are different.  

• A D-node can be explored by at most two distinct 
phase 1 explorations. This rule is identical to the 
way R-nodes are explored at phase 1. 

 
We have proven that 2Combined-Phased-BFS finds an 
optimal 1-Delay route between a source and sink on an 
undirected graph consisting of R-nodes and D-nodes. A 
detailed proof can be found in Appendix B.  
     
4. N-DELAY ROUTER 
In this section, we present a heuristic that uses the 
optimal 1-Delay router to build a route for a two terminal 
N-Delay signal. This heuristic greedily accumulates 
delay at the sink by using 1-Delay routes as building 
blocks. In general, an N-Delay route is recursively built 
from an (N-1)-Delay route by successively replacing 
each segment of the (N-1)-Delay route by a 1-Delay 
route and then selecting the lowest cost N-Delay route. 
Fig. 5 is an abstract illustration of how a 3-Delay route 
between S and K is found. In the first step, we find a 1-
Delay route between S and K, with D11 being the D-

node where we pick up delay. At this point, we 
increment the sharing cost of all nodes that constitute the 
route S-D11-K. In the second step, we find two 1-Delay 
routes, between S and D11, and D11 and K. The 
sequence of sub-steps in this operation is as follows: 
 
• Decrement sharing cost of segment S-D11. 
• Find 1-Delay route between S and D11 (S-D21-

D11). Store cost of route S-D21-D11-K in CostS-D21-

D11-K. 
• Restore segment S-D11 by incrementing the sharing 

cost of segment S-D11. 
• Decrement sharing cost of segment D11-K. 
• Find 1-Delay route between D11 and K (D11-D22-

K). Store cost of route S-D11-D22-K in CostS-D11-D22-

K. 
• Restore segment D11-K by incrementing the sharing 

cost of segment D11-K. 
• Select the lowest cost route, either S-D21-D11-K 

and S-D11-D22-K. 
 
Suppose the lowest cost 1-Delay route is S-D11-D22-K. 
We rip up and decrement sharing due to the segment 
D11-K in the original route S-D11-K, and replace it with 
segment D11-D22-K. Finally, we increment sharing of 
the segment D11-D22-K. The partial route now is S-
D11-D22-K. 
 
The sequence of sub-steps in step three is similar. 
Segments S-D11, D11-D22 and D22-K are successively 
ripped up, replaced with individual 1-Delay segments, 
and for each case the cost of the entire 3-Delay route 
between S and K is stored. The lowest cost route is then 
selected. In Fig. 5, the 3-Delay route that is found is 
shown in dark lines, and is S-D11-D31-D22-K. 
 
The number of 1-Delay BFS’  launched for the 3-Delay 
route that we just discussed is 1 + 2 + 3 = 6. For the 
general N-Delay case, the number of 1-Delay BFS’  
launched is 1 + 2 + ... + N = N(N-1)/2. A bound on the 
number of 1-Delay BFS’  launched for an N-Delay route 
is N2.   

S K

D11

D21

D22
D31

D32

 
Fig. 5: Building a 3-Delay route from 1-Delay routes 

 
5. MULTI-TERMINAL ROUTER 
The previous section described a heuristic that uses 
optimal 1-Delay routes to build a two-terminal N-Delay 
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route. The most general type of pipelined signal is a 
multi-terminal pipelined signal. A multi-terminal 
pipelined signal has more than one sink, and the number 
of delays separating the source from each sink could 
differ across the set of sinks. A simple example of a 
multi-terminal pipelined signal sig was shown in Fig. 1. 
The sinks K1, K2 and K3 must be separated from the 
source S by 3, 4 and 5 delays respectively. We will now 
demonstrate how a route for a multi-terminal signal can 
be found by taking advantage of the 1-Delay and N-
Delay routers that were discussed in Sections 3 and 4. 
 
The routing tree for a multi-terminal pipelined signal is 
built one sink at a time. The entire list of sinks is stored 
in a pre-sorted list called sorted_sink_list, and each sink 
is considered in non-decreasing order of delay separation 
from the source of the signal. Hence, the multi-terminal 
router starts by finding a route to a sink that is the least 
number of delays away from the source. Since finding a 
route to the first sink is a two-terminal case, we use the 
two-terminal N-Delay router to establish a route between 
the source and first sink. The remainder of this section 
examines the task of expanding the route between the 
source and the first sink to include all other sinks. 
 
We explain the multi-terminal router via a simple 
example. Assume a hypothetical signal that has a source 
S and sinks K3 and K4. K3 must be separated from S by 
3 delays, whereas K4 must be separated by 4 delays. 
Sink K3 is considered first, and the N-Delay router is 
used to find a 3-Delay route between S and K3. In Fig. 
6A, the route S-D1-D2-D3-K3 represents the 3-Delay 
route between S and K3, and constitutes the 
partial_routing_tree of the signal. In general, the 
partial_routing_tree of a multi-terminal pipelined signal 
can be defined as the tree that connects the source to all 
sinks that have already been routed.  

S

D1 D2 D3

K3

K4  
              

Fig. 6A: 3-Delay route to K3 using the two-terminal N-
Delay router. S-D1-D2-D3 is the partial_routing_tree. 

 
After a route to K3 is found, the router considers sink 
K4. As was the case in the N-Delay router, we 
accumulate delay at K4 one delay at a time. Thus, we 
start by finding a 1-Delay route to K4, then a 2-Delay 
route, a 3-Delay route, and finally a 4-Delay route to K4. 
It can be seen that a 1-Delay route to K4 can be found 
either from the 0-Delay segment S-D1 by going through 
another D-node, or from the 1-Delay segment D1-D2 

directly. However, it is not necessary to launch 
independent wavefronts from segments S-D1 and D1-
D2. This is because both wavefronts can be combined 
into a single 1-Delay BFS in which segment S-D1 
constitutes the starting component of the phase 0 
wavefront, and segment D1-D2 constitutes the starting 
component of the phase 1 wavefront. Setting up the 1-
Delay BFS in such a way could find a 1-Delay path from 
S-D1 or a 0-delay path from D1-D2, depending on which 
is of lower cost. Assume that the route to K4 that is 
found is the gray segment P-K4 in Fig. 6B. Once the 
segment P-K4 is found, the sharing cost of the nodes that 
constitute P-K4 is incremented. The segment P-K4 is 
called the surviving_candidate_tree. The 
surviving_candidate_tree can be defined as the tree that 
connects the sink (K4 in this case) under consideration to 
some node in the partial_routing_tree every time an N-
Delay route (1≤N≤4 in this case) to the sink is found. 
Thus, a distinct surviving_candidate_tree results 
immediately after finding the 1-Delay, 2-Delay, 3-Delay 
and 4-Delay routes to K4.  
 
