
QuickRoute: A Fast Routing Algorithm
for Pipelined Architecturest

Song Lit and Carl Ebeling
Department of Computer Science and Engineering

University of Washington
Seattle, WA, USA

{songli, ebeling) @cs. washington. edu

Abstract
As interconnect delays begin to dominate logic delays

in large circuits, pipelined interconnects will be needed
to achieve the highest performance. In FPGAs, this
pipelining will be provided by the configurable
interconnect architecture itseg This changes the routing
problem substantially since the shortest path problem,
which is at the core of any router, becomes NP-hard
when latency constraints are d e d . That is, if signals
must be routed through a given number of registers
behveen source and destination, an eficient shortest
path algorithm like DjikstraS algorithm is no longer an
option. We propose here an approximate algorithm that
uses simple heuristics to solve the pipelined shortest
path problem ejiciently. We have incorporated
QuickRoute in the PathFinder router to route pipelined
interconnects. We present the results achieved with
QuickRoute for several circuits with heavilv pipelined
interconnect which show an improvement over a
previously described algorithm.

1. Introduction
The pipelined routing problem is becoming

increasingly important for FPGA architechlres. As
FPGAs become larger and the interconnect delay for
long signals constrains performance, there is a need to
support pipelined signals. Pipelined interconnect
architectures have already been proposed for FPGAs to
address this problem [l-41, hut even existing FPGAs
have an excess of registers that can he used for
pipelining long signals. Although it is possible to place
signal pipeline registers during placement and before
routing, it is much more effective to do so during
routing. In this case. the routing algorithm must not
only find a path from source to sink, hut fmd a path that
includes a given number of registers. Unfortunately, this
changes the very easy shortest path problem into an NP-
hard problem [5,6].

A second context for pipeline routing occurs when
mapping algorithms to coarse-grained reconfigurahle
architectures [l , 7, 81. Running an application on a

coarse-grained pipelined FPGA architecture is
comparable to running the application on a VLIW
processor where the application m s as a loop of several
cycles and the hardware is time-multiplexed. Mapping to
one of these architectures requires solving the
scheduling problem while additionally solving the
placement and routing problem. The scheduling problem
can he addressed using an Iterative Modulo Scheduling
algorithm [9, lo], which schedules the operations in a
loop iteration using the resources for a fixed number of
clock cycles called the iteration interval (II). After the
operations have been scheduled in time, they must he
placed and routed onto the architecture to meet the
constraints of the interconnect. This routing problem is a
pipelined routing problem because values must he
forwarded in general across a given number clock
cycles, which means fmdmg paths with a given number
of registers.

These two problems are in fact very similar. The
pipelined FPGA routing problem is actually the IMS
routing problem with II = 1. That is, although a
pipelined FPGA does not time-multiplex the hardware,
values are forwarded from one function unit to another
with potentially several clock cycles of latency. In this
paper, we describe the QuickRoute algorithm for II = 1,
that is. for the FPGA pipelined routing problem, to
simplify the presentation. The algorithm can he extended
to the more general pipelined routing problem. and in
fact, it is more appropriate for routing coarse-grained
configurahle architectures. The case where II = 1
presents the most challenging problem, and thus we have
chosen to validate it for this case.

We have incorporated the QuickRoute shortest-
pipelined path-algorithm into the PathFinder algorithm
[11-13], where it replaces Dijkstra's shortest path
algorithm. PathFinder is a negotiation-based algorithm
widely used for FPGAs that iteratively solves the
congestion problem. The inner-loop of PathFinder relies
on Dijkstra's shortest path algorithm to route individual
source-sink pairs. Fanout is typically handled by routing
to the closest sink first, and then to the remaining sinks
in order, starting from the already established signal

This material is based upon work supported by the National Science Foundation under Grant CCR-0220095.
: Song Li is now with Altera Corporation in San Jose, Ca.

0-7803-8652-3/04/$20.00 0 2004 IEEE 13 ICFPT 2004

routing tree. The A* algorithm [14, 151 is generally used
to direct the search in the direction of the sink: An
estimate of the remaining distance to the sink is used to
choose which node to visit next when extending the
search. Using A* can greatly increase the speed of the
PathFinder search [16].

