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Abstract 
As interconnect delays begin to dominate logic delays 

in large circuits, pipelined interconnects will be needed 
to achieve the highest performance. In FPGAs, this 
pipelining will be provided by the configurable 
interconnect architecture itseg This changes the routing 
problem substantially since the shortest path problem, 
which is at the core of any router, becomes NP-hard 
when latency constraints are d e d .  That is, if signals 
must be routed through a given number of registers 
behveen source and destination, an eficient shortest 
path algorithm like DjikstraS algorithm is no longer an 
option. We propose here an approximate algorithm that 
uses simple heuristics to solve the pipelined shortest 
path problem ejiciently. We have incorporated 
QuickRoute in the PathFinder router to route pipelined 
interconnects. We present the results achieved with 
QuickRoute for several circuits with heavilv pipelined 
interconnect which show an improvement over a 
previously described algorithm. 

1. Introduction 
The pipelined routing problem is becoming 

increasingly important for FPGA architechlres. As 
FPGAs become larger and the interconnect delay for 
long signals constrains performance, there is a need to 
support pipelined signals. Pipelined interconnect 
architectures have already been proposed for FPGAs to 
address this problem [l-41, hut even existing FPGAs 
have an excess of registers that can he used for 
pipelining long signals. Although it is possible to place 
signal pipeline registers during placement and before 
routing, it is much more effective to do so during 
routing. In this case. the routing algorithm must not 
only find a path from source to sink, hut fmd a path that 
includes a given number of registers. Unfortunately, this 
changes the very easy shortest path problem into an NP- 
hard problem [5,6]. 

A second context for pipeline routing occurs when 
mapping algorithms to coarse-grained reconfigurahle 
architectures [ l ,  7, 81. Running an application on a 

coarse-grained pipelined FPGA architecture is 
comparable to running the application on a VLIW 
processor where the application m s  as a loop of several 
cycles and the hardware is time-multiplexed. Mapping to 
one of these architectures requires solving the 
scheduling problem while additionally solving the 
placement and routing problem. The scheduling problem 
can he addressed using an Iterative Modulo Scheduling 
algorithm [9, lo], which schedules the operations in a 
loop iteration using the resources for a fixed number of 
clock cycles called the iteration interval (II). After the 
operations have been scheduled in time, they must he 
placed and routed onto the architecture to meet the 
constraints of the interconnect. This routing problem is a 
pipelined routing problem because values must he 
forwarded in general across a given number clock 
cycles, which means fmdmg paths with a given number 
of registers. 

These two problems are in fact very similar. The 
pipelined FPGA routing problem is actually the IMS 
routing problem with II = 1. That is, although a 
pipelined FPGA does not time-multiplex the hardware, 
values are forwarded from one function unit to another 
with potentially several clock cycles of latency. In this 
paper, we describe the QuickRoute algorithm for II = 1, 
that is. for the FPGA pipelined routing problem, to 
simplify the presentation. The algorithm can he extended 
to the more general pipelined routing problem. and in 
fact, it is more appropriate for routing coarse-grained 
configurahle architectures. The case where II = 1 
presents the most challenging problem, and thus we have 
chosen to validate it for this case. 

We have incorporated the QuickRoute shortest- 
pipelined path-algorithm into the PathFinder algorithm 
[11-13], where it replaces Dijkstra's shortest path 
algorithm. PathFinder is a negotiation-based algorithm 
widely used for FPGAs that iteratively solves the 
congestion problem. The inner-loop of PathFinder relies 
on Dijkstra's shortest path algorithm to route individual 
source-sink pairs. Fanout is typically handled by routing 
to the closest sink first, and then to the remaining sinks 
in order, starting from the already established signal 
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routing tree. The A* algorithm [14, 151 is generally used 
to direct the search in the direction of the sink: An 
estimate of the remaining distance to the sink is used to 
choose which node to visit next when extending the 
search. Using A* can greatly increase the speed of the 
PathFinder search [16]. 

Since the shortest path algorithm is used in the inner 
loop of the router, it must be very fast. It is not crucial, 
however, for it to be optimal. That is, the overall quality 
of the router results does not degrade greatly if the 
algorithm sometimes finds a path that is slightly longer 
than the actual shortest path. Thus, the fact that 
QuickRoute necessarily cannot guarantee shortest paths 
is not fatal as long as the approximate solutions it fmds 
are close to optimal. 

While QuickRoute can fail in the worst case, we 
argue that this does not occur for reasonable 
architectures and reasonable routing problems. 