Next, we attempt to find a 2-Delay route to K4. Before 
explaining specifics, it is important to point out here that 
while finding an N-Delay route to a sink in general we 
try two options. The first is to use the N-Delay and (N-
1)-Delay segments in the partial_routing_tree together 
to start a 1-Delay BFS. The other option is to alter the 
surviving_candidate_tree to include an additional D-
node as was done in the two terminal N-Delay router. 
The lower cost option is chosen, and this option becomes 
the new surviving_candidate_tree. 

S

D1 D2 D3

K3

K4

P

 
Fig. 6B: 1-Delay route to K4. P-K4 is found by 
launching a 1-Delay BFS that starts with segment S-D1 
at phase 0 and segment D1-D2 at phase 1. P-K4 is the 
surviving_candidate_tree. 

 
Thus, for finding a 2-Delay route to K4, we first launch a 
1-Delay BFS using segments D1-D2 and D2-D3 and 
store the cost of the route that is found. Then, we rip up 
segment P-K4 (Fig. 6B) and replace it with a 1-Delay 
route between segment D1-D2 and K4, and store the cost 
of the 1-Delay route. The lower cost route is selected, 
and the sharing cost of the nodes that constitute this route 
is incremented. This selected route becomes the new 
surviving_candidate_tree. In Fig. 6C, assume that the 
lower cost route that is selected is the segment P1-Da-K4 
shown in gray.  
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Fig. 6C: 2-Delay route to K4. P1-Da-K4 is now the 
surviving_candidate_tree.   

 
A similar reasoning can be applied to finding a 3-Delay 
route to K4. A 1-Delay BFS using segments D2-D3 and 
D3-K3 (which are shown at delay 2 and 3 respectively in 
Fig. 6D) is launched, and the cost of the resulting route is 
stored. Then, the surviving_candidate_tree P1-Da-K4 
(Fig. 6C) is modified to add another D-node much in the 
same manner that a two-terminal 2-Delay route is built 
from an already established 1-Delay route (Section 4). 
The cost of the modified surviving_candidate_tree is 
also stored. The lower cost route is selected, and the 
sharing cost of relevant nodes incremented. In Fig. 6D, 
assume that the lower cost route that is selected is P1-
Da-Db-K4. This route now becomes the 
surviving_candidate_tree. 

S

D1 D2 D3

K3

K4

Da

Db

P1

 
Fig. 6D: 3-Delay route to K4. P1-Da-Db-K4 is the 
resulting surviving_candidate_tree. 

 
Finally, in Fig. 6E, the cost of finding a 1-Delay route to 
K4 from the segment D3-K3 (which is at delay 3) proves 
to be less than the cost of the route that modifies the 
surviving_candidate_tree P1-Da-Db-K4 (Fig. 6D). The 
segment P1-Da-Db-K4 is ripped up, and the segment P3-
D4-K4 is joined to the partial_routing_tree to complete 
the routing to K4.  

S

D1
D2

D3

K3

K4

D4

P3

  
 

Fig. 6E: 4-Delay route to K4. P3-D4-K4 is the final 
surviving_candidate_tree, and this tree is joined to 
the partial_routing_tree to complete routing to K4. 

 
6. TARGET ARCHITECTURE 
In this section, we briefly describe the features of a 
simplified RaPiD [3] architecture. The reasons that 
influenced us to use simplified RaPiD as the target 
architecture for our experiments are: 
• RaPiD has a pipelined datapath structure. More 

importantly, it provides bi-directional pipelining 
sites in the interconnect. 

• We have easy access to the in-house RaPiD 
compiler and retimer. Thus, we have been able to 
generate a representative set of benchmark 
applications for our experiments. 

 

 
Fig. 7: An example of a RaPiD [3] architecture cell. 
Several RaPiD cells can be tiled together to create a 
representative architecture.  

 
The 1-Dimensional (1-D) RaPiD datapath (Fig. 7) 
consists of coarse-grained logic units that include ALUs, 
multipliers, small SRAM blocks, and registers. Each 
logic unit is 16-bit wide. The interconnect consists of 1-
D routing tracks that are also 16-bit wide. There are two 
types of routing tracks; short tracks and long tracks. 
Short tracks are used to achieve local connectivity 
between logic units, whereas long tracks traverse longer 
distances along the datapath. In Fig. 7, the uppermost 5 
tracks are short tracks, while the remaining tracks are 
long tracks. Each input of a logic unit can be driven by 
any routing track by means of a multiplexer. Similarly, 
the outputs of a logic unit can be configured to drive any 
routing track. An output can drive multiple routing 
tracks.  
 
The long tracks in the RaPiD interconnect are segmented 
by means of Bus-Connectors (shown as empty boxes in 
Fig. 7 and abbreviated BCs), which are essentially bi-
directional delay sites. In the simplified version of RaPiD 
that we used in our experiments, each BC can be used to 
pick up either 0 or 1 clock cycle delay. Thus, a BC can 
be used in transparent (0 clock cycle delay) or registered 
(1 clock cycle delay) mode. Another aspect of RaPiD is 
that datapath registers can be used to switch tracks. At 
the end of the placement phase, all unoccupied datapath 
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registers are included in the routing graph as unregistered 
switch-points. The ability to switch tracks provides an 
important degree of flexibility while attempting to route 
netlists on RaPiD. 
 
