
 1

PipeRoute: A Pipelining-Aware Router for FPGAs

 Akshay Sharma Carl Ebeling Scott Hauck
Dept. of Electrical Engineering Dept. of Computer Science & Engineering Dept. of Electrical Engineering

 University of Washington University of Washington University of Washington
 Seattle, WA Seattle, WA Seattle, WA
 akshay@ee.washington.edu ebeling@cs.washington.edu hauck@ee.washington.edu

ABSTRACT
In this paper we present a pipelining-aware router for
FPGAs. The problem of routing pipelined signals is
different from the conventional FPGA routing problem.
For example, the two terminal N-Delay pipelined routing
problem is to find the lowest cost route between a source
and sink that goes through at least N (N > 1) distinct
pipelining resources. In the case of a multi-terminal
pipelined signal, the problem is to find a Minimum
Spanning Tree that contains sufficient pipelining
resources such that the delay constraint at each sink is
satisfied.

We begin this work by proving that the two terminal N-
Delay problem is NP-Complete. We then propose an
optimal algorithm for finding a lowest cost 1-Delay
route. Next, the optimal 1-Delay router is used as the
building block for a greedy two terminal N-Delay router.
Finally, a multi-terminal routing algorithm (PipeRoute)
that effectively leverages the 1-Delay and N-Delay
routers is proposed.

We evaluate PipeRoute’s performance by routing a set of
retimed benchmarks on the RaPiD [3] architecture. Our
results show that the architecture overhead incurred in
routing retimed netlists on RaPiD is less than a factor of
two. Further, the results indicate a possible trend
between the architecture overhead and the percentage of
pipelined signals in a netlist.

1. INTRODUCTION
It is well established that FPGAs are a convenient
marriage between the flexibility of software, and
performance levels achievable in hardware.
Reconfigurable logic units, coupled with a rich
programmable interconnect structure, can be used to
implement a variety of applications. However, while
FPGAs remain extremely attractive for their hardware
flexibility, the minimum clock period that is achievable
in present-day FPGAs leaves a lot to be desired.

In the world of microprocessors and custom design,
pipelining is widely used to reduce the critical path delay
of a circuit. The development of powerful sequential
retiming heuristics has contributed to reducing the clock
period of circuits even further [5,6]. Thus, designers of
reconfigurable architectures are now paying serious
attention to providing pipelining resources in the logic

units and routing fabric that constitute reconfigurable
architectures.

A number of research groups have proposed pipelined
FPGA architectures. HSRA [13] is an example of an
FPGA architecture that has a hierarchical, pipelined
interconnect structure. A fraction of the switchboxes is
populated with registered switches to meet a target clock
period. Also, instead of having a single register on the
output of a LUT (which is generally the case in existing
FPGA architectures), a bank of registers is connected to
each input of the LUT. This helps balance path delays
introduced by the pipelined interconnect. User
applications are mapped to HSRA by integrating data
retiming with a conventional FPGA CAD flow.

A second example of a pipelined FPGA architecture is
proposed in Singh et al [10]. The routing architecture is
hierarchical, and the higher-level routing consists of
horizontal and vertical long lines that surround logic
blocks. Each long line is pipelined using a bank of
registered switch-points, and every switch-point can be
used to delay a long line from 0 – 4 clock cycles. DSP
designs mapped to this architecture were able to achieve
throughputs of up to 600 MHz.

RaPiD [3,4] is a coarse-grained one-dimensional (1-D)
architecture that has pipelined datapath and interconnect
structures. The datapath consists of 16-bit ALUs,
multipliers, SRAMs and registers. The registers comprise
a significant fraction of the datapath, thus providing
pipelining resources. The interconnect is composed of
short tracks that are used to achieve local communication
between logic units, and long tracks that enable relatively
long distance communication along the datapath. The
long tracks traverse multiple switch-points, whereas the
short tracks do not traverse any switch-points. The
outputs of every logic unit, as well as all switch-points,
can optionally be registered. Due to the 1-D nature of the
interconnect, switchpoints have 2 terminals, and are
bidirectional. Like the architecture proposed in [10], the
RaPiD architecture is targeted at regular, compute
intensive applications that are amenable to deep
pipelining.

The aforementioned architectural examples indicate that
good progress is being made in the design of pipelined
architectures. The challenge now is to develop CAD
tools that can map user applications to pipelined FPGA

 2

architectures. In [12], the authors investigate the benefits
of integrating placement and retiming by proposing
retiming aware placement algorithms. The same authors
present a retiming aware router in [11]. This router
attempts to place long signals on tracks that have
registered switches, so that a subsequent retiming step
can take advantage of the assignment to pipeline the long
signals. In [11], the goal is to reduce interconnect delay
by pipelining long signals. Placement and logic retiming
are closely coupled to give the retiming step an estimate
of routing delay in [12].

The subject of this paper is the development of an
algorithm called PipeRoute that routes retimed
application netlists on pipelined FPGA architectures. In
retimed netlists, all pipelining registers are explicitly
enumerated, and it is therefore possible to calculate the
number of clock cycles that separate the signal’s source
from each of its sinks. A pipelined FPGA architecture is
one that has pipelining resources in the interconnect
structure. These pipelining resources supplement the
registers that are already provided in FPGA logic blocks.
PipeRoute takes a retimed netlist and a pipelined FPGA
architecture as inputs, and produces an assignment of
signals to routing resources as the output. To the best of
our knowledge, PipeRoute is the first routing algorithm
that is capable of routing retimed netlists on pipelined
FPGA architectures. Furthermore, the strength of the
PipeRoute algorithm lies in the fact that it is architecture-
independent. The algorithm is capable of routing
pipelined signals on any FPGA architecture that can be
abstractly represented as a graph consisting of routing-
and pipelining-nodes.

2. PROBLEM BACKGROUND
The FPGA routing problem is to determine an
assignment of signals to limited routing resources while
trying to achieve the best possible delay characteristics.
Pathfinder [7] is one of the most widely used FPGA
routing algorithm. It is an iterative algorithm, and
consists of two parts. The signal router routes individual
signals based on Prim’s algorithm, which is used to build
a Minimum Spanning Tree (MST) on an undirected
graph. The global router adjusts the cost of each routing
resource at the end of an iteration based on the demands
placed on that routing resource during the iteration.
During the first routing iteration, signals are free to share
as many routing resources as they like. However, the cost
of using a shared routing resource is gradually increased
during later iterations, and this increase in cost is
proportional to the number of signals that share that
resource. Thus, this scheme forces signals to negotiate
for routing resources. A signal can use a high cost
resource if all remaining resource options are in even
higher demand. On the other hand, a signal that can take
an alternative, lower cost route is forced to do so because
of competition for shared resources. Circuits routed

using Pathfinder’s congestion resolution scheme
converge quickly, and exhibit good delay characteristics.

sig
S

K1

K2

K3

Fig. 1: A multi-terminal pipelined signal

In the case of retimed netlists, the routing problem is
different from the conventional FPGA routing problem.
This is because a significant fraction of the signals in a
netlist are deeply pipelined, and merely building an MST
for a pipelined signal is not enough. For example,
consider the pipelined signal sig in Fig. 1 that has a
source S and sinks K1, K2 and K3. The signal is
pipelined in such a way that sink K1 must be delayed 3
clock cycles relative to S, sink K2 must be 4 clock cycles
away, and sink K3 must be 5 clock cycles away. A route
for sig is valid only if it contains enough pipelining
resources to satisfy the delay constraints at every sink.
Due to the fact that there are a fixed number of sites in
the interconnect where a signal can be delayed by a clock
cycle (hereafter referred to as “delay sites”), it can be
easily seen that a route that is found for sig by a
conventional, pipelining-unaware FPGA router may not
contain enough delay sites to satisfy the delay constraint
at every sink. Thus, the routing problem for pipelined
signals is different from that for unpipelined signals. For
a two-terminal pipelined signal, the routing problem can
be stated as:

Two-terminal N-Delay Problem: Let G=(V,E) be an
undirected graph, with the cost of each node v in the
graph being wv >= 1. The graph consists of two types of
nodes; D-nodes and R-nodes. Let S,K∈V be two R-nodes.
Find a path PG(S,K) that connects nodes S and K, and
contains at least N (N ≥ 1) distinct D-nodes, such that
w(PG(S,K)) is minimum, where

w(PG(S,K)) = 6 wv
 v∈V(PG(S,K))
Further, impose the restriction that the path cannot use
the same edge to both enter and exit any D-node.