Since the shortest path algorithm is used in the inner
loop of the router, it must be very fast. It is not crucial,
however, for it to be optimal. That is, the overall quality
of the router results does not degrade greatly if the
algorithm sometimes finds a path that is slightly longer
than the actual shortest path. Thus, the fact that
QuickRoute necessarily cannot guarantee shortest paths
is not fatal as long as the approximate solutions it fmds
are close to optimal.

While QuickRoute can fail in the worst case, we
argue that this does not occur for reasonable
architectures and reasonable routing problems.

2. Related Work
There has been very little research reported on the

shortest pipelmed path problem. Variants of this
problem appear in the literature as special cases of the
traveling salesman problem known sometimes as the
“quota traveling salesman” or the “prize-collecting
traveling salesman’’ problem [6]. The important fact is
that these problems are NP-complete and thus
approximation algorithms must be used for large
problems. The theoretical literature focuses on good
approximation algorithms that run in polynomial time
hut these are not practical for the inner loop of a router
that must deal with very large graphs.

PipeRoute [17, 181 solves the pipelined shortest
path problem using a divide-and-conquer algorithm.
First, an efficient algorithm is described for routing a
signal containing either 0 or 1 registers. The general n-
register pipelined routing problem is then solved
recursively using multiple I-register routes. We compare
QuickRoute to PipeRoute using the same benchmark
circuits.

3. The Shortest Pipelined Path Problem
The shortest pipelined path problem is defmed as

follows: Given a source node and a sink node in a
directed circuit graph and N?O, fmd the shortest path
from source to sink that includes exactly N registers.
This problem, unfortunately, is NP-hard as previously
mentioned, and so we must use approximate algorithms.
We will begin by describing a brute-force algorithm that
is a generalization of Dijkstra‘s shortest-path algorithm.
This algorithm solves the shortest pipelined path
problem, albeit in exponential time. We will then add
heuristic pruning to this algorithm to defme the
QuickRoute algorithm. The result is that QuickRoute is
only approximate: however, we show experimentally
that it works very well in practice for realistic
architectures.

Figure 1 shows Dijkstra’s algorithm. In this
formulation, a path is a sequence of nodes that is
maintained implicitly using backpointers in the graph
data structure. The cost of a path is the sum of the cost
of the nodes in the path. The algorithm works hy
extending the current shortest (cheapest) partial path
until a path reaches the sink. Since this algorithm
explores the shortest paths fust, the first path to reach a
node must be the shortest path to that node. Thus, any
shortest path to the destination through a node can use
the fust shortest path 60m the source to the node as a
prefx. Thus each node needs to be visited at most once,
and this is implemented by marking nodes.

- 1 Unmarkallnodes
2
3
4
5
6
7 else
8
9
10 mark n as visited
11

12 endIf
13 endFor
14 endIf
15 endwhile
16 retumfailed

Initialize the priority queue Q
Insert the path [source] into Q
While Q is not empty do

Remove the shortest path P from Q
if P.end = sink then return P

for every neighbor n of P.end do
if n is not marked then

add new path P’ = F, n] to Q
with cost = P.cost + n.cost

I
Figure 1 - Dijkstra’s algorithm

Of course, Dijkstra’s shortest path algorithm does
not work for the shortest pipelined path problem
because, for N>O, the fEst path to a node may not form
the prefix of any path to the destination node that meets
the latency constraint. And even if it does, there may be
a different shorter path through the node that meets the
latency constraint.

An altemative to Dijkstra’s algorithm is to search all
possible paths, and fmd the shortest one with the given
latency. This brute force algorithm, expressed as an
extension of Dijkslra’s algorithm is shown in Figure 2.
In this algorithm, the latency of a path refers to the
number of registers on the path.

The brute force algorithm is different from
Dijkstra‘s algorithm in one very important respect: it
does not mark nodes when they are included in a path
and therefore does not prune paths. This means that all
paths 6om source to destination are examined in order
of cost. In order to avoid using a node twice on a path.
the algorithm must check when extending a path that the
path does not already include the node. This is a check
that Dijkstra’s algorithm does not need since nodes can
only he visited once. The brute force search guarantees it
will find the shortest path with the required latency.

74

However, the brute force algorithm searches all possible
paths shorter than the shortest path and if there are N
nodes in the graph, then there may he as many as 2N
paths in this search.