2. Related Work 
There has been very little research reported on the 

shortest pipelmed path problem. Variants of this 
problem appear in the literature as special cases of the 
traveling salesman problem known sometimes as the 
“quota traveling salesman” or the “prize-collecting 
traveling salesman’’ problem [6].  The important fact is 
that these problems are NP-complete and thus 
approximation algorithms must be used for large 
problems. The theoretical literature focuses on good 
approximation algorithms that run in polynomial time 
hut these are not practical for the inner loop of a router 
that must deal with very large graphs. 

PipeRoute [17, 181 solves the pipelined shortest 
path problem using a divide-and-conquer algorithm. 
First, an efficient algorithm is described for routing a 
signal containing either 0 or 1 registers. The general n- 
register pipelined routing problem is then solved 
recursively using multiple I-register routes. We compare 
QuickRoute to PipeRoute using the same benchmark 
circuits. 

3. The Shortest Pipelined Path Problem 
The shortest pipelined path problem is defmed as 

follows: Given a source node and a sink node in a 
directed circuit graph and N?O, fmd the shortest path 
from source to sink that includes exactly N registers. 
This problem, unfortunately, is NP-hard as previously 
mentioned, and so we must use approximate algorithms. 
We will begin by describing a brute-force algorithm that 
is a generalization of Dijkstra‘s shortest-path algorithm. 
This algorithm solves the shortest pipelined path 
problem, albeit in exponential time. We will then add 
heuristic pruning to this algorithm to defme the 
QuickRoute algorithm. The result is that QuickRoute is 
only approximate: however, we show experimentally 
that it works very well in practice for realistic 
architectures. 

Figure 1 shows Dijkstra’s algorithm. In this 
formulation, a path is a sequence of nodes that is 
maintained implicitly using backpointers in the graph 
data structure. The cost of a path is the sum of the cost 
of the nodes in the path. The algorithm works hy 
extending the current shortest (cheapest) partial path 
until a path reaches the sink. Since this algorithm 
explores the shortest paths fust, the first path to reach a 
node must be the shortest path to that node. Thus, any 
shortest path to the destination through a node can use 
the fust shortest path 60m the source to the node as a 
prefx. Thus each node needs to be visited at most once, 
and this is implemented by marking nodes. 

- 1 Unmarkallnodes 
2 
3 
4 
5 
6 
7 else 
8 
9 
10 mark n as visited 
11 

12 endIf 
13 endFor 
14 endIf 
15 endwhile 
16 retumfailed 

Initialize the priority queue Q 
Insert the path [source] into Q 
While Q is not empty do 

Remove the shortest path P from Q 
if P.end = sink then return P 

for every neighbor n of P.end do 
if n is not marked then 

add new path P’ = F, n] to Q 
with cost = P.cost + n.cost 

I 
Figure 1 - Dijkstra’s algorithm 

Of course, Dijkstra’s shortest path algorithm does 
not work for the shortest pipelined path problem 
because, for N>O, the fEst path to a node may not form 
the prefix of any path to the destination node that meets 
the latency constraint. And even if it does, there may be 
a different shorter path through the node that meets the 
latency constraint. 

An altemative to Dijkstra’s algorithm is to search all 
possible paths, and fmd the shortest one with the given 
latency. This brute force algorithm, expressed as an 
extension of Dijkslra’s algorithm is shown in Figure 2. 
In this algorithm, the latency of a path refers to the 
number of registers on the path. 

The brute force algorithm is different from 
Dijkstra‘s algorithm in one very important respect: it 
does not mark nodes when they are included in a path 
and therefore does not prune paths. This means that all 
paths 6om source to destination are examined in order 
of cost. In order to avoid using a node twice on a path. 
the algorithm must check when extending a path that the 
path does not already include the node. This is a check 
that Dijkstra’s algorithm does not need since nodes can 
only he visited once. The brute force search guarantees it 
will find the shortest path with the required latency. 
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However, the brute force algorithm searches all possible 
paths shorter than the shortest path and if there are N 
nodes in the graph, then there may he as many as 2N 
paths in this search. 

The QuickRoute algorithm shown in Figure 3 uses a 
simple heuristic to efficiently prune the search. Instead 
of searching all possible paths, once k paths to a node n 
has been found with latency 1, then all other paths 
through n with latency I are pruned. That is, QuickRoute 
keeps a count of how many paths have visited a node for 
each latency. Only the fnst k paths to visit a node at a 
given latency are kept for further expansion - all other 
paths are pruned. The resulting search is more expensive 
than the simple shortest path algorithm, but only by a 
constant factor. The k parameter can he adjusted to make 
the search more or less broad hut we have found that 
k=l is sufficient in practice to yield good results. 