We call a route that contains at least ‘N’ distinct D-nodes
an “N-Delay” route. R-nodes represent wires and IO
pins of logic units in a pipelined architecture, whereas D-
nodes represent registered switch-points. A registered
switch-point can be used to pick up 1 clock cycle delay,
or no delay at all. Every node is assigned a cost, and an
edge between two nodes represents a physical connection
between them in the architecture. Under this framework,
an abstraction of the routing problem for a simpler two-

 3

terminal signal is to find the lowest cost route between
source and sink that goes through at least N (N ≥ 1)
distinct D-nodes (N is the number of clock cycles that
separates the source from the sink). Note that a lowest
cost route can be self-intersecting i.e. R-nodes can be
shared in the lowest cost route. We have shown that the
two-terminal N-Delay problem is NP-Complete
(Appendix A). In the more complex case of a multi-
terminal signal, the problem is to find an MST that
contains enough D-nodes such that each sink is the
correct number of clock cycles away from the source.

A simple solution to the pipelined routing problem
would be to address pipelining in the placement phase.
The pipelining registers in a netlist could be mapped to
registered switch-points in the architecture, and a
simulated annealing placement algorithm could
determine an optimal placement of the pipelining
registers. After the placement phase, a conventional
FPGA router could be used to route the signals in the
netlist. However, a placement of a netlist that maps
pipelining registers to registered switch-points eliminates
portions of the routing graph. This is because a registered
switch-point that is occupied by a particular pipelining
register cannot be used by signals other than the signals
that connect to that pipelining register. As a
consequence, the search space of a conventional FPGA
router is severely limited, and this results in solutions of
poor quality. It is therefore clear that a pipelining-aware
placement phase is not sufficient to successfully route
pipelined signals.

In sections 3, 4 and 5, we present a greedy heuristic
search algorithm for routing signals on pipelined FPGA
architectures, and an explanation of how we use
Pathfinder’ s Negotiated Congestion (NC) algorithm [7]
in conjunction with our heuristic to resolve congestion.
Section 6 describes the target architecture that we used in
our experiments, while Section 7 describes the placement
algorithm we developed to enable our routing approach.
We describe our experimental setup and test strategy in
Section 8, followed by results in Section 9. Finally, in
Section 10, we discuss some of many directions for
future efforts, and conclude this work.

3. ONE-DELAY ROUTER
In the previous section, we pointed out that the problem
of finding the lowest cost route between a source and
sink that goes through at least N distinct D-nodes is NP-
Complete. However, we now show that a lowest cost
route between a source and sink that goes through at
least 1 D-node can be found in polynomial time. In a
weighted, undirected graph, the Breadth First Search
(BFS) algorithm is widely used to find the lowest cost
route between a source and sink. The remainder of this
section evaluates several modifications of conventional
BFS that can be used to find a lowest cost 1-Delay route.
Our first modification is Redundant-Phased-BFS. In this

algorithm, a phase 0 wavefront is launched at the source.
When the phase 0 exploration hits a D-node, it is locally
terminated there (i.e. the phase 0 exploration is not
allowed to continue through the D-node, although the
phase 0 exploration can continue through other R-nodes),
and an independent phase 1 wavefront is begun instead.
When commencing a phase 1 wavefront at a D-node, we
impose a restriction that disallows the phase 1 wavefront
from exiting the D-node along the same edge that was
used to explore it at phase 0. This is based on the
assumption that it is architecturally infeasible for the D-
node that originates the phase 1 wavefront to explore the
very node that is used to discover it at phase 0. When a
phase 1 wavefront explores a D-node, the D-node is
treated like an R-node, and the phase 1 wavefront
propagates through the D-node.

If the number of D-nodes that can be explored at phase 0
from the source is ‘F’ , up to F independent phase 1
wavefronts can co-exist during Redundant-Phased-BFS.
The search space of the phase 1 wavefronts can overlap
considerably due to the fact that each R-node in the
graph can be potentially explored by up to F independent
phase 1 wavefronts. Consequently, the worst-case run-
time of Redundant-Phased-BFS is F times that of
conventional BFS. Since F could potentially equal the
number of registers in the FPGA, the worst-case run-time
of Redundant-Phased-BFS could get prohibitive.

An alternative to Redundant-Phased-BFS that can be
used to find a lowest cost 1-Delay route between a
source and sink is Combined-Phased-BFS. This
algorithm attempts to reduce run-time by combining the
search space of all the D-nodes that can be explored at
phase 0 from the source. The only difference between
Redundant-Phased-BFS and Combined-Phased-BFS is
that the latter algorithm allows each R-node to be visited
only once by a phase 1 wavefront. As a consequence, the
run-time of Combined-Phased-BFS is only double that of
conventional BFS. In addition, an important effect of the
dichotomy that we have created due to phase 0 and phase
1 wavefronts is that R-nodes that constitute the phase 0
segment of a 1-Delay route can be reused in the phase 1
segment of the same 1-Delay route. We rely on
Pathfinder’ s [7] congestion resolution scheme to adjust
the history cost of such R-nodes, so that in a later
iteration a 1-Delay route with no node reuse between
phase 0 and phase 1 segments can be found.

A step-by-step illustration of how Combined-Phased-
BFS works is shown in Figs. 2A through 2E. For the sake
of simplicity, assume all nodes in the example graph
have unit cost. The source S is explored at phase 0 at the
start of the phased BFS. The number 0 next to S in Fig.
2A indicates that S has been explored by a phase 0
wavefront. In Fig. 2B, the neighbors of S are explored by
the phase 0 wavefront initiated at S. The 2nd-level
neighbors of S are explored by phase 0 in Fig. 2C, one of

 4

which is D-node D1. Note that we make a special note of
D1’ s phase 0 predecessor here, so that we do not explore
this predecessor by means of the phase 1 wavefront that
is commenced at D1. In Fig. 2D, the neighbors of D1
(excluding R1) are explored at phase 1. The phase 0
exploration also continues simultaneously, and note how
nodes R4 and R7 have been explored by both phase 0
and phase 1 wavefronts. Finally, in Fig. 2E, the sink K is
explored by the phase 1 wavefront initiated at D1. The
route found by Combined-Phased-BFS is shown in
boldface in Fig. 2E, and is in fact an optimal route
between S and K.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

Fig. 2A: Phase 0 exploration commences at node S.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

Fig. 2B: The neighbors of S are explored at phase 0.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

Fig. 2C: 2nd-level neighbors of S are explored at phase
0, and in the process D-node D1 is discovered.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

0

0

0
prevR5

1

1

0

Fig. 2D: D1 starts a phase 1 exploration. The phase 0
exploration continues simultaneously, and D2 is
discovered.

S K

R1

R2 R4

R3 R5

R6

R7

R8

D1

D2

0

0

0

0

0
prevR1

0

0

0

0

0
prevR5

1

1

0

1

1

1

1

1

Fig. 2E: K is explored by phase 1 wavefront
commenced at D1.

Unfortunately, Combined-Phased-BFS fails to find a
lowest cost route on some graph topologies. An example
of a failure case is shown in Fig. 3. Here the node S is
both the source and sink of a signal, and each node is unit
cost. Combined-Phased-BFS will fail to return to S at
phase 1 because R-nodes on each possible route back to S
have already been explored by the phase 1 wavefront. In
effect, Combined-Phased-BFS isolates nodes S, R1, R2,
D1 and D2 from the rest of the graph, thus precluding the
discovery of any route back to S at all.

The reason for the failure of Combined-Phased-BFS is
that a node on the phase 1 segment of the lowest cost
route is instead explored by a phase 1 wavefront
commenced at another delay site. For example, in Fig. 3
we consider the route S-R1-D1-R3-R5-R4-D2-R2-S to be
lowest cost. Node R4 is explored by the phase 1
wavefront commenced at D2, thus precluding node R4
from being explored by the phase 1 wavefront started at
D1. However, if we slightly relax Combined-Phased-BFS
to allow each node in the graph to be explored by at most
two phase 1 wavefronts that are independently started at
different D-nodes, then the phase 1 wavefronts started at
D1 and D2 will now be able to overlap, thus allowing the
lowest cost route to be found.