7. PLACEMENT 
The two inputs to the placement program are 
descriptions of a retimed RaPiD netlist and the target 
RaPiD architecture. The RaPiD compiler generates 
application netlists in an internal format, and the 
architecture is represented as an annotated structural 
Verilog file. For the sake of nomenclature, the logical 
components that constitute the netlist will be referred to 
as “ instances”  from this point onwards. The final 
placement of the netlist is determined using a Simulated 
Annealing [8] algorithm. A good cooling schedule is 
essential to obtain high-quality solutions in a reasonable 
computation time with simulated annealing. For our 
placement program, we used the cooling schedule 
developed for the VPR tool-suite [1]. 
 
The development of a representative cost-function for the 
placement program is an interesting problem. Since the 
number of routing tracks in the interconnect fabric of the 
RaPiD architecture is fixed, we capture the quality of the 
placement by means of a cutsize metric. The cutsize at a 
vertical partition of the architecture is defined as the 
number of signals that need to be routed across that 
partition for a given placement of the netlist. The 
max_cutsize is defined as the maximum cutsize that 
occurs at any vertical partition of the architecture. The 
total_cutsize is defined as:    

       j=Y 

total_cutsize = Σ (cut_size)j 
        j=1 

where Y is the total number of logic resources that 
constitute the architecture. The avg_cutsize is then 
defined as: 

avg_cutsize = total_cutsize/Y 
 
Both max_cutsize and avg_cutsize are important 
estimates of the routability of a netlist. Since the RaPiD 
architecture provides a fixed number of tracks for routing 
signals, it is necessary to formulate a placement cost 
function that favorably recognizes a move that decreases 
max_cutsize. At the same time, it is clear that a simple 
cost function that attempts to reduce only max_cutsize 
will be inadequate. A cost function that is determined 
only by max_cutsize will not be able recognize changes 
in avg_cutsize. This means that the annealer will accept 
moves that increase avg_cutsize, but do not change 
max_cutsize. Such zero-cost moves may cumulatively 
increase the overall congestion in the datapath 
considerably, thus making it harder for the annealer to 
find the sequence of moves that will reduce max_cutsize. 
It can thus be concluded that avg-cutsize should also 
contribute to the cost of a placement. Reducing 

avg_cutsize not only reduces overall congestion in the 
datapath, but also lowers the total wire-length. The cost 
function is therefore formulated as follows:                
      cost = w*max_cutsize + (1-w)*avg_cutsize 
where 0≤w≤1. The value of w was empirically 
determined to be 0.3. A detailed discussion of how the 
value of w was determined can be found in [9]. 
 
The development of the placement approach so far has 
focused only on the reduction of track count and 
wirelength, and this approach works well in conjunction 
with a pipelining-unaware router that attempts only 
connectivity routing [9]. As a next step, we need to 
include pipelining information in our placement cost 
function so that the router can find pipelined routes in an 
effective manner. Recall from Section 1 that a retimed 
RaPiD netlist explicitly enumerates all pipelining 
registers. At the same time, the architecture file contains 
information about the location and connectivity of every 
delay site (BCs) in the architecture. Since we have prior 
knowledge of the location and track connectivity of the 
BCs that are provided by the architecture, we simply 
map each pipelining register in the netlist to a unique 
physical BC in the architecture. The placement 
program’ s move function is modified to include 
pipelining registers during simulated annealing. Our 
high-level objective in mapping pipelining registers to 
BCs is to place netlist instances such that the router is 
able to find sufficient delay resources while routing 
pipelined signals.   
 
The calculation of cutsize contributions due to pipelining 
registers is markedly different from the calculation of 
cutsize contributions due to other types of netlist 
instances. This is because of an important difference 
between the connectivity of BCs and the connectivity of 
datapath logic resources. Both terminals of a BC directly 
connect to adjacent segments of the same routing track 
(Fig. 7), whereas the input and output terminals of all 
datapath logic resources can connect to any routing track. 
Thus, if two instances are mapped to ALU positions X1 
and X2 in the architecture, the cutsize contribution due to 
a two-terminal signal that connects the two instances is 
simply |X1-X2|. However, the same reasoning cannot be 
directly extended to pipelining registers that are mapped 
to BCs. For example, consider a two-terminal signal sig 
that connects pipelining registers mapped to D1 and D2 
in Fig. 8. Since D1 and D2 are on separate tracks, the 
router would have to switch tracks to route sig. If the 
nearest available switch-point in the datapath is at 
position Xsw (Xsw > X2), then the cutsize contribution 
due to sig is (Xsw – X1) + (Xsw-X2), and not merely 
(X2-X1). Thus, the cutsize contributions due to signals 
that connect to pipelining registers are very sensitive to 
the placement of the pipelining registers, especially if the 
pipelining registers are mapped to BCs on different 
tracks. The cutsize contributions due to pipelining 
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registers are estimated and included in our annealer’ s 
cost function.    
 

D1

D2

SW

X1

X2

XSW

 
 

Fig. 8: Calculating the cost of a two-terminal signal 
that connects D1 and D2. To route this signal, the 
router would have to switch tracks in the datapath. 
The cutsize contribution due to thus signal is (Xsw-X1) 
+ (Xsw-X2) 

 
8. TESTING SETUP 
The individual placement and routing algorithms that we 
implemented are as follows: 
• SimplePlace – This placement algorithm is 

pipelining unaware i.e. it attempts to reduce track 
count and wirelength without taking pipelining into 
account [9]. 

• PipePlace – This placement algorithm is derived 
from SimplePlace and is pipelining aware. It 
attempts to place netlist instances such that the 
router is able to find enough delay resources while 
routing pipelined signals. 

• Pathfinder – This routing algorithm is pipelining 
unaware i.e. it attempts only connectivity routing 
without considering pipelining information [7]. 

• PipeRoute – This is the pipelining aware routing 
algorithm that we presented in Sections 3, 4 and 5. 

 
We measure the quality of combined place-and-route 
approaches in terms of:  
• The size of the architecture needed to route a netlist. 

The size of an architecture is measured in terms of 
number of RaPiD cells (Fig. 7). 

• The minimum number of routing tracks that we need 
to route a netlist on a given architecture. 

The pipelining-unaware place and route algorithms are 
included to give us a lower-bound on the size of the 
architecture and the minimum number of routing tracks 
needed to place and route retimed netlists. 
 
