
          

Abstract
Wave-steering is a new design methodology that realizes high
throughput circuits by embedding layout friendly synthesized
structures in silicon. In the wave-steering design methodology, cir-
cuits inherently utilize latches. Inside the synthesized structures
they are used for signal skewing, and on the interconnects to guar-
antee the correct arrival times at the inputs. Recently, we proposed
a novel high-throughput FPGA architecture based on the wave-
steering design principle to handle throughput-intensive applica-
tions. Previously our work was focussed mainly on the Logic
Block (LB) design. In this paper we discuss a pipelined intercon-
nect scheme to support the strict timing requirements that is neces-
sitated by the wave-steered design style. We characterize designs
that best fit the new architecture and show that as technology
scales down towards deep submicron (DSM), this FPGA fabric
shows an increasing throughput performance.

1    Introduction
Since 1985, FPGAs have become increasingly popular for their
ability to be a low cost solution in a variety of design applications.
The advent of DSM technologies has given rise to million gate
FPGAs, making them increasingly versatile. In addition, FPGAs,
unlike custom logic, offer design flexibility by their ability to
reconfigure. However, most commercial FPGAs cannot handle
applications that require very high throughput. These throughput-
intensive applications mostly occur in the real-time Digital Signal
Processing domain. This inability to handle throughput-intensive
applications is caused by the fact that most FPGAs have a general
purpose architectural nature which forces them to be much (as
much as ten times) slower than custom logic.

We proposed a throughput-intensive FPGA architecture fabric in
[19], which targeted regular circuits. This fabric used a wave-steer-
ing [15][16] approach to implement circuits in pass transistor logic
(PTL) mapped decision trees achieving throughputs which were an
order of magnitude higher than those achieved in present day
FPGAs. Wave-steering, unlike other synthesis techniques, natu-
rally integrates logic and physical synthesis steps and takes the cir-
cuit clock period (throughput) as one of the input specifications.

Wave-steering can pipeline a Logic Block (LB) to the granularity
of one level in the tree, which is controlled by a single vari-
able(input signal). Unlike classical micro-pipelining schemes, no
logic redundancy needs to be introduced in order to have a high
throughput execution in the fine-grained pipelined stages. In this
paper, we discuss a routing architecture that supports the wave-
steered LB architecture that was presented in [19].

We organize the rest of the paper as follows: Section 2 discusses
previous work on throughput-intensive FPGAs. Section 3
describes the key architectural ideas on which our architecture is
based. Section 4 summarizes the LB architecture [19] and
describes the pipelined routing/interconnect fabric. Section 5 pre-
sents a characterization of applications that fit naturally in our
architecture. Section 6 provides experimental results. This is fol-
lowed by conclusions.

2    Previous Work
Previous work in the area of high throughput FPGAs has focussed
mainly on the application end rather than on architecture. Retiming
is a major technique used to achieve high throughputs in FPGAs.
Von Herzen in [23] demonstrated a real-time DSP application (a 2-
bit correlator) that could operate at 250 MHz on a 0.7µm Xilinx
XC3000 device. Most of the work in [23] concentrated on choos-
ing a cycle time and aggressively (manually) retiming the fairly
systolic design to operate at this fast cycle. While past literature
has dealt with pipelined memory lookup [10], no literature exists
that studies pipelining inside the logic block of an FPGA. 

Borriello et al in [5] presented a new FPGA architecture, Triptych,
that blends logic and routing resources to achieve efficient imple-
mentation of a wide range of circuits in both area and speed. Their
approach integrated mapping, placement and routing on this archi-
tecture to utilize the FPGA resources better. Our architecture,
while fundamentally different in the internal operation of an indi-
vidual Logic Block, has the same flavor in that it utilizes unused
Logic Blocks for routing purposes. Another fundamental differ-
ence in our architecture is the use of pipelined interconnects.

Recent work has also dealt with the issue of throughput-intensive
operation in the context of delays introduced by long intercon-
nects. In [22], Tsu et al tackle the problem of pipelined intercon-
nect in an effort to achieve high throughputs. Timing domains are
determined by calculating the length of the interconnect that can be
tolerated within a predetermined clock cycle. In this work, the
authors design their Logic Blocks in a way that makes retiming
possible. This retiming is necessary to accommodate the effect of a
pipelined interconnect. While their Logic Block is essentially the
same as the one found in present day Xilinx devices, they have a
bank of flip-flops on their inputs instead of having a single
optional output register on logic blocks. This gives the retiming
needed to balance out path delay differences introduced by the
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pipelined interconnect and allows throughputs of 250 MHz in
0.4µm technology. The results indicate an increase in the overall
area and power due to the drastic increase in the number of flip-
flops. The fact that this reconfigurable processor does not specifi-
cally target any single design domain, is also an inherent shortcom-
ing of this architecture as far as performance is concerned. Our
work, while similar in flavor to [22], targets a special class of
designs. Section 5 explains our approach.