S

R1

R2

R3D1

0

D2 R4

R5

0

0

0

0

1

1

1

Fig. 3: A case for which phased BFS fails. Observe how
the phase 1 exploration has got isolated from the phase
0 exploration

An important consequence of the nature of the transition
from phase 0 to phase 1 at a D-node is shown in Fig. 4.
In this case, S is the source of the signal, and K is the
sink. Observe that a phase 0 exploration explores D1

 5

from R1. Consequently, the phase 0 exploration is
precluded from exploring D1 from R4. This prevents the
optimal 1-Delay route to K from being found. To address
the nature of transitions from phase 0 to phase 1, we
allow any D-node to be explored at most two times at
phase 0. In Fig. 4, D1 can be explored at phase 0 from
R1 and R4, thus allowing the optimal 1-Delay path S-
R2-R3-R4-D1-R1-K to be found.

S

R2

R1 D1

R3

R4

K

0

0

0

0 0

0

Fig. 4: D1 is explored at phase 0 from R1, thus
precluding the discovery of the 1-Delay path to the sink
K.

The following rules summarize 2Combined-Phased-BFS:

• An R-node can be explored at most once at phase 0.
• A D-node can be explored at most twice at phase 0.
• An R-node can be explored by at most two distinct

phase 1 explorations. The cases in which two phase
1 explorations are distinct are:

o The two phase 1 explorations are initiated
by two different D-nodes, OR

o The two phase 1 explorations are initiated
by the same D-node, but the R-nodes that
were used to explore the D-node at phase 0
are different.

• A D-node can be explored by at most two distinct
phase 1 explorations. This rule is identical to the
way R-nodes are explored at phase 1.

We have proven that 2Combined-Phased-BFS finds an
optimal 1-Delay route between a source and sink on an
undirected graph consisting of R-nodes and D-nodes. A
detailed proof can be found in Appendix B.

4. N-DELAY ROUTER
In this section, we present a heuristic that uses the
optimal 1-Delay router to build a route for a two terminal
N-Delay signal. This heuristic greedily accumulates
delay at the sink by using 1-Delay routes as building
blocks. In general, an N-Delay route is recursively built
from an (N-1)-Delay route by successively replacing
each segment of the (N-1)-Delay route by a 1-Delay
route and then selecting the lowest cost N-Delay route.
Fig. 5 is an abstract illustration of how a 3-Delay route
between S and K is found. In the first step, we find a 1-
Delay route between S and K, with D11 being the D-

node where we pick up delay. At this point, we
increment the sharing cost of all nodes that constitute the
route S-D11-K. In the second step, we find two 1-Delay
routes, between S and D11, and D11 and K. The
sequence of sub-steps in this operation is as follows:

• Decrement sharing cost of segment S-D11.
• Find 1-Delay route between S and D11 (S-D21-

D11). Store cost of route S-D21-D11-K in CostS-D21-

D11-K.
• Restore segment S-D11 by incrementing the sharing

cost of segment S-D11.
• Decrement sharing cost of segment D11-K.
• Find 1-Delay route between D11 and K (D11-D22-

K). Store cost of route S-D11-D22-K in CostS-D11-D22-

K.
• Restore segment D11-K by incrementing the sharing

cost of segment D11-K.
• Select the lowest cost route, either S-D21-D11-K

and S-D11-D22-K.

Suppose the lowest cost 1-Delay route is S-D11-D22-K.
We rip up and decrement sharing due to the segment
D11-K in the original route S-D11-K, and replace it with
segment D11-D22-K. Finally, we increment sharing of
the segment D11-D22-K. The partial route now is S-
D11-D22-K.

The sequence of sub-steps in step three is similar.
Segments S-D11, D11-D22 and D22-K are successively
ripped up, replaced with individual 1-Delay segments,
and for each case the cost of the entire 3-Delay route
between S and K is stored. The lowest cost route is then
selected. In Fig. 5, the 3-Delay route that is found is
shown in dark lines, and is S-D11-D31-D22-K.

The number of 1-Delay BFS’ launched for the 3-Delay
route that we just discussed is 1 + 2 + 3 = 6. For the
general N-Delay case, the number of 1-Delay BFS’
launched is 1 + 2 + ... + N = N(N-1)/2. A bound on the
number of 1-Delay BFS’ launched for an N-Delay route
is N2.

S K

D11

D21

D22
D31

D32

Fig. 5: Building a 3-Delay route from 1-Delay routes

5. MULTI-TERMINAL ROUTER
The previous section described a heuristic that uses
optimal 1-Delay routes to build a two-terminal N-Delay

 6

route. The most general type of pipelined signal is a
multi-terminal pipelined signal. A multi-terminal
pipelined signal has more than one sink, and the number
of delays separating the source from each sink could
differ across the set of sinks. A simple example of a
multi-terminal pipelined signal sig was shown in Fig. 1.
The sinks K1, K2 and K3 must be separated from the
source S by 3, 4 and 5 delays respectively. We will now
demonstrate how a route for a multi-terminal signal can
be found by taking advantage of the 1-Delay and N-
Delay routers that were discussed in Sections 3 and 4.

The routing tree for a multi-terminal pipelined signal is
built one sink at a time. The entire list of sinks is stored
in a pre-sorted list called sorted_sink_list, and each sink
is considered in non-decreasing order of delay separation
from the source of the signal. Hence, the multi-terminal
router starts by finding a route to a sink that is the least
number of delays away from the source. Since finding a
route to the first sink is a two-terminal case, we use the
two-terminal N-Delay router to establish a route between
the source and first sink. The remainder of this section
examines the task of expanding the route between the
source and the first sink to include all other sinks.

We explain the multi-terminal router via a simple
example. Assume a hypothetical signal that has a source
S and sinks K3 and K4. K3 must be separated from S by
3 delays, whereas K4 must be separated by 4 delays.
Sink K3 is considered first, and the N-Delay router is
used to find a 3-Delay route between S and K3. In Fig.
6A, the route S-D1-D2-D3-K3 represents the 3-Delay
route between S and K3, and constitutes the
partial_routing_tree of the signal. In general, the
partial_routing_tree of a multi-terminal pipelined signal
can be defined as the tree that connects the source to all
sinks that have already been routed.

S

D1 D2 D3

K3

K4

Fig. 6A: 3-Delay route to K3 using the two-terminal N-
Delay router. S-D1-D2-D3 is the partial_routing_tree.

After a route to K3 is found, the router considers sink
K4. As was the case in the N-Delay router, we
accumulate delay at K4 one delay at a time. Thus, we
start by finding a 1-Delay route to K4, then a 2-Delay
route, a 3-Delay route, and finally a 4-Delay route to K4.
It can be seen that a 1-Delay route to K4 can be found
either from the 0-Delay segment S-D1 by going through
another D-node, or from the 1-Delay segment D1-D2

directly. However, it is not necessary to launch
independent wavefronts from segments S-D1 and D1-
D2. This is because both wavefronts can be combined
into a single 1-Delay BFS in which segment S-D1
constitutes the starting component of the phase 0
wavefront, and segment D1-D2 constitutes the starting
component of the phase 1 wavefront. Setting up the 1-
Delay BFS in such a way could find a 1-Delay path from
S-D1 or a 0-delay path from D1-D2, depending on which
is of lower cost. Assume that the route to K4 that is
found is the gray segment P-K4 in Fig. 6B. Once the
segment P-K4 is found, the sharing cost of the nodes that
constitute P-K4 is incremented. The segment P-K4 is
called the surviving_candidate_tree. The
surviving_candidate_tree can be defined as the tree that
connects the sink (K4 in this case) under consideration to
some node in the partial_routing_tree every time an N-
Delay route (1≤N≤4 in this case) to the sink is found.
Thus, a distinct surviving_candidate_tree results
immediately after finding the 1-Delay, 2-Delay, 3-Delay
and 4-Delay routes to K4.

Next, we attempt to find a 2-Delay route to K4. Before
explaining specifics, it is important to point out here that
while finding an N-Delay route to a sink in general we
try two options. The first is to use the N-Delay and (N-
1)-Delay segments in the partial_routing_tree together
to start a 1-Delay BFS. The other option is to alter the
surviving_candidate_tree to include an additional D-
node as was done in the two terminal N-Delay router.
The lower cost option is chosen, and this option becomes
the new surviving_candidate_tree.

S

D1 D2 D3

K3

K4

P

Fig. 6B: 1-Delay route to K4. P-K4 is found by
launching a 1-Delay BFS that starts with segment S-D1
at phase 0 and segment D1-D2 at phase 1. P-K4 is the
surviving_candidate_tree.