The QuickRoute algorithm shown in Figure 3 uses a
simple heuristic to efficiently prune the search. Instead
of searching all possible paths, once k paths to a node n
has been found with latency 1, then all other paths
through n with latency I are pruned. That is, QuickRoute
keeps a count of how many paths have visited a node for
each latency. Only the fnst k paths to visit a node at a
given latency are kept for further expansion - all other
paths are pruned. The resulting search is more expensive
than the simple shortest path algorithm, but only by a
constant factor. The k parameter can he adjusted to make
the search more or less broad hut we have found that
k=l is sufficient in practice to yield good results.

BFSearch (source, sink, N)
1
2
3
4
5
6 retum P
7 else
8
9
I O

11 endIf
12 endFor
13 endlf
14 endmile
15 retum failed

initialize the priority queue Q
insert the path [source] into Q
while Q is not empty do

remove the shortest path I' from Q
ifP.end = sink and P.latency = N then

for every neighbor n of P.end do
if n is not in P then

add new path P' = p, n] to Q with
cost = P.cost + n.cost

Figure 2 - Brute force pipelined search
algorithm

QuickRoute (source, sink, N)
1
2
3
4
5
6
7 retum P
8 else
9
10
11
12

13 increment n.visited[P.latency]
14 endIf
15 endFor
16 endIf
17 endmile
18 return failed

igure 3 - QuickRoute algorithm

for all nodes n, for all i<=N, n.visited[i] = 0.
initialize the priority queue PQ
insert the path [source] into PQ
while PQ is not empty do

remove the shortest path P horn PQ
if P.end = sink and €'.latency == N then

for every neighbor n of €'.end do
if n.visited[P.latency] < k and

n is not in P then
add new path P' = [I', n] to PQ with

cost = P.cost + n.cost

It is possible to constmct architectures and circuit
examples that cause the heuristic to fail to fmd any path
even if there is one. One such example is shown in
Figure 4. In this example, QuickRoute prunes a path to
an intermediate node that is longer than a previous path
to the node with same latency, hut where the shorter path
is not a valid prefur of any path to the destination. This
can happen when paths block themselves, as shown in
this example.

I

Figure 4 - An example where QuickRoute
cannot find a shortest path

In the figure, the number on each edge gives the
order in which QuickRoute algorithm expands the search
branches. Note that branch 7 visits routing resource A
first, and branch 8 cannot expand to this resource,
because its latency is the same as branch 7. However,
further expansion of branch 7 cannot fmd a valid path.
Branch 13 cannot expand to the resource B since it was
already visited by branch 3, which is an ancestor of
branch 13. The path found by QuickRoute is 2-4-6-10-
11-12-14. which is much longer than path 2-4-6-8-9-13-
15. If the architecture does not allow branch 14,
QnickRoute will not he able to fmd any path.

While the fact that QuickRoute is not guaranteed to
find a path may seem fatal, our experiments show that it
does in fact fmd paths for routes that appear in practice.
In this example, the routing architecture is severely
constrained. As our experiments show, the QuickRoute
heuristic performs well even on difficult routing
problems, although for longer latencies, only
approximations to the shortest path may be found.

4. Implementation Details
The shortest path algorithm is used in the inner loop

of any router and so the algorithm's performance is
crucial to the performance of the router. In this section,
we will describe the implementation details that are used
to make QuickRoute as efficient as possible.

There are three operations in the innermost loop of
QuickRoute that are potentially expensive in space or
time:

1) Checking and incrementing a node's "visited
count".

75

2) Checking whether a node n has already been used
as a part of path P.

3) Adding the new path to the priority queue and
removing the path with lowest cost fkom the
queue.

With the visited limit k of 1, each visited count can
be implemented as a single bit, and the vector of visited
counts for each node is a simple bit vector. Since
latencies do not exceed 64 for real problems, only 8
bytes per node are required for the visited counts.
Checking and setting these counts are very fast,
constant-time, bit-vector operations.

Checking if a node is part of a path is done by
assigning each node a unique ID and keeping a vector of
the IDS of the nodes in each path. This vector of IDS is a
bit vector, R where R[ID]=I if node ID is in the path.
The size of the bit vector must be as large as the largest
ID. This bit-vector size is minimized using two
techniques. First, each search reassigns node IDS starting
fkom 0 as nodes are encountered in the search. Thus the
size of the bit vector need only accommodate the
number of nodes encountered in a search, not all the
nodes in the graph. Second only multiplexor nodes are
counted, which reduces the size of the bit vector by
about a factor of 3. This works because in our graph
representation, each branch in the search goes through a
different multiplexor. It is easy to show that if two paths
share a node, then they must also share a multiplexor,
and thus it is sufficient to only keep track of
multiplexors. Even with these optimizations, this bit
vector can become large for large architectures.
However, for the coarse-grained architectures that we
are targeting, the number of nodes is on the order of a
few thousand, which requires on the order of 100 bytes.