3    Wave-Steering
In [19], we proposed a high-throughput FPGA architecture in
which LBs are complete binary trees wave-steered to the granular-
ity of one level. Figure 1 shows a decision tree of three variables
with each tree node directly mapped into Pass Transistor Logic
(PTL), by replacing it with a 2:1 multiplexer followed by an
inverter. This inverter accounts for voltage degradation between
the levels. The tree is evaluated level by level, starting from the
leaf nodes. Each level in the tree corresponds to a particular vari-
able in the function. Logic ‘1’ and ‘0’ form the leaf nodes and the
output of the node at the topmost level evaluates the function. In
PTL mapped decision trees implementations of logic functions, the
tree structures have input points physically distributed along the
levels of the tree. Since the evaluation of the trees occurs in a bot-
tom-up fashion, skewing of inputs fits naturally the evaluation,
with each higher-level input skewed in to the tree after the previ-
ous-level input has already been fed. 

In a conventional circuit, current data must propagate to the output
latch of the circuit before the next wave of inputs can be pushed in.
It is necessary to wait this long because for different input vectors,
different input-output paths are activated and each path can have
different delay. In this case, the throughput of the circuit equals its
latency. However, if we can synthesize a fairly regular circuit such
that all paths have almost equal delays, then more than one data
wave can exist between two clock cycles. This is true because
there is no need for the previous data to be latched into the output
flip-flops before pushing in the next set of skewed inputs (in other
words, internal node capacitances act as latches for the incoming
waves). Although this may resemble a conventional pipelining
scheme, it is fundamentally different in the sense that the input
application points spatially follow the pipelined stages. Fine granu-
larity pipelining of PTL mapped decision diagram structures inher-
ently have input application points physically distributed along the
stages of the pipeline, where each stage corresponds to a level
characterized by a single variable. This variant of pipelining is
called wave-steering[15][16]. 

The timing skew between two variables characterizing two succes-
sive stages (levels) in a wave-steered structure would typically be
one stage delay. The skewing is accomplished by a chain of flip-
flops and a unique clocking scheme. This will guarantee the opera-
tion of the circuit at a given frequency by construction. In a fully
Wave-Steered Decision Tree, alternate Mux levels are called φ1
and φ2 levels. In any φ1 level, the controlling input (or its comple-
ment) is logic ‘1’ and data is propagated to the next level during
this phase φ1 of the clock. During phase φ2 this particular level

holds the logic level in the nfet output and inverter gate capaci-
tances, as both the mux’s selector lines remain at logic ‘0’. This
provides the electrical isolations between successive data waves.
Once the function has been partially evaluated for a particular vari-
able in a level, only the combined information needs to be propa-
gated and the value of that particular variable is no longer needed.
The current input variable selects a path only after the previous
variable in the vector had selected the correct path. 

While wave-steering works best for designs without feedback,
recently there have been two published works [24][25] that show
that finite state machines (FSMs) can also be wave-steered. Both
these works exhibited an increase in throughput performance by a
factor of 3 for a similar increase in area. In this paper however, we
restrict ourselves to designs without feedbacks.

4    FPGA Architecture
For sake of completeness, we briefly discuss the logic block archi-
tecture of our FPGA fabric [19]. For more detailed discussion on
the internal operation of a LB, we refer the reader to [19]. Figure 2
shows a block diagram of a reconfigurable Logic Block (LB) slice.