BFSearch (source, sink, N) 
1 
2 
3 
4 
5 
6 retum P 
7 else 
8 
9 
I O  

11 endIf 
12 endFor 
13 endlf 
14 endmile  
15 retum failed 

initialize the priority queue Q 
insert the path [source] into Q 
while Q is not empty do 

remove the shortest path I' from Q 
ifP.end = sink and P.latency = N then 

for every neighbor n of P.end do 
if n is not in P then 

add new path P' = p, n] to Q with 
cost = P.cost + n.cost 

Figure 2 - Brute force pipelined search 
algorithm 

QuickRoute (source, sink, N) 
1 
2 
3 
4 
5 
6 
7 retum P 
8 else 
9 
10 
11 
12 

13 increment n.visited[P.latency] 
14 endIf 
15 endFor 
16 endIf 
17 endmile  
18 return failed 

igure 3 - QuickRoute algorithm 

for all nodes n, for all i<=N, n.visited[i] = 0. 
initialize the priority queue PQ 
insert the path [source] into PQ 
while PQ is not empty do 

remove the shortest path P horn PQ 
if P.end = sink and €'.latency == N then 

for every neighbor n of €'.end do 
if n.visited[P.latency] < k and 

n is not in P then 
add new path P' = [I', n] to PQ with 

cost = P.cost + n.cost 

It is possible to constmct architectures and circuit 
examples that cause the heuristic to fail to fmd any path 
even if there is one. One such example is shown in 
Figure 4. In this example, QuickRoute prunes a path to 
an intermediate node that is longer than a previous path 
to the node with same latency, hut where the shorter path 
is not a valid prefur of any path to the destination. This 
can happen when paths block themselves, as shown in 
this example. 

I 

Figure 4 - An example where QuickRoute 
cannot find a shortest path 

In the figure, the number on each edge gives the 
order in which QuickRoute algorithm expands the search 
branches. Note that branch 7 visits routing resource A 
first, and branch 8 cannot expand to this resource, 
because its latency is the same as branch 7. However, 
further expansion of branch 7 cannot fmd a valid path. 
Branch 13 cannot expand to the resource B since it was 
already visited by branch 3, which is an ancestor of 
branch 13. The path found by QuickRoute is 2-4-6-10- 
11-12-14. which is much longer than path 2-4-6-8-9-13- 
15. If the architecture does not allow branch 14, 
QnickRoute will not he able to fmd any path. 

While the fact that QuickRoute is not guaranteed to 
find a path may seem fatal, our experiments show that it 
does in fact fmd paths for routes that appear in practice. 
In this example, the routing architecture is severely 
constrained. As our experiments show, the QuickRoute 
heuristic performs well even on difficult routing 
problems, although for longer latencies, only 
approximations to the shortest path may be found. 

4. Implementation Details 
The shortest path algorithm is used in the inner loop 

of any router and so the algorithm's performance is 
crucial to the performance of the router. In this section, 
we will describe the implementation details that are used 
to make QuickRoute as efficient as possible. 

There are three operations in the innermost loop of 
QuickRoute that are potentially expensive in space or 
time: 

1) Checking and incrementing a node's "visited 
count". 
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2) Checking whether a node n has already been used 
as a part of path P. 

3) Adding the new path to the priority queue and 
removing the path with lowest cost fkom the 
queue. 

With the visited limit k of 1, each visited count can 
be implemented as a single bit, and the vector of visited 
counts for each node is a simple bit vector. Since 
latencies do not exceed 64 for real problems, only 8 
bytes per node are required for the visited counts. 
Checking and setting these counts are very fast, 
constant-time, bit-vector operations. 

Checking if a node is part of a path is done by 
assigning each node a unique ID and keeping a vector of 
the IDS of the nodes in each path. This vector of IDS is a 
bit vector, R where R[ID]=I if node ID is in the path. 
The size of the bit vector must be as large as the largest 
ID. This bit-vector size is minimized using two 
techniques. First, each search reassigns node IDS starting 
fkom 0 as nodes are encountered in the search. Thus the 
size of the bit vector need only accommodate the 
number of nodes encountered in a search, not all the 
nodes in the graph. Second only multiplexor nodes are 
counted, which reduces the size of the bit vector by 
about a factor of 3. This works because in our graph 
representation, each branch in the search goes through a 
different multiplexor. It is easy to show that if two paths 
share a node, then they must also share a multiplexor, 
and thus it is sufficient to only keep track of 
multiplexors. Even with these optimizations, this bit 
vector can become large for large architectures. 
However, for the coarse-grained architectures that we 
are targeting, the number of nodes is on the order of a 
few thousand, which requires on the order of 100 bytes. 