Test architectures are generated using software provided 
by Northwestern University graduate student Katherine 
Compton. This software is capable of generating RaPiD 
architectures that have a user-specified number of RaPiD 
cells. Further, it is possible to specify the number of 
short tracks per cell, long tracks per cell, and bus-
connectors per long track per cell. In all test 

architectures, approximately 2/7th of the tracks are short 
tracks, and 5/7th of the tracks are long tracks. Each short 
track consists of 4 segments per cell, and each long track 
has 3 BCs per cell. 
 
We use retimed benchmark netlists generated by the 
RaPiD compiler. The benchmark set consists of three 
different FIR filter implementations, two 
implementations of sorting, a 16-point FFT, a matrix 
multiplier, two different digital camera filters, and a 
netlist that calculates logarithms using a series 
expansion. The composition of each benchmark netlist is 
shown in Table 1. Columns 2 – 6 show the number of 
16-bit ALUs, 16x16 multipliers, 256x16 SRAMs, 16-bit 
data registers, and 16-bit pipelining registers 
respectively. Column 7 shows the percentage of signals 
in the netlist that are pipelined.    
 

Netlist 
16-bit 
ALUs 

16x16 
Mults 

256x16 
SRAMs 

Data 
Regs 

Pipe 
Regs 

% 
Pipelined 

fft16_2nd 24 12 12 29 29 7% 
img_filt 47 17 13 85 29 8% 

mux_corr 3 6 6 16 6 13% 
cascade 8 8 8 24 29 21% 
matmult 8 4 12 10 22 23% 
firTM 31 16 32 90 149 23% 

firsymeven 31 16 0 47 184 36% 
sortG 29 0 16 60 175 47% 
log8 56 48 0 66 635 47% 

sort2DRB 22 0 8 46 128 60% 
med_filt 45 1 4 39 241 84% 

Table 1: Benchmark composition 
 
9. RESULTS 
We present the results of our experiments in this section. 
We acquired data by running the entire set of 
benchmarks through two place-and-route approaches. 
The first approach uses SimplePlace to place the netlist, 
and then uses Pathfinder to do connectivity routing. This 
approach treats the benchmarks as if they were 
unpipelined, and is used as a lower bound. The second 
approach places netlists using PipePlace, and uses 
PipeRoute to do pipelined routing. For both approaches, 
we recorded the size of the smallest RaPiD architecture 
on which each netlist successfully routed, and the 
minimum number of routing tracks that were required to 
route the netlist. We then defined the following result 
metrics: 
• NSIM – The minimum number of RaPiD cells 

required to route a netlist using pipelining-unaware 
placement and routing algorithms (SimplePlace and 
Pathfinder respectively). 

• NPIPE – The minimum number of RaPiD cells 
required to route a netlist using pipelining-aware 
placement and routing algorithms (PipePlace and 
PipeRoute). 

• TSIM – The minimum number of routing tracks 
required to route a netlist on an architecture of size 
NSIM using a pipelining-unaware router (Pathfinder). 
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• TPIPE – The minimum number of routing tracks 
required to route a netlist on an architecture of size 
NPIPE using a pipelining-aware router (PipeRoute). 

• AXP – The ratio of NPIPE to NSIM.  
• TXP – The ratio of TPIPE to TSIM. 
• PIPE-COST – The multiplication of AXP and TXP. 

This is a quantitative measure of the overhead we 
incur in trying to place and route retimed netlists on 
RaPiD architectures. 

 
Table 1 shows the results we obtained. The netlists that 
constitute the benchmark set are in column 1. Column 2 
contains the NSIM value for each netlist. Note that for 
each netlist in the benchmark set, NSIM was found to be 
equal to the minimum number of RaPiD cells required to 
implement the logic of the netlist irrespective of routing 
requirements. The table is sorted in non-decreasing order 
of NSIM. Column 3 shows the percentage of signals in 
each netlist that are pipelined. This percentage is a 
measure of the pipelining difficulty of a netlist. Column 
4 shows the value of AXP for each netlist, while column 5 
shows the value of TXP. The PIPE-COST for each netlist 
is presented in column 6. 
 
From Table 2, we see that the mean architecture 
expansion overhead due to pipelined routing is 20%, 
while the mean track expansion overhead is 45%. 
Overall, the cost of routing retimed netlists is slightly 
less than double that of routing the same netlists without 
taking pipelining into account. Fig. 9 is a scatter diagram 
that plots the PIPE-COST of each netlist in the 
benchmark set vs. the minimum number of RaPiD cells 
that were required to fit that netlist. There is evidently no 
correlation between the size of a netlist and its PIPE-
COST. However, a potential trend can be observed in 
Fig. 10, which plots the PIPE-COST of each netlist vs. 
the percentage of signals that are pipelined in that netlist. 
It can be seen that an increase in the percentage of 
pipelined signals in a netlist tends to result in an increase 
in the PIPE-COST of that netlist. This is a promising 
trend, since it gives us the ability to make a rough 
estimate of the PIPE-COST of a netlist based on the 
fraction of pipelined signals in that netlist. 
 

Netlist NSIM 
% 

Pipelined AXP TXP 
PIPE-
COST 

matmult 4 23% 1 1.5 1.5 
mux_corr 6 13% 1 1.2 1.2 
cascade 8 21% 1 1 1 

sort2DRB 8 60% 1.75 1.33 2.33 
fft16_2nd 12 7% 1 1.3 1.3 

sortG 12 47% 1.67 1.67 2.77 
firTM 16 23% 1.25 1.8 2.25 

firsymeven 16 36% 1 1.6 1.6 
med_filt 16 84% 1.63 1.44 2.35 
img_filt 18 8% 1 1.4 1.4 

log8 48 47% 1.25 2 2.5 
Geometric 

Mean   1.2 1.45 1.74 
Table 2: Variation in PIPE-COST across benchmark set 
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Fig. 9: Variation in PIPE-COST w.r.t size across the 
benchmark set 
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Fig. 10: Variation in PIPE-COST with % pipelined 
signals across the benchmark set 

 
10. CONCLUSIONS & FUTURE WORK 
The main focus of the work described in this paper was 
the development of an algorithm that routes logically 
retimed circuits on pipelined FPGA architectures. We 
developed an optimal 1-Delay router, and used it in 
formulating an efficient heuristic to route two-terminal 
N-Delay pipelined signals. The algorithm for routing 
general multi-terminal pipelined signals borrowed from 
both the 1-Delay and N-Delay routers. Congestion 
resolution while routing pipelined signals was achieved 
using Pathfinder. Our results showed that the architecture 
overhead (PIPE-COST) of routing logically retimed 
netlists on the RaPiD architecture was 1.74, and that 
there is some correlation between the PIPE-COST of a 
netlist and the percentage of pipelined signals in that 
netlist. 
 