A Logic Block (LB) slice is a four-input LUT 1-output structure
that can implement any function of upto four variables. Each of
our logic blocks is composed of two such slices, with each slice
built of a pass transistor logic (PTL) mapped 2:1 multiplexer
binary decision tree. Each PTL mapped tree has four levels, with
each level corresponding to an input variable. Alternate set of 2-
levels are clocked by different phases (φ1 and φ2)of the clock. This
means that unlike in [19], we wave-steer not every level but every
2 levels in the PTL tree. The usefulness of this approach will be
evident in the next paragraph. Figure 2 also shows additional cir-
cuitry to skew signals that arrive earlier than they can be applied.
This part of the LB slice is called the feeder circuit. There are two
types of dynamic flip-flop cells in the feeder circuit, the F1 and F2.
The F1-F2 pair will get the data out by the end of φ2 phase while
the F2-F1 phase will get the data out by the end of φ1 phase. Each
set of flip-flop cells feeds a clocked Nand gate and an inverter that
act as a buffer assembly. This clocked Nand-inverter couple is used
for driving the mux tree with the signal values during only one
phase of the clock and blocking the data transfer during the alter-
nate phase.
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To determine the best throughput-latency trade-off, we performed
a series of experiments to determine the level of wave-steering
inside each logic block. A 4x4 array multiplier and its interconnect
was used as the test-case for these sets of experiments. We manu-
ally mapped this design and varied the level of wave-steering
inside each LB as shown in Figures 3.a-3.c. The resulting netlist in
each case was simulated in HSPICE. All HSPICE simulations
were done using a 0.25µm 5-metal CMOS technology at room
temperature ( ).Table 1 shows the result of this set of experi-
ments. In all simulations, we have a setup and hold time of 0.1ns
for the clock and input signals and this is maintained for all the
remaining simulations in this paper.

A fully (four-level) wave-steered tree is shown in Figure 3.a. A
two-level tree wave-steers every two levels of the decision tree
(Figure 3.b) instead of every level while an unpipelined tree (Fig-
ure 3.c) has no wave-steering in any of the levels. 

Using the unpipelined tree as the basis for the mapped design, the
array multiplier can operate at a throughput of 2.0ns(500 MHz)
while consuming 1.75mW/cell power as simulated in HSPICE.
This power consumption figure is the average of all the LBs in our
test-case operating at a cycle time of 2.0ns. A two-level wave-steer
based setup gives a throughput of 1.2ns (833 MHz) and average
power consumption of 2.05mW/cell at 833MHz, whereas a fully
four-level wave-steered design gives a slightly higher throughput
(910 MHz) while consuming 4.13mW/cell power at 910 MHz. 

While it may appear counter-intuitive that a fully four-level pipe-
lined tree has no inherent gain over a two-level pipeline scheme as
far as throughput is concerned, the above result can be explained.
In order to achieve the wave-steering effect in each tree, it is neces-
sary to skew the input vectors in time using the feeder circuit. This
feeder circuit drives the select lines of all the PTL multiplexers in
each level in the tree. We performed HSPICE simulations to
choose the minimum size transistors in the feeder circuit that can
drive these select lines. In a four-level pipeline scheme, the time-
skew between two consecutive levels is the time required by a data
wave to travel from the bottom level to the upper level. In order for
this skew to be minimum, the delay should be less than or equal to
the delay through the feeder circuit. This means that when the data
wave has propagated from the lower level to the higher level, we
have to have a valid select signal at this higher level before the data
wave can propagate further up the tree. If the delay through the
feeder circuit is greater than the delay through each level in the
tree, we have to increase the time-skew between the two consecu-
tive levels to match the feeder-circuit delay in order to propagate
the wave further up the tree. Hence there are two factors that deter-
mine the time skew -- the delay through each level of the tree and
the delay through the feeder circuit. In the two-level wave-steer
scheme, we are only wave-steering every second level in the tree.
Thus we only need to skew in inputs corresponding to every sec-
ond level in the tree. In this case, the delay through the feeder cir-
cuit is less than the delay through two levels of the tree. The time
skew in this case is the time that the data wave needs to travel
between every two-levels and is not dominated by the delay
through the feeder circuit. 

The potential advantage of choosing a two-level wave-steering
scheme is evident from Table 1. When we steer only two levels in
the tree, we use fewer flip-flops (this results in smaller LB area) as
compared to the four-level Wave-Steered scheme while achieving
nearly the same throughput. This translates into 50% less power
consumption per cell on average. When compared to a fully
unpipelined tree, we note that the two-level pipelined tree is
66.67% faster than the unpipelined tree at the cost of minimal
increase in power consumption per cell. Even if we reason that in
real life, 833 MHz in 0.25µm is optimistic since we have not con-
sidered some practical clocking and control signal issues, we can

Table 1: Steering Granularity

Pipeline Level Cycle Timea

(ns)

a. This cycle time considers both the LBs and the 
neighboring interconnect.

Power consumed 
(mW)

Four-level pipeline 1.1ns 4.13mW/cell 
@1.1ns cycle time

Two-level pipeline 1.2ns 2.05mW/cell 
@1.2ns cycle time

No Pipeline (LUT 
as a tree)

2.0ns 1.75mW/cell 
@2.0ns cycle time
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still claim that a single 2-level Wave-Steered LB is 66.67% faster
than a traditional unpipelined LB.