Thus, for finding a 2-Delay route to K4, we first launch a
1-Delay BFS using segments D1-D2 and D2-D3 and
store the cost of the route that is found. Then, we rip up
segment P-K4 (Fig. 6B) and replace it with a 1-Delay
route between segment D1-D2 and K4, and store the cost
of the 1-Delay route. The lower cost route is selected,
and the sharing cost of the nodes that constitute this route
is incremented. This selected route becomes the new
surviving_candidate_tree. In Fig. 6C, assume that the
lower cost route that is selected is the segment P1-Da-K4
shown in gray.

 7

S

D1
D2

D3

K3

K4

Da

P1

Fig. 6C: 2-Delay route to K4. P1-Da-K4 is now the
surviving_candidate_tree.

A similar reasoning can be applied to finding a 3-Delay
route to K4. A 1-Delay BFS using segments D2-D3 and
D3-K3 (which are shown at delay 2 and 3 respectively in
Fig. 6D) is launched, and the cost of the resulting route is
stored. Then, the surviving_candidate_tree P1-Da-K4
(Fig. 6C) is modified to add another D-node much in the
same manner that a two-terminal 2-Delay route is built
from an already established 1-Delay route (Section 4).
The cost of the modified surviving_candidate_tree is
also stored. The lower cost route is selected, and the
sharing cost of relevant nodes incremented. In Fig. 6D,
assume that the lower cost route that is selected is P1-
Da-Db-K4. This route now becomes the
surviving_candidate_tree.

S

D1 D2 D3

K3

K4

Da

Db

P1

Fig. 6D: 3-Delay route to K4. P1-Da-Db-K4 is the
resulting surviving_candidate_tree.

Finally, in Fig. 6E, the cost of finding a 1-Delay route to
K4 from the segment D3-K3 (which is at delay 3) proves
to be less than the cost of the route that modifies the
surviving_candidate_tree P1-Da-Db-K4 (Fig. 6D). The
segment P1-Da-Db-K4 is ripped up, and the segment P3-
D4-K4 is joined to the partial_routing_tree to complete
the routing to K4.

S

D1
D2

D3

K3

K4

D4

P3

Fig. 6E: 4-Delay route to K4. P3-D4-K4 is the final
surviving_candidate_tree, and this tree is joined to
the partial_routing_tree to complete routing to K4.

6. TARGET ARCHITECTURE
In this section, we briefly describe the features of a
simplified RaPiD [3] architecture. The reasons that
influenced us to use simplified RaPiD as the target
architecture for our experiments are:
• RaPiD has a pipelined datapath structure. More

importantly, it provides bi-directional pipelining
sites in the interconnect.

• We have easy access to the in-house RaPiD
compiler and retimer. Thus, we have been able to
generate a representative set of benchmark
applications for our experiments.

Fig. 7: An example of a RaPiD [3] architecture cell.
Several RaPiD cells can be tiled together to create a
representative architecture.

The 1-Dimensional (1-D) RaPiD datapath (Fig. 7)
consists of coarse-grained logic units that include ALUs,
multipliers, small SRAM blocks, and registers. Each
logic unit is 16-bit wide. The interconnect consists of 1-
D routing tracks that are also 16-bit wide. There are two
types of routing tracks; short tracks and long tracks.
Short tracks are used to achieve local connectivity
between logic units, whereas long tracks traverse longer
distances along the datapath. In Fig. 7, the uppermost 5
tracks are short tracks, while the remaining tracks are
long tracks. Each input of a logic unit can be driven by
any routing track by means of a multiplexer. Similarly,
the outputs of a logic unit can be configured to drive any
routing track. An output can drive multiple routing
tracks.

The long tracks in the RaPiD interconnect are segmented
by means of Bus-Connectors (shown as empty boxes in
Fig. 7 and abbreviated BCs), which are essentially bi-
directional delay sites. In the simplified version of RaPiD
that we used in our experiments, each BC can be used to
pick up either 0 or 1 clock cycle delay. Thus, a BC can
be used in transparent (0 clock cycle delay) or registered
(1 clock cycle delay) mode. Another aspect of RaPiD is
that datapath registers can be used to switch tracks. At
the end of the placement phase, all unoccupied datapath

 8

registers are included in the routing graph as unregistered
switch-points. The ability to switch tracks provides an
important degree of flexibility while attempting to route
netlists on RaPiD.

7. PLACEMENT
The two inputs to the placement program are
descriptions of a retimed RaPiD netlist and the target
RaPiD architecture. The RaPiD compiler generates
application netlists in an internal format, and the
architecture is represented as an annotated structural
Verilog file. For the sake of nomenclature, the logical
components that constitute the netlist will be referred to
as “ instances” from this point onwards. The final
placement of the netlist is determined using a Simulated
Annealing [8] algorithm. A good cooling schedule is
essential to obtain high-quality solutions in a reasonable
computation time with simulated annealing. For our
placement program, we used the cooling schedule
developed for the VPR tool-suite [1].

The development of a representative cost-function for the
placement program is an interesting problem. Since the
number of routing tracks in the interconnect fabric of the
RaPiD architecture is fixed, we capture the quality of the
placement by means of a cutsize metric. The cutsize at a
vertical partition of the architecture is defined as the
number of signals that need to be routed across that
partition for a given placement of the netlist. The
max_cutsize is defined as the maximum cutsize that
occurs at any vertical partition of the architecture. The
total_cutsize is defined as:

 j=Y

total_cutsize = Σ (cut_size)j
 j=1

where Y is the total number of logic resources that
constitute the architecture. The avg_cutsize is then
defined as:

avg_cutsize = total_cutsize/Y

Both max_cutsize and avg_cutsize are important
estimates of the routability of a netlist. Since the RaPiD
architecture provides a fixed number of tracks for routing
signals, it is necessary to formulate a placement cost
function that favorably recognizes a move that decreases
max_cutsize. At the same time, it is clear that a simple
cost function that attempts to reduce only max_cutsize
will be inadequate. A cost function that is determined
only by max_cutsize will not be able recognize changes
in avg_cutsize. This means that the annealer will accept
moves that increase avg_cutsize, but do not change
max_cutsize. Such zero-cost moves may cumulatively
increase the overall congestion in the datapath
considerably, thus making it harder for the annealer to
find the sequence of moves that will reduce max_cutsize.
It can thus be concluded that avg-cutsize should also
contribute to the cost of a placement. Reducing

avg_cutsize not only reduces overall congestion in the
datapath, but also lowers the total wire-length. The cost
function is therefore formulated as follows:
 cost = w*max_cutsize + (1-w)*avg_cutsize
where 0≤w≤1. The value of w was empirically
determined to be 0.3. A detailed discussion of how the
value of w was determined can be found in [9].

The development of the placement approach so far has
focused only on the reduction of track count and
wirelength, and this approach works well in conjunction
with a pipelining-unaware router that attempts only
connectivity routing [9]. As a next step, we need to
include pipelining information in our placement cost
function so that the router can find pipelined routes in an
effective manner. Recall from Section 1 that a retimed
RaPiD netlist explicitly enumerates all pipelining
registers. At the same time, the architecture file contains
information about the location and connectivity of every
delay site (BCs) in the architecture. Since we have prior
knowledge of the location and track connectivity of the
BCs that are provided by the architecture, we simply
map each pipelining register in the netlist to a unique
physical BC in the architecture. The placement
program’ s move function is modified to include
pipelining registers during simulated annealing. Our
high-level objective in mapping pipelining registers to
BCs is to place netlist instances such that the router is
able to find sufficient delay resources while routing
pipelined signals.

The calculation of cutsize contributions due to pipelining
registers is markedly different from the calculation of
cutsize contributions due to other types of netlist
instances. This is because of an important difference
between the connectivity of BCs and the connectivity of
datapath logic resources. Both terminals of a BC directly
connect to adjacent segments of the same routing track
(Fig. 7), whereas the input and output terminals of all
datapath logic resources can connect to any routing track.
Thus, if two instances are mapped to ALU positions X1
and X2 in the architecture, the cutsize contribution due to
a two-terminal signal that connects the two instances is
simply |X1-X2|. However, the same reasoning cannot be
directly extended to pipelining registers that are mapped
to BCs. For example, consider a two-terminal signal sig
that connects pipelining registers mapped to D1 and D2
in Fig. 8. Since D1 and D2 are on separate tracks, the
router would have to switch tracks to route sig. If the
nearest available switch-point in the datapath is at
position Xsw (Xsw > X2), then the cutsize contribution
due to sig is (Xsw – X1) + (Xsw-X2), and not merely
(X2-X1). Thus, the cutsize contributions due to signals
that connect to pipelining registers are very sensitive to
the placement of the pipelining registers, especially if the
pipelining registers are mapped to BCs on different
tracks. The cutsize contributions due to pipelining

 9

registers are estimated and included in our annealer’ s
cost function.