An important aspect of this work is that the formulation 
of the pipelined routing problem, and the development of 
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the PipeRoute algorithm, proceeded independently of 
specific FPGA architectures. In the quest for providing 
programmable, high-throughput architectures, we feel 
that the FPGA community is going to push towards 
heavily retimed application netlists and pipelined 
architectures. When pipelined architectures do become 
commonplace, the PipeRoute algorithm would be a good 
candidate for routing retimed netlists on such 
architectures. 
 
This work has spawned several research vectors that can 
be actively explored in the future. An important direction 
is the development of more sophisticated placement 
algorithms, as a powerful pipelining-aware placement 
tool might improve the performance of PipeRoute. A 
second direction for future work lies in the development 
of pipelined routing algorithms optimized for run-time. 
Specifically, the search-space of the multi-terminal 
router could be intelligently reduced to obtain quality 
solutions in shorter run-times. Finally, PipeRoute could 
be used in conjunction with an appropriate pipelining-
aware placement tool for architecture exploration vis-a-
vis numbers and locations of registered switch-points in 
FPGA interconnect structures. 
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APPENDIX A 
We can show that the Two-terminal N-Delay Routing 
Problem (abbreviated here as 2TND) is NP-Complete via 
a reduction from the Traveling-Salesman Problem with 
Triangle Inequality (abbreviated here as TSP-TI): 
 
Traveling-Salesman Problem with Triangle 
Inequality: Let G=(V,E) be a complete, undirected 
graph that has a nonnegative integer cost c(u,v) 
associated with each edged (u,v)∈E. We must find a tour 
of G with minimum cost.  Furthermore, we have the 
triangle inequality, that states for all vertices u,v,w∈V, 
c(u,w) ��F�X�Y����F�Y�Z�� 
We consider only problems where |V|>2, since all other 
cases are trivially solvable.  To simplify things, we will 
convert the original problem to one with strictly positive 
costs by adding one to each edge cost.  Since all 
solutions to the original problem go through exactly |V| 
edges, with a solution cost of N, all solutions to the new 
problem will also have |V| edges, a cost of N+|V|, and 
correspond exactly to a solution in the original problem.  
Thus, this transformation is allowable.  Note that the 
triangle inequality holds in this form as well. 
 
As stated in [2], TSP-TI is NP-Complete.  We can reduce 
TSP-TI to 2TND by transforming all TSP-TI nodes to D-
nodes, and converting the edge-weights of TSP-TI to R-
nodes.  Specifically, let GTSP=(VTSP,ETSP) be the input 
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graph to TSP-TI, and G2TND=(V2TND,E2TND) be the 
corresponding graph we construct to solve TSP-TI with 
2TND. Let SourceTSP be an arbitrary node in VTSP.  For 
each node MTSP∈VTSP, create a corresponding node 
M2TND in V2TND, with cost 0.  This node is an R-node if 
MTSP=SourceTSP, and a D-node otherwise.  For each edge 
(u,v) ∈ ETSP, let x and y be the nodes in V2TND that 
correspond to u and v respectively.  Create a new R-node 
z in V2TND with cost c(u,v).  Also, create edges (x,z) and 
(z,y) in E2TND.  Solve 2TND with N=|VTSP|-1, and S & K 
= Source2TND, the node corresponding to SourceTSP. 
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Figure A-1:  Example TSP-TI (left) with edge weights, 
and the corresponding 2TND (right), with node weights.  
TSP-TI node A is chosen as the source & sink, and N=2. 
 
We must now show that the solution to the 2TND 
problem gives us a solution to the TSP-TI problem.  One 
concern is that the 2TND solution may visit some nodes 
multiple times, either from 0-cost nodes or because 
wandering paths can be as short as more direct paths.  
For 2TND problems on the graphs created from TSP-TI 
problems, we will define simplified 2TND solutions.  
Specifically, walk the 2TND solution path from source to 
sink.  The first time a given D-node is encountered on 
this walk will be called the primary occurrence of that 
node, and all additional encounters will be called repeat 
occurrences. The occurrences of the source and sink 
node (which are identical), will be considered primary, 
and all others repeat.  We now eliminate all repeat 
occurrences to create a simplified 2TND.  Specifically, 
let R2TND be any repeat node on the path, and Pre2TND and 
Post2TND be the first D-node or source node occurrence 
on the path before and after R2TND respectively.  RTSP, 
PreTSP, and PostTSP are the nodes in VTSP that correspond 
to R2TND, Pre2TND, and Post2TND. The cost of the path 
segment from Pre2TND to Post2TND is equal to the cost of 
the two R-nodes on this path (since the type-D and 
source nodes have a cost of 0), which is equal to 
c(PreTSP,RTSP)+c(RTSP,PostTSP). By the triangle 
inequality, this is no smaller than c(PreTSP, PostTSP).  
Thus, without increasing the cost of the path, or reducing 
the number of different D-nodes visited, we can replace 
the portion of the path from Pre2TND to Post2TND with the 
path Pre2TND->Rn2TND->Post2TND, where Rn2TND is the 
node in E2TND corresponding to (PreTSP,PostTSP).  By 
recursively applying this process, we will get a 
simplified 2TND solution where each D-node appears at 
most once.  Since N=|VTSP|-1 is equal to the number of 

D-nodes in V2TND, this means that the path visited each 
D-node exactly once.  It also only visits the source node 
SourceTSP at the beginning and end of the path.  Finally, 
the cost of the path is no greater than the cost of the 
original 2TND solution. 
 