4.1    Wave-Steering without Stalling
A circuit is guaranteed to achieve a given clock period in our
FPGA if the condition of wave-steering without stalling is met.
This condition states that if all inputs to any LB have arrival times
that are at most φ/2 time units apart (φ is the clock period), then we
can schedule these inputs in consecutive levels in the LBs. How-
ever, if some LB inputs do not meet this non-stalling condition, we
can no longer guarantee the achievable clock period without intro-
ducing forced stalls in this circuit. These forced stalls are accom-
plished by pipeline switchpoints in our FPGA. Figure 4 shows an
ordered list of input signals to an LB. The arriving signals intro-
duce a stall in the LB. This means that there is at least one signal
that arrives more than φ/2 after the previous signal thereby increas-
ing the LB latency. We move the early arriving signals forward (in
Figure 4, signal 1) in time by the appropriate ηi half cycles (Figure
4.b) such that all arriving signals are in consecutive levels in the
LB. We denote the modified arrival time of each signal as ti +ηi
where ti is the actual arrival time of signal i. All signal stalling is
accomplished by pipelined switch points spread over the intercon-
nect and discussed in the next sub-section.

4.2    Routing Architecture
Most commercial FPGA architectures are not well suited for
throughput-intensive applications. In almost all instances, this can
be attributed to the fact that their routing architectures are so gen-
eral purpose that speed is often compromised. As pointed out in
[22], there is really no reason while programmable logic should be
an order of magnitude slower than its custom logic counterpart.
While DSM technology can contribute to an increase in speed, it
cannot get rid of long routing wires and switch boxes that run the
length and breadth of a typical FPGA, thereby slowing it down.
Keeping these factors in mind, we propose a routing architecture
shown in Figure 5. We point out that our routing architecture is
motivated by a category of high-speed designs that we target. As
section 5 will show, these designs can be loosely categorized by a
quantifying metric. 

The routing architecture has 2 levels of hierarchy, with a single LB
forming the basic element of the lower level hierarchy and a logic
cluster forming the basic element of the higher level. Connections
from the lower level hierarchy to the higher level hierarchy are
accomplished through programmable wire taps (not shown). Each
logic cluster consists of an array of 4x4 LBs having dedicated
interconnect since high-speed DSP designs usually have local
communication and involve iterative computation. Clusters of size
sixteen(4x4) were chosen by determining the length of intercon-
nect that can enclose these clusters without inducing unacceptable

delays. Inter-cluster routing is achieved using Vertical Long Lines
(VL-Lines) in metal 1 and Horizontal Long Lines (HL-Lines) in
metal 2. Power, ground and clock lines (not shown) are in metals 3,
4 and 5. Each segment of HL and VL lines is 0.5mm long and is
pipelined using a bank of pipelined switchpoints called Latch-
Banks. These latch-banks are pseudo-switch boxes having a pro-
grammable matrix such that track i in any HL/VL segment can
only connect with track i in other wire segments surrounding the
latch bank. Each switch point in the matrix is a pipeline point for
track i and is k-deep, where k=4. This means, that any VL or HL
line segment can use upto 4 clock period delays to stall any signal
that is reaching its destination too early (see example in Figure 4),
so that the wave-steering without stalling condition is satisfied.
Each latch bank consists of a series of dynamic latches which can
be tapped at different positions (upto k=4) through switches to get
the desired delay. These dynamic latches are clocked by either the
φ1 or the φ2 phase of the clock. Dedicated next level cluster routing
is accomplished as shown in Figure 5. Each inter-cluster channel
has a maximum channel width of 35 tracks while each intra-cluster
in the lower hierarchical level has a channel width of 15 tracks. As
section 6 will show, this is sufficient to route even random circuits.
Routing inside a cluster is dedicated and restricted to next column/
row without any crossbar routing switches or interconnect pipelin-
ing. 
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Figure 6.a shows how different LBs within a cluster are connected
to each other. For example, LBA can communicate with all LBs in
its row/column as well as all LBs in the adjacent row/column. A
particular logic block can place its output on the horizontal/vertical
wires running along the cluster array and other neighboring blocks
tap(through programmable switches) this signal. Figure 6.b shows
an instance of inter-cluster communication. Programmable wire
taps(switches) are used for tapping signals to/from long lines and
signal delaying and bending is accomplished through
taps(switches) in a k-deep (k=4) chain of dynamic latches. For
simulation we model interconnects and wire taps as RC π chains
(each interconnect has four such chains). In addition, each LB has
a dedicated diagonal interconnect to its neighbor block to provide
more versatility for routing designs which are systolic in nature. 