D1

D2

SW

X1

X2

XSW

Fig. 8: Calculating the cost of a two-terminal signal
that connects D1 and D2. To route this signal, the
router would have to switch tracks in the datapath.
The cutsize contribution due to thus signal is (Xsw-X1)
+ (Xsw-X2)

8. TESTING SETUP
The individual placement and routing algorithms that we
implemented are as follows:
• SimplePlace – This placement algorithm is

pipelining unaware i.e. it attempts to reduce track
count and wirelength without taking pipelining into
account [9].

• PipePlace – This placement algorithm is derived
from SimplePlace and is pipelining aware. It
attempts to place netlist instances such that the
router is able to find enough delay resources while
routing pipelined signals.

• Pathfinder – This routing algorithm is pipelining
unaware i.e. it attempts only connectivity routing
without considering pipelining information [7].

• PipeRoute – This is the pipelining aware routing
algorithm that we presented in Sections 3, 4 and 5.

We measure the quality of combined place-and-route
approaches in terms of:
• The size of the architecture needed to route a netlist.

The size of an architecture is measured in terms of
number of RaPiD cells (Fig. 7).

• The minimum number of routing tracks that we need
to route a netlist on a given architecture.

The pipelining-unaware place and route algorithms are
included to give us a lower-bound on the size of the
architecture and the minimum number of routing tracks
needed to place and route retimed netlists.

Test architectures are generated using software provided
by Northwestern University graduate student Katherine
Compton. This software is capable of generating RaPiD
architectures that have a user-specified number of RaPiD
cells. Further, it is possible to specify the number of
short tracks per cell, long tracks per cell, and bus-
connectors per long track per cell. In all test

architectures, approximately 2/7th of the tracks are short
tracks, and 5/7th of the tracks are long tracks. Each short
track consists of 4 segments per cell, and each long track
has 3 BCs per cell.

We use retimed benchmark netlists generated by the
RaPiD compiler. The benchmark set consists of three
different FIR filter implementations, two
implementations of sorting, a 16-point FFT, a matrix
multiplier, two different digital camera filters, and a
netlist that calculates logarithms using a series
expansion. The composition of each benchmark netlist is
shown in Table 1. Columns 2 – 6 show the number of
16-bit ALUs, 16x16 multipliers, 256x16 SRAMs, 16-bit
data registers, and 16-bit pipelining registers
respectively. Column 7 shows the percentage of signals
in the netlist that are pipelined.

Netlist
16-bit
ALUs

16x16
Mults

256x16
SRAMs

Data
Regs

Pipe
Regs

%
Pipelined

fft16_2nd 24 12 12 29 29 7%
img_filt 47 17 13 85 29 8%

mux_corr 3 6 6 16 6 13%
cascade 8 8 8 24 29 21%
matmult 8 4 12 10 22 23%
firTM 31 16 32 90 149 23%

firsymeven 31 16 0 47 184 36%
sortG 29 0 16 60 175 47%
log8 56 48 0 66 635 47%

sort2DRB 22 0 8 46 128 60%
med_filt 45 1 4 39 241 84%

Table 1: Benchmark composition

9. RESULTS
We present the results of our experiments in this section.
We acquired data by running the entire set of
benchmarks through two place-and-route approaches.
The first approach uses SimplePlace to place the netlist,
and then uses Pathfinder to do connectivity routing. This
approach treats the benchmarks as if they were
unpipelined, and is used as a lower bound. The second
approach places netlists using PipePlace, and uses
PipeRoute to do pipelined routing. For both approaches,
we recorded the size of the smallest RaPiD architecture
on which each netlist successfully routed, and the
minimum number of routing tracks that were required to
route the netlist. We then defined the following result
metrics:
• NSIM – The minimum number of RaPiD cells

required to route a netlist using pipelining-unaware
placement and routing algorithms (SimplePlace and
Pathfinder respectively).

• NPIPE – The minimum number of RaPiD cells
required to route a netlist using pipelining-aware
placement and routing algorithms (PipePlace and
PipeRoute).

• TSIM – The minimum number of routing tracks
required to route a netlist on an architecture of size
NSIM using a pipelining-unaware router (Pathfinder).

 10

• TPIPE – The minimum number of routing tracks
required to route a netlist on an architecture of size
NPIPE using a pipelining-aware router (PipeRoute).

• AXP – The ratio of NPIPE to NSIM.
• TXP – The ratio of TPIPE to TSIM.
• PIPE-COST – The multiplication of AXP and TXP.

This is a quantitative measure of the overhead we
incur in trying to place and route retimed netlists on
RaPiD architectures.

Table 1 shows the results we obtained. The netlists that
constitute the benchmark set are in column 1. Column 2
contains the NSIM value for each netlist. Note that for
each netlist in the benchmark set, NSIM was found to be
equal to the minimum number of RaPiD cells required to
implement the logic of the netlist irrespective of routing
requirements. The table is sorted in non-decreasing order
of NSIM. Column 3 shows the percentage of signals in
each netlist that are pipelined. This percentage is a
measure of the pipelining difficulty of a netlist. Column
4 shows the value of AXP for each netlist, while column 5
shows the value of TXP. The PIPE-COST for each netlist
is presented in column 6.

From Table 2, we see that the mean architecture
expansion overhead due to pipelined routing is 20%,
while the mean track expansion overhead is 45%.
Overall, the cost of routing retimed netlists is slightly
less than double that of routing the same netlists without
taking pipelining into account. Fig. 9 is a scatter diagram
that plots the PIPE-COST of each netlist in the
benchmark set vs. the minimum number of RaPiD cells
that were required to fit that netlist. There is evidently no
correlation between the size of a netlist and its PIPE-
COST. However, a potential trend can be observed in
Fig. 10, which plots the PIPE-COST of each netlist vs.
the percentage of signals that are pipelined in that netlist.
It can be seen that an increase in the percentage of
pipelined signals in a netlist tends to result in an increase
in the PIPE-COST of that netlist. This is a promising
trend, since it gives us the ability to make a rough
estimate of the PIPE-COST of a netlist based on the
fraction of pipelined signals in that netlist.

Netlist NSIM
%

Pipelined AXP TXP
PIPE-
COST

matmult 4 23% 1 1.5 1.5
mux_corr 6 13% 1 1.2 1.2
cascade 8 21% 1 1 1

sort2DRB 8 60% 1.75 1.33 2.33
fft16_2nd 12 7% 1 1.3 1.3

sortG 12 47% 1.67 1.67 2.77
firTM 16 23% 1.25 1.8 2.25

firsymeven 16 36% 1 1.6 1.6
med_filt 16 84% 1.63 1.44 2.35
img_filt 18 8% 1 1.4 1.4

log8 48 47% 1.25 2 2.5
Geometric

Mean 1.2 1.45 1.74
Table 2: Variation in PIPE-COST across benchmark set

PIPE-COST vs SIZE

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

SIZE (num RaPiD cells)

P
IP

E
-C

O
S

T

Fig. 9: Variation in PIPE-COST w.r.t size across the
benchmark set

PIPE-COST vs % PIPELINED SIGNALS

0

0.5

1

1.5

2

2.5

3

0% 10% 20% 30% 40% 50% 60% 70%

% PIPELINED SIGNALS

P
IP

E-
C

O
ST

Fig. 10: Variation in PIPE-COST with % pipelined
signals across the benchmark set

10. CONCLUSIONS & FUTURE WORK
The main focus of the work described in this paper was
the development of an algorithm that routes logically
retimed circuits on pipelined FPGA architectures. We
developed an optimal 1-Delay router, and used it in
formulating an efficient heuristic to route two-terminal
N-Delay pipelined signals. The algorithm for routing
general multi-terminal pipelined signals borrowed from
both the 1-Delay and N-Delay routers. Congestion
resolution while routing pipelined signals was achieved
using Pathfinder. Our results showed that the architecture
overhead (PIPE-COST) of routing logically retimed
netlists on the RaPiD architecture was 1.74, and that
there is some correlation between the PIPE-COST of a
netlist and the percentage of pipelined signals in that
netlist.

An important aspect of this work is that the formulation
of the pipelined routing problem, and the development of

 11

the PipeRoute algorithm, proceeded independently of
specific FPGA architectures. In the quest for providing
programmable, high-throughput architectures, we feel
that the FPGA community is going to push towards
heavily retimed application netlists and pipelined
architectures. When pipelined architectures do become
commonplace, the PipeRoute algorithm would be a good
candidate for routing retimed netlists on such
architectures.