The performance of the priority queue is also
critical to the algorithm performance. We implemented
the priority queue as a heap. using buckets for all paths
with the same cost. Thus, the average insertion and
access time the priority queue is IogB, where B is the
number of different path costs for paths in the queue.

To analyze the time complexity of QuickRoute, let
N be the number of resources in the circuit graph. The
algorithm may visit each resource L times. where L is
the latency of the signal being routed. Thus. in the worst
case, QuickRoute will execute the loop at line 4 in
Figure 3 NIL times. Each execution involves a delete
and insertion on the priority queue requiring l o a time
plus checking and setting marks, which takes constant
time. Since the fanout for realistic architectures is
constant, the loop at h e 8 takes constant time. Thus the
time complexity of QuickRoute is O(NLlogB). It is more
instructive to compare the running time of QuickRoute
to that of Dijkstra's algorithm. The main difference is
that QuickRoute visits nodes as many as L times. This
means that QuickRoute takes approximately L' times as
long as Dijkstra's algorithm, where L' is the average
number of times each node is visited.

The space complexity of QuickRoute limits its
scalability more than the time complexity. The history

hit vector grows as the number of nodes visited times the
signal latency. In the general case, the space complexity
is O(N2L). In practice, even with the optimizations we
have described, this limits the size of the circuit the
graph to about 10,000 resources, which is sufficient for
coarse-grained architectures like RaF'iiD. Reducing the
space complexity of QuickRoute is a topic for further
research.

5. Experimental Results and Performance
Analysis

In this section we present three experiments we
conducted on the QuickRoute algorithm. The first
experiment tests the ability of QuckRoute to fmd paths
for very difficult routes with very high latencies. The
second tests how close QuickRoute comes to fmding the
shortest pipelined path. The fmal experiment compares
the results of using PathFinder/QuickRoute to previously
published results for PipeRoute [5] .

The first experiment uses QuickRoute to fmd the
shortest path for all source-destination pairs in an
instance of the Wi architecture [I]. The purpose of
this experiment is to determine whether the QuickRoute
algorithm can find paths with very dificult latency
constraints. The experiments were done using the single-
cell RaPii datapath graph shown in Figure 5 . This
RaPiD cell has two input streams on the left side and
two output streams on the right side. There are 4
functional units, two adders and two multipliers. Each
functional unit has 3 datapath registers directly
connected to its output which can only be used to
pipeline outputs of that unit. There are a total of 81
registers: 39 registers in the bus connectors, 12 registers
associated with function units, 18 registers in datapath
registers, and 12 registers in the datapath memories. In
the RaF'iD architecture, bus connectors are used to
connect segments in the same track and a signal can be
pipelined as it passes from one segment to the next.
However, changing tracks requires going through a
datapath register. Highly pipelined signals must be
routed using all available registers. including all
datapath registers. memory registers and as many bus
connector registers as possible. With the constraints on
the routing architecture. the maximum latency of any
one signal is less than 60.

In this experiment, all source-destination pairs were
routed for latencies kom 0 to 50. The most difficult
routes are those from a function unit output back to its
input with a large latency. Instead of finding the "easy"
short path from output back to the input, the algorithm
must "snake" a route through the entire cell, fmdmg as
many registers as possible, switching tracks via datapath
registers to visit extra bus connectors, before returning
to the same function unit. Readers familiar with
Dijkstra's algorithm will realize that a nafve algorithm
will generate outgoing paths that block any chance for
the path to return.

76

I
i

I
!

Figure 5 - Test RaPiD Architecture

77

In this experiment, QuickRoute was able to fmd paths
for all pairs and all latencies through 42. It was also able
to find many paths for higher latencies as well. Note
that a latency of 42 can be attained only by using all the
originating functional unit output registers, all the
datapath registers, all the memory registers and all the
registers in three bus connectors. Using more than 42
registers requires switching tracks, which means using
datapath registers to both switch tracks and pipelime the
signal. This is a very difficult solution to fmd and yet
QuickRoute is able to fmd it for many long routes.Figure
6 shows the shortest path found by the QuickRoute
algorithm from the ALU output back to an input of the
same ALU with a path latency of 8. The ALU is
highlighted as the black rectangle in the middle of the
graph. The registers and nets of the shortest path are
highlighted in green. The path starts from the output pin
of the ALU, goes through the nearest 8 registers and
feeds in the first input pin of the ALU. It is easy to
determine that this is in fact a shortest path.