The simplified 2TND solutions turn out to be solutions 
for TSP-TI, with the same cost.  We can show this by 
showing that the D-nodes traversed in the 2TND, plus 
the Source2TND node, are a tour in TSP-TI.  A tour is a 
simple cycle visiting all nodes in a graph exactly once.  
In our simplified 2TND solution all D-nodes are visited 
exactly once.  By converting the path starting and ending 
at Source2TND into a cycle by fusing together the ends, 
you also visit Source2TND exactly once.  The cost of the 
simplified 2TND solution is equal to the cost of the R-
nodes traversed, which is equal to the cost of the edges 
between the consecutive vertices in the tour of TSP-TI. 
 
It also turns out that every solution to TSP-TI has an 
equivalent simplified 2TND solution with the same cost.  
Specifically, the tour in TSP-TI can be split at the 
SourceTSP node, thus forming a path.  The nodes in TSP-
TI corresponding to the edges and vertices in the TSP-TI 
solution constitute a path going through at least |VTSP|-
1=the number of D-nodes in V2TND, and thus fulfill most 
of the requirements of 2TND.  The only issue to worry 
about is the restriction in TSP-TI that you cannot enter 
and exit a D-node on the same edge.  However, if |VTSP| 
> 2, then the vertices surrounding a vertex in the TSP-TI 
path cannot be the same.  Thus, TSP-TI never uses the 
same edge to enter and leave a node, so the equivalent 
2TND solution will never violate the entry/exit rule of 
2TND.  Again, the cost of the TSP-TI and 2TND 
solutions are the same, since the edge weights of TSP-TI 
are identical to the node weights encountered in the 
2TND solution. 
 
As we have shown, all solutions of TSP-TI have a 
corresponding, equal cost solution in 2TND, and all 
simplified 2TND solutions have corresponding, equal 
cost solution in TSP-TI.  It is also easy to see that there is 
a polynomial-time method for transforming TSP-TI into 
2TND, then map the results of 2TND to a simplified 
2TND result, and finally convert this into a solution to 
TSP-TI.  Thus, since TSP-TI is NP-Complete, 2TND is 
NP-hard.  
 
It is also clear that we can check in polynomial time 
whether N distinct D-nodes are visited, that the solution 
is a path starting and ending at S and K respectively, and 
whether we ever enter and leave a D-node on the same 
edge.  We can also check whether the path length is 
minimum via binary search on a version requiring path 
lengths <= L.  Thus, 2TND is in NP.  Since it is also NP-
Hard, 2TND is therefore NP-Complete.  
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APPENDIX B 
We assume that the FPGA architecture is represented as 
a simple, undirected graph that consists of R-nodes and 
D-nodes. The cost of each node in the graph is greater 
than or equal to one. An edge between two nodes in the 
graph merely represents a physical connection between 
the two nodes. Thus, all edges in the graph are 
unweighted. 
 
The problem of finding an optimal 1-Delay path between 
two nodes in the graph is stated as: 
 
Two-terminal 1-Delay Problem: Let G=(V,E) be a 
simple, undirected graph, with the cost of each node v in 
the graph being wv >= 1. The graph consists of two types 
of nodes; D-nodes and R-nodes. Let S,K∈V be two R-
nodes. Find a path PG(S,K) that connects nodes S and K, 
and contains at least one distinct  D-node such that 
w(PG(S,K)) is minimum, where 

w(PG(S,K)) =   Σ    wv 
                                                      v∈V(PG(S,K)) 
Further, impose the restriction that the path cannot use 
the same edge to both enter and exit any D-node. 
 
In Section 3, we proposed the 2Combined-Phased-BFS 
algorithm as an optimal solution to the two-terminal 1-
Delay problem. Before explaining the proof for 
2Combined-Phased-BFS, we briefly summarize the 
algorithm. Fig. B-1 shows pseudo-code for 2Combined-
Phased-BFS. At the start of the algorithm, a phase 0 
exploration is commenced at the source by initializing 
the priority queue PQ to S at phase 0. The phase 0 
wavefront is expanded in a manner similar to that of 
Dijkstra’ s algorithm. Each time a node lnode is removed 
from PQ, its phase is recorded in the variable phase. The 
cost of the path from S to lnode is stored in path_cost. 
The variable node_type indicates whether lnode is an R-
node or D-node. The fields lnode.num_ex0 and 
lnode.num_ex1 record the number of times lnode has 
been explored at phase 0 and 1 respectively, and are both 
initialized to 0. A node is marked finally_explored at a 
given phase when it is no longer possible to expand a 
wavefront through that node at the given phase. For each 
lnode that is removed from PQ, the following 
possibilities exist: 
• phase == 0 and node_type is R-node: R-nodes can 

be explored at phase 0 only once, and thus lnode is 
marked finally_explored if x0 == 1. The sub-routine 
AddNeighbors(PQ,lnode,path_cost,p) is used to add 
the neighbors of lnode to PQ at phase p,  where p == 
0 in this case. 

• phase == 0 and node-type is D-node: D-nodes can 
be explored at phase 0 twice, and thus lnode is 
marked finally_explored if x0 == 2. A phase 1 
exploration is begun at this D-node by adding its 
neighbors to PQ at phase 1. 

• phase == 1: Since both R-nodes and D-nodes can be 
explored twice at phase 1, lnode is marked 
finally_explored at phase 1 if x1 == 2. If we are not 
done (i.e. lnode is not K) the neighbors of lnode are 
added to PQ at phase 1.         