This work has spawned several research vectors that can
be actively explored in the future. An important direction
is the development of more sophisticated placement
algorithms, as a powerful pipelining-aware placement
tool might improve the performance of PipeRoute. A
second direction for future work lies in the development
of pipelined routing algorithms optimized for run-time.
Specifically, the search-space of the multi-terminal
router could be intelligently reduced to obtain quality
solutions in shorter run-times. Finally, PipeRoute could
be used in conjunction with an appropriate pipelining-
aware placement tool for architecture exploration vis-a-
vis numbers and locations of registered switch-points in
FPGA interconnect structures.

11. ACKNOWLEDGMENTS
We would like to thank the RaPiD group at the
University of Washington for giving us access to the
RaPiD compiler. Thanks are also due to Katherine
Compton at Northwestern University for providing us the
architecture generation program. This work was
supported by grants from the National Science
Foundation (NSF). Scott Hauck was supported in part by
an NSF Career Award and an Alfred P. Sloan
Fellowship.

REFERENCES:
[1] V. Betz and J. Rose, ‘‘VPR: A New Packing, Placement

and Routing Tool for FPGA Research,’’ Seventh
International Workshop on Field-Programmable Logic
and Applications, pp 213-222, 1997.

[2] T. Cormen, C Leiserson, R. Rivest, Introduction To
Algorithms, MIT Press, Cambridge, MA: 1990

[3] Darren C. Cronquist, Paul Franklin, Chris Fisher, Miguel
Figueroa, and Carl Ebeling. "Architecture Design of
Reconfigurable Pipelined Datapaths," Twentieth
Anniversary Conference on Advanced Research in VLSI,
pp 23-40, 1999.

[4] Carl Ebeling, Darren C. Cronquist, Paul Franklin. "RaPiD
- Reconfigurable Pipelined Datapath", 6th International
Workshop on Field-Programmable Logic and
Applications, pp 126-135, 1996.

[5] C. Leiserson, F. Rose, and J. Saxe, “ Optimizing
Synchronous Circuitry” , Journal of VLSI and Computer
Systems, pp 41-67, 1983.

[6] C. Leiserson, and J. Saxe, “ Retiming Synchronous
Circuitry” , Algorithmica, 6(1):5-35, 1991.

[7] Larry McMurchie and Carl Ebeling, "PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs", ACM Third International Symposium on Field-
Programmable Gate Arrays, pp 111-117, 1995.

[8] C. Sechen, VLSI Placement and Global Routing Using
Simulated Annealing, Kluwer Academic Publishers,
Boston, MA: 1988.

[9] A. Sharma, “ Development of a Place and Route Tool for
the RaPiD Architecture” , Master’s Project, University of
Washington, December 2001.

[10] Amit Singh, Arindam Mukherjee, Malgorzata Marek-
Sadowska, “ Interconnect Pipelining in a Throughput-
Intensive FPGA Architecture” , ACM/SIGDA Ninth
International Symposium on Field-Programmable Gate
Arrays, pp 153-160, 2001.

[11] Deshanand P. Singh, Stephen D. Brown, “ The Case for
Registered Routing Switches in Field Programmable Gate
Arrays” , ACM/SIGDA Ninth International Symposium on
Field-Programmable Gate Arrays, pp 161-169, 2001.

[12] Deshanand P. Singh, Stephen D. Brown, “ Integrated
Retiming and Placement for Field Programmable Gate
Arrays” , Tenth ACM International Symposium on Field-
Programmable Gate Arrays, pp 67-76, 2002.

[13] William Tsu, Kip Macy, Atul Joshi, Randy Huang,
Norman Walker, Tony Tung, Omid Rowhani, Varghese
George, John Wawrzynek and Andre DeHon, “ HSRA:
High-Speed, Hierarchical Synchronous Reconfigurable
Array” , ACM Seventh International Symposium on Field-
Programmable Gate Arrays,pp , 1999.

APPENDIX A
We can show that the Two-terminal N-Delay Routing
Problem (abbreviated here as 2TND) is NP-Complete via
a reduction from the Traveling-Salesman Problem with
Triangle Inequality (abbreviated here as TSP-TI):

Traveling-Salesman Problem with Triangle
Inequality: Let G=(V,E) be a complete, undirected
graph that has a nonnegative integer cost c(u,v)
associated with each edged (u,v)∈E. We must find a tour
of G with minimum cost. Furthermore, we have the
triangle inequality, that states for all vertices u,v,w∈V,
c(u,w) ��F�X�Y����F�Y�Z��
We consider only problems where |V|>2, since all other
cases are trivially solvable. To simplify things, we will
convert the original problem to one with strictly positive
costs by adding one to each edge cost. Since all
solutions to the original problem go through exactly |V|
edges, with a solution cost of N, all solutions to the new
problem will also have |V| edges, a cost of N+|V|, and
correspond exactly to a solution in the original problem.
Thus, this transformation is allowable. Note that the
triangle inequality holds in this form as well.

As stated in [2], TSP-TI is NP-Complete. We can reduce
TSP-TI to 2TND by transforming all TSP-TI nodes to D-
nodes, and converting the edge-weights of TSP-TI to R-
nodes. Specifically, let GTSP=(VTSP,ETSP) be the input

 12

graph to TSP-TI, and G2TND=(V2TND,E2TND) be the
corresponding graph we construct to solve TSP-TI with
2TND. Let SourceTSP be an arbitrary node in VTSP. For
each node MTSP∈VTSP, create a corresponding node
M2TND in V2TND, with cost 0. This node is an R-node if
MTSP=SourceTSP, and a D-node otherwise. For each edge
(u,v) ∈ ETSP, let x and y be the nodes in V2TND that
correspond to u and v respectively. Create a new R-node
z in V2TND with cost c(u,v). Also, create edges (x,z) and
(z,y) in E2TND. Solve 2TND with N=|VTSP|-1, and S & K
= Source2TND, the node corresponding to SourceTSP.

A

B C

32

4

A

B C

32

4

RA

32

4

R1

R3

R2

0

DB DC 00

RA

32

4

R1

R3

R2

0

DB DC 00

Figure A-1: Example TSP-TI (left) with edge weights,
and the corresponding 2TND (right), with node weights.
TSP-TI node A is chosen as the source & sink, and N=2.

We must now show that the solution to the 2TND
problem gives us a solution to the TSP-TI problem. One
concern is that the 2TND solution may visit some nodes
multiple times, either from 0-cost nodes or because
wandering paths can be as short as more direct paths.
For 2TND problems on the graphs created from TSP-TI
problems, we will define simplified 2TND solutions.
Specifically, walk the 2TND solution path from source to
sink. The first time a given D-node is encountered on
this walk will be called the primary occurrence of that
node, and all additional encounters will be called repeat
occurrences. The occurrences of the source and sink
node (which are identical), will be considered primary,
and all others repeat. We now eliminate all repeat
occurrences to create a simplified 2TND. Specifically,
let R2TND be any repeat node on the path, and Pre2TND and
Post2TND be the first D-node or source node occurrence
on the path before and after R2TND respectively. RTSP,
PreTSP, and PostTSP are the nodes in VTSP that correspond
to R2TND, Pre2TND, and Post2TND. The cost of the path
segment from Pre2TND to Post2TND is equal to the cost of
the two R-nodes on this path (since the type-D and
source nodes have a cost of 0), which is equal to
c(PreTSP,RTSP)+c(RTSP,PostTSP). By the triangle
inequality, this is no smaller than c(PreTSP, PostTSP).
Thus, without increasing the cost of the path, or reducing
the number of different D-nodes visited, we can replace
the portion of the path from Pre2TND to Post2TND with the
path Pre2TND->Rn2TND->Post2TND, where Rn2TND is the
node in E2TND corresponding to (PreTSP,PostTSP). By
recursively applying this process, we will get a
simplified 2TND solution where each D-node appears at
most once. Since N=|VTSP|-1 is equal to the number of

D-nodes in V2TND, this means that the path visited each
D-node exactly once. It also only visits the source node
SourceTSP at the beginning and end of the path. Finally,
the cost of the path is no greater than the cost of the
original 2TND solution.