Figure 6 - An example of the shortest path
found by the QuickRoute algorithm. Latency is
0.

The subset of the results of these experiments is
shown in Figure 7. The numbers show the cost of the
shortest path from addO to each of the sinks for the
latencies tiom 0 to 49. An entry of -1 shows the cases
where Quicmoute failed to fmd a route. Note that the
most difficult case occurs when a signal is routed from
addO back to addo. Note also that the out0 and out1
sinks are the farthest from addO for 0 latency. But for
larger latencies, it is cheaper to route to these than it is to
route a signal back close to the source. For very large
latencies. all of the routes must snake through most of
the available registers and end up with about the same
cost.

The goal of the second experiment was to
understand how good an approximation to the shortest
pipelimed path QuickRoute is able to fmd. It is not
feasible to write a program to compute the shortest path
for reasonably-sized circuits since the problem is Np-

hard. Instead. we manually determined the shortest path
costs for many different source-destination pairs with
latencies up to 16 registers using our intimate knowledge
of the architecture. Although it may appear to be
difficult to fmd these shortest paths, in most cases it easy
to determine the cost of the shortest path with latency
i+l using the cost of the shortest path with latency i.
QuickRoute found a minimum-cost path for all these
routes.

For paths with longer latencies, manually fmdmg
the shortest path was not feasible and so we used an
altemative approach to determine whether the
QuickRoute algorithm had found the shortest path. In the
QuickRoute algorithm, Figure 7, line 5 , the search can
choose to visit any of the current shortest paths next, and
this can affect the result of the search. In the example of
Figure 4, the 7" search branch that visits a resource
cannot reach the destination resource as the shortest
path. If during the search, the 8" branch reaches the
resource before the 7" branch does, the QuickRoute
algorithm will be able to fmd the shortest path.

We modified QuickRoute to pick the next path
randomly from the head of the priority queue. We then
re-ran the all-pairs experiment above for latencies from
16 to 25, running QuickRoute 256 times for each
source/sink pair, each time with a different random
number seed. We wanted to see if QuickRoute would
always find a shortest path or whether was some
variation due to the random choice. For latencies
between 15 and 22. the QuickRoute algorithm always
found the shortest path. However, for latencies larger
than 22, there was a variation of up to 10% in the cost of
the paths found. That is, spending more effort by
randomly exploring more paths can fmd a shorter path
when latency is greater than 22 by as much as 10%.
These results show that the QuickRoute algorithm is
near optimal for realistic latencies, becomes increasing
approximate for larger latencies and finally fails for very
large latencies that strain the register capacity of the
interconnect.

The third experiment compares PathFinder using
QuickRoute for routing complete circuits to an existing
routing algorithm called PipeRoute [5] which also
targets pipelined interconnect architectures. We used the
same application netlists and architectures used for the
results reported in this earlier paper. We first converted
the circuit netlists into scheduled dataflow graphs. which
our PathFindedQuickRoute tool uses. We also used an
identical placement of the circuit netlists onto identical
versions of the RaPiD architecture. We had to constrain
the PathFinder/QuickRoute tool to not use function
output registers and datapath registers since PipeRoute
could not use them. (PipeRoute has since been modified
to be able to use all registers.) The experiment was run
in the standard way to determine the m i n i u m number
of tracks needed to completely route the circuit. The
router was repeatedly used to route a circuit to the
architecture with different numbers of tracks until a
successful route was achieved.

78

Applications
cascade
firsymeven
firtm
mat-mult4
sortG
sort-2D-RB
med-filt

19

Time(sec)
12.1
26.4
18.2
16.2
14.1
18.2
65.6

p ipehed routing problem, especially where II # 1, is
very tricky. The role of multiplexors in the
reconfigurable datapath also needs to be addressed.
Multiplexors used for predicated execution can either be
placed by the placement tools or by the router.
Currently we use the placement tools for placing
multiplexors, but preliminaq results show that the
routing algorithm can generate better placements.