 
2Combined-Phased-BFS(S,K){ 

Init PQ to S at phase 0; 
LOOP{ 
 Remove lowest cost node lnode from PQ; 
 if(lnode == 0){ 
  1 Delay path between S and K does not exist; 
  return 0; 

} 
 path_cost = cost of path from S to lnode; 
 phase = phase of lnode; 
 node_type = type of lnode; 
  if(phase == 0) 
  lnode.num_ex0++; 
  x0 = lnode.num_ex0; 

} 
else{ 

  lnode.num_ex1++; 
  x1 = lnode.num_ex1; 

} 
 if(phase  == 0){ 
  if(node_type == R-node){ 
   if(x0 == 1) 
    Mark lnode finally_explored at phase 0; 
   AddNeighbors(PQ,lnode,path_cost,0); 

} 
else{ 

 if(x0 == 2) 
  Mark lnode finally_explored at phase 0; 
 AddNeighbors(PQ,lnode,path_cost,1); 

} 
  } 
  else{ 
   if(lnode == K) 
    return backtraced 1-Delay path from S to K; 
   else{ 
    if(x1 == 2) 
     Mark lnode finally_explored at phase 1; 
    AddNeighbors(PQ,lnode,path_cost,1); 

} 
} 

 } 
} 
 
AddNeighbors(PQ,lnode,path_cost,p){ 
 Loop over each neighbor neb_node of lnode{ 
  neb_cost = cost of neb_node; 
  neb_path_cost = neb_cost + path_cost;  
  Add neb_node to PQ with phase p at cost neb_path_cost; 

} 
} 

Fig. B-1: Pseudo-code  for 2Combined-Phased-BFS 
 
We now prove that 2Combined-Phased-BFS is in fact 
optimal. We present a proof by contradiction in which 
we show that 2Combined-Phased-BFS will always find 
an optimal 1-Delay path between S and K, if one exists. 
Before we begin the proof, there is some terminology we 
will introduce to simplify things. The algorithm 
presented in this paper explores multiple paths through 
the graph via a modification to Dijkstra's algorithm. We 
state that our algorithm explored a path "P" up to a node 
"N" if the modified Dijkstra's search, in either phase 0 or 
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phase 1, reaches node "N" and the search route to this 
node is identical to the portion of the path P from the 
source to node N.  Path A is "more explored" than path B 
if the cost of the identical path on A from source to A’s 
last explored point is greater than the cost of the identical 
path on B from source to B’s last explored point. 
 
For purposes of this proof we will define the "goodness" 
of a path in the following way: 
1. If the cost of one path is lower than another’ s, it is 

"better" than the other. Thus, an optimal path is 
always better than a non-optimal path. 

2. If the costs of two paths C and D are the same, then 
C is "better" than D if C is more explored than D. 

 
From these definitions, the "best" path is an optimal path.  
If there is more than one optimal path, the best path is the 
most explored optimal path. 
 
Initial Assumption: Assume that Fig. B-2 shows the 
most explored optimal 1-Delay path between S and K. In 
other words, the path shown in the figure is the best 1-
Delay path between S and K, with delay picked up at D-
node DL. Note that there are no D-nodes on the path S-
DL, although there could be multiple D-nodes on DL-K. 
This is because we assume that in case the best 1-Delay 
path between S and K goes through multiple D-nodes, 
then the D-node nearest S is used to pick up delay. 
 
S DL K      

 
Fig. B-2: The initial assumption is that the most 
explored lowest cost 1-Delay route between S and K 
goes through D-node DL 

 
Although it appears that the paths S-DL and DL-K in Fig. 
B-2 are non-intersecting, note that the R-nodes on the 
path S-DL can in fact be reused in the path DL-K.  In all 
the diagrams of this section, we use the convention of 
showing paths without overlaps (Fig. B-3), even though 
they may actually overlap (Fig. B-4).  Our proof does not 
rely on the extent of intersection between hypothetical 
paths (which are always shown in gray) and the known 
best 1-Delay path. 
 

S DL KR

 
 

Fig. B-3: Representation of a path from S to node R 
shown in gray   

 

S DL K
R

 
 

Fig. B-4: The path from S to R could actually intersect 
with the paths S-DL and DL-K 

 
There are three distinct cases in which 2Combined-
Phased-BFS could fail to find the best path S-DL-K 
shown in Fig. B-2: 
• CASE 1: An R-node on the path S-DL gets explored 

at phase 0 along a path other than S-DL. 
• CASE 2: The D-node DL gets explored at phase 0 

along two paths other than S-DL. 
• CASE 3: A node on the path DL-K gets explored at 

phase 1 along two paths other than DL-K. 
 
We now show that none of the above-mentioned cases 
can occur, thus guaranteeing the optimality of 
2Combined-Phased-BFS. Each case is dealt with 
separately.    
 
CASE 1: An R-node on the path S-DL gets explored at 
phase 0 along a path other than S-DL. 
 
The cost of the gray path S-G-R (Fig. B-5) is less than or 
equal to the cost of path S-R. In this case, the path S-G-
R-DL-K would be better than the known best path, which 
is a contradiction of our initial assumption. Thus, we 
have proved that CASE 1 can never occur.  
 

S DL KR

G     
Fig. B-5: The case in which an R-node on the path S-
DL gets explored at phase 0 along some other path 

 
CASE 2: D-node DL gets explored at phase 0 along 
two paths other than S-DL. 
 
In Section 3 we demonstrated that if we allow a D-node 
to be visited only once at phase 0, Combined-Phased-
BFS fails on the graph topology shown in Fig. 4. The 
reason for the failure can be seen in Fig. B-6. Assume 
that the cost of the path S-G-R-DL shown in gray is less 
than the cost of path S-DL along the known best path S-
DL-K. In this case, D-node DL gets explored at phase 0 
via the R-node that is used to exit DL at phase 1 in the 
best path S-DL-K. If we allow D-nodes to be explored at 
phase 0 only once, then the known best path S-DL-K will 
not be found.  

S DL KR

G  
Fig. B-6: The cost of path S-G-R-DL is less than the 
cost of path S-DL along the known best path S-DL-K 

 
While DL can get explored at phase 0 by one path other 
than S-DL, we will now show that it is not possible to 
explore DL at phase 0 along two paths other than S-DL. 
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The node DL could get explored at phase 0 twice in the 
following possible ways: 
• Fig. B-7: The cost of each of the paths S-G1-DL and 

S-G2-R2-DL is less than or equal to the cost of path 
S-DL. In this case, the path S-G1-DL-R2-K would be 
better than the known best path S-DL-K, thus 
contradicting our initial assumption.  

S DL K
R2

G1

G2  
Fig. B-7: DL gets explored at phase 0 along paths S-G1-
DL and S-G2-R2-DL 

 
• Fig. B-8: The cost of each of the paths S-G1-DL and 

S-G2-DL is less than or equal to the cost of path S-
DL. If D-node DL gets explored at phase 0 along 
these two paths, both S-G1-DL-K and S-G2-DL-K 
would be better than the known best path S-DL-K, 
which contradicts our initial assumption. 