The simplified 2TND solutions turn out to be solutions
for TSP-TI, with the same cost. We can show this by
showing that the D-nodes traversed in the 2TND, plus
the Source2TND node, are a tour in TSP-TI. A tour is a
simple cycle visiting all nodes in a graph exactly once.
In our simplified 2TND solution all D-nodes are visited
exactly once. By converting the path starting and ending
at Source2TND into a cycle by fusing together the ends,
you also visit Source2TND exactly once. The cost of the
simplified 2TND solution is equal to the cost of the R-
nodes traversed, which is equal to the cost of the edges
between the consecutive vertices in the tour of TSP-TI.

It also turns out that every solution to TSP-TI has an
equivalent simplified 2TND solution with the same cost.
Specifically, the tour in TSP-TI can be split at the
SourceTSP node, thus forming a path. The nodes in TSP-
TI corresponding to the edges and vertices in the TSP-TI
solution constitute a path going through at least |VTSP|-
1=the number of D-nodes in V2TND, and thus fulfill most
of the requirements of 2TND. The only issue to worry
about is the restriction in TSP-TI that you cannot enter
and exit a D-node on the same edge. However, if |VTSP|
> 2, then the vertices surrounding a vertex in the TSP-TI
path cannot be the same. Thus, TSP-TI never uses the
same edge to enter and leave a node, so the equivalent
2TND solution will never violate the entry/exit rule of
2TND. Again, the cost of the TSP-TI and 2TND
solutions are the same, since the edge weights of TSP-TI
are identical to the node weights encountered in the
2TND solution.

As we have shown, all solutions of TSP-TI have a
corresponding, equal cost solution in 2TND, and all
simplified 2TND solutions have corresponding, equal
cost solution in TSP-TI. It is also easy to see that there is
a polynomial-time method for transforming TSP-TI into
2TND, then map the results of 2TND to a simplified
2TND result, and finally convert this into a solution to
TSP-TI. Thus, since TSP-TI is NP-Complete, 2TND is
NP-hard.

It is also clear that we can check in polynomial time
whether N distinct D-nodes are visited, that the solution
is a path starting and ending at S and K respectively, and
whether we ever enter and leave a D-node on the same
edge. We can also check whether the path length is
minimum via binary search on a version requiring path
lengths <= L. Thus, 2TND is in NP. Since it is also NP-
Hard, 2TND is therefore NP-Complete.

 13

APPENDIX B
We assume that the FPGA architecture is represented as
a simple, undirected graph that consists of R-nodes and
D-nodes. The cost of each node in the graph is greater
than or equal to one. An edge between two nodes in the
graph merely represents a physical connection between
the two nodes. Thus, all edges in the graph are
unweighted.

The problem of finding an optimal 1-Delay path between
two nodes in the graph is stated as:

Two-terminal 1-Delay Problem: Let G=(V,E) be a
simple, undirected graph, with the cost of each node v in
the graph being wv >= 1. The graph consists of two types
of nodes; D-nodes and R-nodes. Let S,K∈V be two R-
nodes. Find a path PG(S,K) that connects nodes S and K,
and contains at least one distinct D-node such that
w(PG(S,K)) is minimum, where

w(PG(S,K)) = Σ wv
 v∈V(PG(S,K))
Further, impose the restriction that the path cannot use
the same edge to both enter and exit any D-node.

In Section 3, we proposed the 2Combined-Phased-BFS
algorithm as an optimal solution to the two-terminal 1-
Delay problem. Before explaining the proof for
2Combined-Phased-BFS, we briefly summarize the
algorithm. Fig. B-1 shows pseudo-code for 2Combined-
Phased-BFS. At the start of the algorithm, a phase 0
exploration is commenced at the source by initializing
the priority queue PQ to S at phase 0. The phase 0
wavefront is expanded in a manner similar to that of
Dijkstra’ s algorithm. Each time a node lnode is removed
from PQ, its phase is recorded in the variable phase. The
cost of the path from S to lnode is stored in path_cost.
The variable node_type indicates whether lnode is an R-
node or D-node. The fields lnode.num_ex0 and
lnode.num_ex1 record the number of times lnode has
been explored at phase 0 and 1 respectively, and are both
initialized to 0. A node is marked finally_explored at a
given phase when it is no longer possible to expand a
wavefront through that node at the given phase. For each
lnode that is removed from PQ, the following
possibilities exist:
• phase == 0 and node_type is R-node: R-nodes can

be explored at phase 0 only once, and thus lnode is
marked finally_explored if x0 == 1. The sub-routine
AddNeighbors(PQ,lnode,path_cost,p) is used to add
the neighbors of lnode to PQ at phase p, where p ==
0 in this case.

• phase == 0 and node-type is D-node: D-nodes can
be explored at phase 0 twice, and thus lnode is
marked finally_explored if x0 == 2. A phase 1
exploration is begun at this D-node by adding its
neighbors to PQ at phase 1.

• phase == 1: Since both R-nodes and D-nodes can be
explored twice at phase 1, lnode is marked
finally_explored at phase 1 if x1 == 2. If we are not
done (i.e. lnode is not K) the neighbors of lnode are
added to PQ at phase 1.

2Combined-Phased-BFS(S,K){

Init PQ to S at phase 0;
LOOP{
 Remove lowest cost node lnode from PQ;
 if(lnode == 0){
 1 Delay path between S and K does not exist;
 return 0;

}
 path_cost = cost of path from S to lnode;
 phase = phase of lnode;
 node_type = type of lnode;
 if(phase == 0)
 lnode.num_ex0++;
 x0 = lnode.num_ex0;

}
else{

 lnode.num_ex1++;
 x1 = lnode.num_ex1;

}
 if(phase == 0){
 if(node_type == R-node){
 if(x0 == 1)
 Mark lnode finally_explored at phase 0;
 AddNeighbors(PQ,lnode,path_cost,0);

}
else{

 if(x0 == 2)
 Mark lnode finally_explored at phase 0;
 AddNeighbors(PQ,lnode,path_cost,1);

}
 }
 else{
 if(lnode == K)
 return backtraced 1-Delay path from S to K;
 else{
 if(x1 == 2)
 Mark lnode finally_explored at phase 1;
 AddNeighbors(PQ,lnode,path_cost,1);

}
}

 }
}

AddNeighbors(PQ,lnode,path_cost,p){
 Loop over each neighbor neb_node of lnode{
 neb_cost = cost of neb_node;
 neb_path_cost = neb_cost + path_cost;
 Add neb_node to PQ with phase p at cost neb_path_cost;

}
}

Fig. B-1: Pseudo-code for 2Combined-Phased-BFS

We now prove that 2Combined-Phased-BFS is in fact
optimal. We present a proof by contradiction in which
we show that 2Combined-Phased-BFS will always find
an optimal 1-Delay path between S and K, if one exists.
Before we begin the proof, there is some terminology we
will introduce to simplify things. The algorithm
presented in this paper explores multiple paths through
the graph via a modification to Dijkstra's algorithm. We
state that our algorithm explored a path "P" up to a node
"N" if the modified Dijkstra's search, in either phase 0 or

 14

phase 1, reaches node "N" and the search route to this
node is identical to the portion of the path P from the
source to node N. Path A is "more explored" than path B
if the cost of the identical path on A from source to A’s
last explored point is greater than the cost of the identical
path on B from source to B’s last explored point.

For purposes of this proof we will define the "goodness"
of a path in the following way:
1. If the cost of one path is lower than another’ s, it is

"better" than the other. Thus, an optimal path is
always better than a non-optimal path.

2. If the costs of two paths C and D are the same, then
C is "better" than D if C is more explored than D.

From these definitions, the "best" path is an optimal path.
If there is more than one optimal path, the best path is the
most explored optimal path.

Initial Assumption: Assume that Fig. B-2 shows the
most explored optimal 1-Delay path between S and K. In
other words, the path shown in the figure is the best 1-
Delay path between S and K, with delay picked up at D-
node DL. Note that there are no D-nodes on the path S-
DL, although there could be multiple D-nodes on DL-K.
This is because we assume that in case the best 1-Delay
path between S and K goes through multiple D-nodes,
then the D-node nearest S is used to pick up delay.

S DL K

Fig. B-2: The initial assumption is that the most
explored lowest cost 1-Delay route between S and K
goes through D-node DL

Although it appears that the paths S-DL and DL-K in Fig.
B-2 are non-intersecting, note that the R-nodes on the
path S-DL can in fact be reused in the path DL-K. In all
the diagrams of this section, we use the convention of
showing paths without overlaps (Fig. B-3), even though
they may actually overlap (Fig. B-4). Our proof does not
rely on the extent of intersection between hypothetical
paths (which are always shown in gray) and the known
best 1-Delay path.