The performance of the priority queue is also 
critical to the algorithm performance. We implemented 
the priority queue as a heap. using buckets for all paths 
with the same cost. Thus, the average insertion and 
access time the priority queue is IogB, where B is the 
number of different path costs for paths in the queue. 

To analyze the time complexity of QuickRoute, let 
N be the number of resources in the circuit graph. The 
algorithm may visit each resource L times. where L is 
the latency of the signal being routed. Thus. in the worst 
case, QuickRoute will execute the loop at line 4 in 
Figure 3 NIL times. Each execution involves a delete 
and insertion on the priority queue requiring l o a  time 
plus checking and setting marks, which takes constant 
time. Since the fanout for realistic architectures is 
constant, the loop at h e  8 takes constant time. Thus the 
time complexity of QuickRoute is O(NLlogB). It is more 
instructive to compare the running time of QuickRoute 
to that of Dijkstra's algorithm. The main difference is 
that QuickRoute visits nodes as many as L times. This 
means that QuickRoute takes approximately L' times as 
long as Dijkstra's algorithm, where L' is the average 
number of times each node is visited. 

The space complexity of QuickRoute limits its 
scalability more than the time complexity. The history 

hit vector grows as the number of nodes visited times the 
signal latency. In the general case, the space complexity 
is O(N2L). In practice, even with the optimizations we 
have described, this limits the size of the circuit the 
graph to about 10,000 resources, which is sufficient for 
coarse-grained architectures like RaF'iiD. Reducing the 
space complexity of QuickRoute is a topic for further 
research. 

5. Experimental Results and Performance 
Analysis 

In this section we present three experiments we 
conducted on the QuickRoute algorithm. The first 
experiment tests the ability of QuckRoute to fmd paths 
for very difficult routes with very high latencies. The 
second tests how close QuickRoute comes to fmding the 
shortest pipelined path. The fmal experiment compares 
the results of using PathFinder/QuickRoute to previously 
published results for PipeRoute [5 ] .  

The first experiment uses QuickRoute to fmd the 
shortest path for all source-destination pairs in an 
instance of the Wi architecture [I]. The purpose of 
this experiment is to determine whether the QuickRoute 
algorithm can find paths with very dificult latency 
constraints. The experiments were done using the single- 
cell RaPii datapath graph shown in Figure 5 .  This 
RaPiD cell has two input streams on the left side and 
two output streams on the right side. There are 4 
functional units, two adders and two multipliers. Each 
functional unit has 3 datapath registers directly 
connected to its output which can only be used to 
pipeline outputs of that unit. There are a total of 81 
registers: 39 registers in the bus connectors, 12 registers 
associated with function units, 18 registers in datapath 
registers, and 12 registers in the datapath memories. In 
the RaF'iD architecture, bus connectors are used to 
connect segments in the same track and a signal can be 
pipelined as it passes from one segment to the next. 
However, changing tracks requires going through a 
datapath register. Highly pipelined signals must be 
routed using all available registers. including all 
datapath registers. memory registers and as many bus 
connector registers as possible. With the constraints on 
the routing architecture. the maximum latency of any 
one signal is less than 60. 

In this experiment, all source-destination pairs were 
routed for latencies kom 0 to 50. The most difficult 
routes are those from a function unit output back to its 
input with a large latency. Instead of finding the "easy" 
short path from output back to the input, the algorithm 
must "snake" a route through the entire cell, fmdmg as 
many registers as possible, switching tracks via datapath 
registers to visit extra bus connectors, before returning 
to the same function unit. Readers familiar with 
Dijkstra's algorithm will realize that a nafve algorithm 
will generate outgoing paths that block any chance for 
the path to return. 
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Figure 5 - Test RaPiD Architecture 

77 



In this experiment, QuickRoute was able to fmd paths 
for all pairs and all latencies through 42. It was also able 
to find many paths for higher latencies as well. Note 
that a latency of 42 can be attained only by using all the 
originating functional unit output registers, all the 
datapath registers, all the memory registers and all the 
registers in three bus connectors. Using more than 42 
registers requires switching tracks, which means using 
datapath registers to both switch tracks and pipelime the 
signal. This is a very difficult solution to fmd and yet 
QuickRoute is able to fmd it for many long routes.Figure 
6 shows the shortest path found by the QuickRoute 
algorithm from the ALU output back to an input of the 
same ALU with a path latency of 8. The ALU is 
highlighted as the black rectangle in the middle of the 
graph. The registers and nets of the shortest path are 
highlighted in green. The path starts from the output pin 
of the ALU, goes through the nearest 8 registers and 
feeds in the first input pin of the ALU. It is easy to 
determine that this is in fact a shortest path. 