Second, we are using QnickRoute as a part of a
larger set of tools for scheduling, placement and routing
of large dataflow graphs to coarse-grained configurable
architectures. The goal of this work is to produce a
compilation system that is architecture-independent
within a fairly general model of coarse-grained
configurable architectures. QuickRoute will be a crucial
part of this system.

Acknowledgments

We would l i e to express our appreciation to Chris
Fisher, who provided the visualization code, Akshay
Sharma who generously helped us set up the
experiments for the PipeRoute comparisons, and Scott
Hauck for many helpful comments and suggestions.

References
[I] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin. and C.

Ebeling. "Architecture design of reconfgurahle pipelined
datapaths," The Conference on Advanced Research in
VLSI, Atlanta. 1999.

121 A. S i . A. Mnkheriee. and M. Marek-Sadowska.
L 1 I

'"Interconnect pipelining in a throughput-intensive FPGA
architecture," Proceedings of the 2001 ACWSIGDA ninth
intemational symposium on Field programmable gate
arrays, 2001.

[3] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker. T. Tung,
0. Rowhani, V. George, J. Wawzynek, and A. DeHon.
"HSRA: tu&-speed, hierarchical synchronous
recontigurable array," Proceedings of the 1999
ACWSIGDA seventh intemational symposium on Field
programmable gate arrays. 1999.

[4] S. C. Goldstein. H. Schmit. M. Moe. M. Budiu. S.
Cadambi, R. R. Taylor. and R Lanfer. "PipeRench a
Coprocessor for Streaming Multimedia Acceleration." 26th
International Symposium on Computer Architecture
(ISCA99), 1999.

[5] A. Sharma, C. Ebeling, and S. Hauck. "PipeRoute: A
PipeliningAware Router for FPGAs." University of
Washington, EE Department Technical Report UWEETR-
0018,2002.

[6] B. Awerbuch. Y. A m , A. Blum. and S. Vempala,
"Improved approximation guarantees for minimum-weight
k-trees and prize-collecting salesmen: Proceedings of the
twenty-seventh annual ACM symposium on Theory of
computing. Las Vegas, Nevada, United States, 1995.

[7] S. C. Goldstem. H. Schmit, M. Budiu, S. Cadambi, M.
Moe. and R. Taylor. "PipeRench: A Reconfgurahle
Architecture and Compiler," IEEE Computer, vol. 33,
2000.

[8] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi. N.
Bagherzadeh. and E. M. Chaves Filho. "MorphoSys: an
integrated reconfgurahle system for data-parallel and

computation-intensive applications," Computers, EEE
Transactions on, vol. 49, pp. 465-481,2000.

[9] B. R. Rau "Iterative modulo scheduling: an algorithm for
software pipelining loops," Proceedings of the 27th annual
international symposium on Microarchitecture, 1994.

[IOIB. Ran. "Iterative Modulo Scheduling," HP Labs Technical
Report HPL-94-115.1994.

[I 11L. McMurchie and C. Ebeling. "PathFinder: A negotiation-
based performancedriven router for FPGAs," Proceedings
of the third international ACM symposium on Field-
programmable gate arrays, 1995.

[12]C. Ebeling. L. McMurchie. S. A. Hauck, and S. Bums,
"Placement and routing tools for the Triptych FPGA,"
EEE Transactions on Very Large Scale Integration (VLSI)
Systems. vol. 3, pp. 473-482. 1995.

[13]V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs: Kluwer Academic
Publishers. 1999.

[14]N. J. Nilsson, Principles of artificial intelligence: Morgan
Kaufmann Publishers Inc., 1980.

[15]R Dechter and I. Pearl. "Generalized hest-first search
strategies and the optimality af A*_" J. ACM, vol. 32, pp.
505-536, 1985.

[16]J. S. Swartz V. Bet& and J. Rose. "A fast routability-
driven router for FPGAs," 1998 ACWSIGDA sixth
international symposium on Field programmable gate
arrays, Monterey, California, United States, 1998.

[17]A. Sharma, C. Ebeling, and S. Hauck, "PipeRoute: A
pipelioing-aware router for FPGAs," ACWSIGDA
Eleventh International Symposium on Field Programmable
Gate Arrays (FPGA03), 2003.

[18]A. Sharma. K. Compton. C. Ebeling, and S. Hauck,
"Exploration of Pipelined FPGA Interconnect Structures:
Twefrh International Symposium on Field-Programmable
Gate Arrays. Monterey, CA, 2004.

80