S DL KR

Fig. B-3: Representation of a path from S to node R
shown in gray

S DL K
R

Fig. B-4: The path from S to R could actually intersect
with the paths S-DL and DL-K

There are three distinct cases in which 2Combined-
Phased-BFS could fail to find the best path S-DL-K
shown in Fig. B-2:
• CASE 1: An R-node on the path S-DL gets explored

at phase 0 along a path other than S-DL.
• CASE 2: The D-node DL gets explored at phase 0

along two paths other than S-DL.
• CASE 3: A node on the path DL-K gets explored at

phase 1 along two paths other than DL-K.

We now show that none of the above-mentioned cases
can occur, thus guaranteeing the optimality of
2Combined-Phased-BFS. Each case is dealt with
separately.

CASE 1: An R-node on the path S-DL gets explored at
phase 0 along a path other than S-DL.

The cost of the gray path S-G-R (Fig. B-5) is less than or
equal to the cost of path S-R. In this case, the path S-G-
R-DL-K would be better than the known best path, which
is a contradiction of our initial assumption. Thus, we
have proved that CASE 1 can never occur.

S DL KR

G
Fig. B-5: The case in which an R-node on the path S-
DL gets explored at phase 0 along some other path

CASE 2: D-node DL gets explored at phase 0 along
two paths other than S-DL.

In Section 3 we demonstrated that if we allow a D-node
to be visited only once at phase 0, Combined-Phased-
BFS fails on the graph topology shown in Fig. 4. The
reason for the failure can be seen in Fig. B-6. Assume
that the cost of the path S-G-R-DL shown in gray is less
than the cost of path S-DL along the known best path S-
DL-K. In this case, D-node DL gets explored at phase 0
via the R-node that is used to exit DL at phase 1 in the
best path S-DL-K. If we allow D-nodes to be explored at
phase 0 only once, then the known best path S-DL-K will
not be found.

S DL KR

G
Fig. B-6: The cost of path S-G-R-DL is less than the
cost of path S-DL along the known best path S-DL-K

While DL can get explored at phase 0 by one path other
than S-DL, we will now show that it is not possible to
explore DL at phase 0 along two paths other than S-DL.

 15

The node DL could get explored at phase 0 twice in the
following possible ways:
• Fig. B-7: The cost of each of the paths S-G1-DL and

S-G2-R2-DL is less than or equal to the cost of path
S-DL. In this case, the path S-G1-DL-R2-K would be
better than the known best path S-DL-K, thus
contradicting our initial assumption.

S DL K
R2

G1

G2
Fig. B-7: DL gets explored at phase 0 along paths S-G1-
DL and S-G2-R2-DL

• Fig. B-8: The cost of each of the paths S-G1-DL and

S-G2-DL is less than or equal to the cost of path S-
DL. If D-node DL gets explored at phase 0 along
these two paths, both S-G1-DL-K and S-G2-DL-K
would be better than the known best path S-DL-K,
which contradicts our initial assumption.

S DL K

G2

G1

Fig. B-8: The cost of each of the paths S-G1-DL and S-
G2-DL is less than or equal to the cost of path S-DL

Finally, note that DL can never get explored at phase 0
along both gray paths shown in Fig. B-9, regardless of
the cost of these paths. This is because R-nodes can be
explored only once at phase 0, which means that DL can
get explored at phase 0 by only one of the paths S-G1-
R1-DL or S-G2-R2-DL. Therefore, it is not possible to
explore DL at phase 0 two times via the node that is used
to exit DL along the best path S-DL-K.

S DL K
R2

R1

G2

G1

Fig. B-9: DL cannot get explored at phase 0 along both
S-G1-R1-DL and S-G2-R2-DL.

We have thus proved that it is not possible to explore DL
at phase 0 along two paths other than S-DL. Thus, CASE
2 can never occur.

CASE 3: A node on the path DL-K gets explored at
phase 1 along two paths other than DL-K.

We will first enumerate the different cases in which a
node X on the path DL-K can possibly get explored at
phase 1 along a path other than the known best path,
before the known best path reaches that node:
• Fig. B-10: The D-node at which the path picks up

delay does not lie on the known best path S-DL-K.
The figure shows the different 1-Delay paths on
which node X can possibly get explored at phase 1:

o Node X gets explored at phase 1 along the
path S-D-G1-R1-DL-X. This means that the
path S-D-G1-R1-DL-X-K is better than the
known best path, thus contradicting our
initial assumption.

o Node X gets explored at phase 1 along the
path S-D-G2-DL-X. This means that the
path S-D-G2-DL-X-K is better than the
known best path, which contradicts the
initial assumption.

o Node X gets explored at phase 1 along the
path S-D-G3-X. This means that the path S-
D-G3-X-K is better than the known best
path, which is a contradiction of our initial
assumption.

S DL K
R1

D

X

G1
G2

G3

Fig. B-10: Node X could get explored at phase 1 along
any of the three paths shown in gray. D-node D does
not lie on the known best path S-DL-K.

• Fig. B-11: The D-node at which the path picks up

delay lies on the phase 0 segment of the known best
path. The cost of path S-G1-D-DL-X is less than or
equal to the cost of the path to X along the known
best path. In this case, the path S-G1-D-DL-X-K
would be better than the known best path, thus
contradicting our initial assumption.

S DL K

G1

XD

Fig. B-11: Node X gets explored at phase 1 along the
path S-G1-D-DL-X.

• Fig. B-12: The cost of path S-G1-DL-X is less than

or equal to the cost of the path to X along the known
best path. This means that the path S-G1-DL-X-K is
better than the known best path, which is a
contradiction of our initial assumption.

 16

S DL K

G1
X

Fig. B-12: Node X gets explored at phase 1 along
the path S-G1-DL-X.

• Fig. B-13: The D-node at which the path picks up

delay lies on the phase 1 segment of the known best
path. Node X is closer to the sink K than D-node D.
There are two possibilities here:

o The cost of path S-G1-R1-D-X is less than
or equal to the cost of the path to X along
the known best path. In this case, the path
S-G1-R1-D-X-K would be better than the
known best path, which is a contradiction
of our initial assumption.

o The cost of path S-G2-D-X is less than or
equal to the cost of the path to X along the
known best path. This means that the path
S-G2-D-X-K is better than the known best
path, which contradicts our initial
assumption.

S DL K

G1

XD

G2

R1

Fig. B-13: Node X can get explored at phase 1
along either S-G2-D-X or S-G1-R1-D-X.

• Fig. B-14: The D-node at which the path picks up

delay lies on the phase 1 segment of the known best
path. D-node is closer to sink K than node X. Again,
there are two possibilities here:

o The cost of path S-G2-D-X is less than or
equal to the cost of the path to X along the
known best path. In this case, the path S-
G2-D-K would be better than the known
best path, thus contradicting our initial
assumption.

o The cost of the path S-G1-R1-D-X is less
than or equal to the cost of the path to X
along the known best path. In this case,
node X gets explored at phase 1 along the
path S-G1-R1-D-X. Note that this is the
only case in which a node on the phase 1
segment of the known best path can get
explored at phase 1 along a path other than
the known best path. If we were to allow
the nodes in our graph to be explored at
most once at phase 1, this case represents a
true failure case.

S DL K

G1

X
D

G2
R1

Fig. B-14: Node X can get explored at phase 1 along
either S-G2-D-X or S-G1-R1-D-X.

Thus, we have proved that the only case in which a node
on the phase 1 segment (path DL-K in Fig. B-2) can get
explored at phase 1 along a path other than the known
best path is the path S-G1-R1-D-X shown in Fig. B-14.
We now prove that it is not possible to have two such
paths:

• Fig. B-15: The cost of each of the paths S-G1-R1-D-

X and S-G2-R2-D’ -R1-D-X is less than or equal to
the cost of the path to X along the known best path.
This means that the cost of the path to node R1 is
less than or equal to the cost of the path to R1 along
the known best path, which in turn implies that the
path S-G1-R1-D’ -R2-K is better than the known
best path. This is a contradiction of our initial
assumption.

S DL K

G1
X D

G2

R1 D’
R2

Fig. B-15: Node X can get explored at phase 1
along either S-G1-R1-D-X or S-G2-R2-D’-R1-D-
X.

Hence, we have proved that a node on the segment DL-K
(Fig. B-2) of the known best path cannot get explored at
phase 1 along two paths other than the known best path
from S to K. Thus, CASE 3 can never occur.

Furthermore, since we have proved that CASE1, CASE2
and CASE3 can never occur, the algorithm 2Combined-
Phased-BFS is optimal.