 

S DL K

G2

G1

 
Fig. B-8: The cost of each of the paths S-G1-DL and S-
G2-DL is less than or equal to the cost of path S-DL 

 
Finally, note that DL can never get explored at phase 0 
along both gray paths shown in Fig. B-9, regardless of 
the cost of these paths. This is because R-nodes can be 
explored only once at phase 0, which means that DL can 
get explored at phase 0 by only one of the paths S-G1-
R1-DL or S-G2-R2-DL. Therefore, it is not possible to 
explore DL at phase 0 two times via the node that is used 
to exit DL along the best path S-DL-K. 
 

S DL K
R2

R1

G2

G1

 
Fig. B-9: DL cannot get explored at phase 0 along both 
S-G1-R1-DL and S-G2-R2-DL. 

 
We have thus proved that it is not possible to explore DL 
at phase 0 along two paths other than S-DL. Thus, CASE 
2 can never occur. 
 
CASE 3: A node on the path DL-K gets explored at 
phase 1 along two paths other than DL-K. 

We will first enumerate the different cases in which a 
node X on the path DL-K can possibly get explored at 
phase 1 along a path other than the known best path, 
before the known best path reaches that node: 
• Fig. B-10: The D-node at which the path picks up 

delay does not lie on the known best path S-DL-K. 
The figure shows the different 1-Delay paths on 
which node X can possibly get explored at phase 1: 

o Node X gets explored at phase 1 along the 
path S-D-G1-R1-DL-X. This means that the 
path S-D-G1-R1-DL-X-K is better than the 
known best path, thus contradicting our 
initial assumption. 

o Node X gets explored at phase 1 along the 
path S-D-G2-DL-X. This means that the 
path S-D-G2-DL-X-K is better than the 
known best path, which contradicts the 
initial assumption. 

o Node X gets explored at phase 1 along the 
path S-D-G3-X. This means that the path S-
D-G3-X-K is better than the known best 
path, which is a contradiction of our initial 
assumption.   

 

S DL K
R1

D

X

G1
G2

G3

 
Fig. B-10: Node X could get explored at phase 1 along 
any of the three paths shown in gray. D-node D does 
not lie on the known best path S-DL-K.  

 
• Fig. B-11: The D-node at which the path picks up 

delay lies on the phase 0 segment of the known best 
path. The cost of path S-G1-D-DL-X is less than or 
equal to the cost of the path to X along the known 
best path. In this case, the path S-G1-D-DL-X-K 
would be better than the known best path, thus 
contradicting our initial assumption. 

 

S DL K

G1

XD

 
Fig. B-11: Node X gets explored at phase 1 along the 
path S-G1-D-DL-X. 

 
• Fig. B-12: The cost of path S-G1-DL-X is less than 

or equal to the cost of the path to X along the known 
best path. This means that the path S-G1-DL-X-K is 
better than the known best path, which is a 
contradiction of our initial assumption. 
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S DL K

G1
X

 
Fig. B-12: Node X gets explored at phase 1 along 
the path S-G1-DL-X. 

 
• Fig. B-13: The D-node at which the path picks up 

delay lies on the phase 1 segment of the known best 
path. Node X is closer to the sink K than D-node D. 
There are two possibilities here: 

o The cost of path S-G1-R1-D-X is less than 
or equal to the cost of the path to X along 
the known best path. In this case, the path 
S-G1-R1-D-X-K would be better than the 
known best path, which is a contradiction 
of our initial assumption. 

o The cost of path S-G2-D-X is less than or 
equal to the cost of the path to X along the 
known best path. This means that the path 
S-G2-D-X-K is better than the known best 
path, which contradicts our initial 
assumption.  

 

S DL K

G1

XD

G2

R1

 
Fig. B-13: Node X can get explored at phase 1 
along either S-G2-D-X or S-G1-R1-D-X. 

 
• Fig. B-14: The D-node at which the path picks up 

delay lies on the phase 1 segment of the known best 
path. D-node is closer to sink K than node X. Again, 
there are two possibilities here: 

o The cost of path S-G2-D-X is less than or 
equal to the cost of the path to X along the 
known best path. In this case, the path S-
G2-D-K would be better than the known 
best path, thus contradicting our initial 
assumption.  

o The cost of the path S-G1-R1-D-X is less 
than or equal to the cost of the path to X 
along the known best path. In this case, 
node X gets explored at phase 1 along the 
path S-G1-R1-D-X. Note that this is the 
only case in which a node on the phase 1 
segment of the known best path can get 
explored at phase 1 along a path other than 
the known best path. If we were to allow 
the nodes in our graph to be explored at 
most once at phase 1, this case represents a 
true failure case.  

 
 
 

S DL K

G1

X
D

G2
R1

 
 

Fig. B-14: Node X can get explored at phase 1 along 
either S-G2-D-X or S-G1-R1-D-X. 

 
Thus, we have proved that the only case in which a node 
on the phase 1 segment (path DL-K in Fig. B-2) can get 
explored at phase 1 along a path other than the known 
best path is the path S-G1-R1-D-X shown in Fig. B-14. 
We now prove that it is not possible to have two such 
paths: 
 
• Fig. B-15: The cost of each of the paths S-G1-R1-D-

X and S-G2-R2-D’ -R1-D-X is less than or equal to 
the cost of the path to X along the known best path. 
This means that the cost of the path to node R1 is 
less than or equal to the cost of the path to R1 along 
the known best path, which in turn implies that the 
path S-G1-R1-D’ -R2-K is better than the known 
best path. This is a contradiction of our initial 
assumption.  

 

S DL K

G1
X D

G2

R1 D’
R2

 
Fig. B-15: Node X can get explored at phase 1 
along either S-G1-R1-D-X or S-G2-R2-D’-R1-D-
X. 

 
Hence, we have proved that a node on the segment DL-K 
(Fig. B-2) of the known best path cannot get explored at 
phase 1 along two paths other than the known best path 
from S to K. Thus, CASE 3 can never occur. 
 
Furthermore, since we have proved that CASE1, CASE2 
and CASE3 can never occur, the algorithm 2Combined-
Phased-BFS is optimal. 