Figure 6 - An example of the shortest path 
found by the QuickRoute algorithm. Latency is 
0. 

The subset of the results of these experiments is 
shown in Figure 7. The numbers show the cost of the 
shortest path from addO to each of the sinks for the 
latencies tiom 0 to 49. An entry of -1 shows the cases 
where Quicmoute failed to fmd a route. Note that the 
most difficult case occurs when a signal is routed from 
addO back to addo. Note also that the out0 and out1 
sinks are the farthest from addO for 0 latency. But for 
larger latencies, it is cheaper to route to these than it is to 
route a signal back close to the source. For very large 
latencies. all of the routes must snake through most of 
the available registers and end up with about the same 
cost. 

The goal of the second experiment was to 
understand how good an approximation to the shortest 
pipelimed path QuickRoute is able to fmd. It is not 
feasible to write a program to compute the shortest path 
for reasonably-sized circuits since the problem is Np- 

hard. Instead. we manually determined the shortest path 
costs for many different source-destination pairs with 
latencies up to 16 registers using our intimate knowledge 
of the architecture. Although it may appear to be 
difficult to fmd these shortest paths, in most cases it easy 
to determine the cost of the shortest path with latency 
i+l using the cost of the shortest path with latency i. 
QuickRoute found a minimum-cost path for all these 
routes. 

For paths with longer latencies, manually fmdmg 
the shortest path was not feasible and so we used an 
altemative approach to determine whether the 
QuickRoute algorithm had found the shortest path. In the 
QuickRoute algorithm, Figure 7, line 5 ,  the search can 
choose to visit any of the current shortest paths next, and 
this can affect the result of the search. In the example of 
Figure 4, the 7" search branch that visits a resource 
cannot reach the destination resource as the shortest 
path. If during the search, the 8" branch reaches the 
resource before the 7" branch does, the QuickRoute 
algorithm will be able to fmd the shortest path. 

We modified QuickRoute to pick the next path 
randomly from the head of the priority queue. We then 
re-ran the all-pairs experiment above for latencies from 
16 to 25, running QuickRoute 256 times for each 
source/sink pair, each time with a different random 
number seed. We wanted to see if QuickRoute would 
always find a shortest path or whether was some 
variation due to the random choice. For latencies 
between 15 and 22. the QuickRoute algorithm always 
found the shortest path. However, for latencies larger 
than 22, there was a variation of up to 10% in the cost of 
the paths found. That is, spending more effort by 
randomly exploring more paths can fmd a shorter path 
when latency is greater than 22 by as much as 10%. 
These results show that the QuickRoute algorithm is 
near optimal for realistic latencies, becomes increasing 
approximate for larger latencies and finally fails for very 
large latencies that strain the register capacity of the 
interconnect. 

The third experiment compares PathFinder using 
QuickRoute for routing complete circuits to an existing 
routing algorithm called PipeRoute [ 5 ]  which also 
targets pipelined interconnect architectures. We used the 
same application netlists and architectures used for the 
results reported in this earlier paper. We first converted 
the circuit netlists into scheduled dataflow graphs. which 
our PathFindedQuickRoute tool uses. We also used an 
identical placement of the circuit netlists onto identical 
versions of the RaPiD architecture. We had to constrain 
the PathFinder/QuickRoute tool to not use function 
output registers and datapath registers since PipeRoute 
could not use them. (PipeRoute has since been modified 
to be able to use all registers.) The experiment was run 
in the standard way to determine the m i n i u m  number 
of tracks needed to completely route the circuit. The 
router was repeatedly used to route a circuit to the 
architecture with different numbers of tracks until a 
successful route was achieved. 
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Applications 
cascade 
firsymeven 
firtm 
mat-mult4 
sortG 
sort-2D-RB 
med-filt 

19 

Time(sec) 
12.1 
26.4 
18.2 
16.2 
14.1 
18.2 
65.6 



p ipehed  routing problem, especially where II # 1, is 
very tricky. The role of multiplexors in the 
reconfigurable datapath also needs to be addressed. 
Multiplexors used for predicated execution can either be 
placed by the placement tools or by the router. 
Currently we use the placement tools for placing 
multiplexors, but preliminaq results show that the 
routing algorithm can generate better placements. 

Second, we are using QnickRoute as a part of a 
larger set of tools for scheduling, placement and routing 
of large dataflow graphs to coarse-grained configurable 
architectures. The goal of this work is to produce a 
compilation system that is architecture-independent 
within a fairly general model of coarse-grained 
configurable architectures. QuickRoute will be a crucial 
part of this system. 
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