Communication between any two LBs inside a cluster is full-
duplex. In situations where dedicated routing resources are not
enough or where the design under consideration doesn’t map natu-
rally into our fabric, we have the option of decreasing the logic
density of a cluster and utilizing unused routing blocks as route-
throughs in order to complete routing. Empty LBs have been used
as route throughs in previous literature [5] and this concept is not
unique to our architecture. Figure 7 shows routing through Logic
Blocks inside a cluster. In this case LB ‘C’ is used as a route

through for signal S. ‘A’ places its output on the horizontal wire-
mesh, ‘C’ taps it and routes it through as its output for B to tap it in
again. Unused LBs can be used to bend signals in cases where a
horizontal-vertical or vertical-horizontal communication is
required. Since each LB has two slices, we can accomplish two
signal bends per LB. Empty LBs can also be used for delaying cer-
tain signals that arrive too early in order to maintain the fine granu-
larity pipelining without stalling inside each LB.

The motivation for using pipeline interconnects on the VL and HL
lines comes from a desire to use these pipeline points for synchro-
nization purposes in the case where signal sources are at different
levels and have different delays. For example, a signal that is arriv-
ing earlier than other signals whose sinks are in the same cluster,
will have to be delayed to avoid unnecessary stalls and increase in
latency later on (see Figure 4). Since wave-steering imposes strict

timing windows on the architecture, this pipelining is essential.
This also avoids the possibility of data getting corrupted due to the
presence of multiple data waves at the same time without isolation.
This opens an interesting possibility of not only having a hierarchi-
cal structure, but also having hierarchical wave-steering, i.e. not
only at the LB level (as is the case at present) but also at the cluster
level. This is currently being investigated as are other issues
related to clock and control signal distribution.

5    Design Characterization
To take advantage of the wave-steering design style which inher-
ently favors high throughput applications, we need to find a quan-
tifying metric that can categorize applications that would naturally
fit in our FPGA architecture. Through experimentation, we find
that our architecture is a good fit for designs in which connection
between different blocks are constrained to be local (not necessar-
ily next neighbor) and single design modules have similar com-
plexity (note that this does not imply the same functionality on
different blocks). We call these designs regular or feasible designs.
This basically says that feasible designs have local connectivity
between their modules and demonstrate an iterative nature that can
usually be captured by a few regular patterns. This iterative nature
and local inter-connectivity leads to circuits having almost equal
delays along all paths. Such feasible designs exhibit certain charac-
teristics that distinguish them from random designs. To quantify
this difference between feasible and random designs, we use an
empirical relationship known as Rent’s rule [12] developed for
predicting the number of external connections from a given num-
ber of components in a circuit. This relationship is:
                                    I=bCp                                                    (1)
where

I is the number of external connections,
C is the average number of components in a circuit,
b is the average number of connections per component,
p is a small positive exponent, known as the Rent’s expo-

nent.

Rent’s rule is also used to study the distribution of connection
lengths in designs. We use this relationship to characterize feasible
circuits. We experimented on two sets of designs: a) systolic and
arithmetic designs and b) random designs from the MCNC 91
benchmarks to categorize designs according to their value of p.
The feasible designs consisted of an array multiplier, a 2-bit corre-
lator, a 3-tap systolic FIR filter, an image template matcher, a 1-D
convolution and a vector quantizer. The underlying characteristics
of all these designs is the iterative nature of their modules and
short predictable interconnect between these modules. These
designs were implemented in our architecture, with each design
module mapping into several LB clusters. Table 2 shows the I/O
characteristics of these manually mapped designs into clusters of
sixteen LBs. The size of these designs ranges from 64 LBs (multi-
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Figure 7: Unused LBs as route-throughs inside a cluster 

LB used for logic

Unused LB
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Table 2: Rent’s exponent for regular designs

Circuit  I/O signals
Logic Blocks used/

cluster
p

4x4 array multiplier 12 16 0.41
2-bit correlator 9 11 0.34
FIR Filter 12 15 0.41
Template matcher 13 16 0.43
Convolution 13 16 0.43
Quantizer 12 15 0.41
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plier) to 6336 LBs (template matcher). Since these designs are fea-
sible designs, almost all LBs in a cluster are used for logic (except
in the case of the correlator where 5 LBs are used for stalling the
pipeline and bending signals). The third and fourth columns show
the average I/O signals and LBs used per cluster, for all the
designs. The average value of p for these feasible designs was
found to be 0.41. This is in line with the notion that these designs
usually have values of p < 0.5 since their modules are more likely
to fan out to modules only within their local neighborhood. On the
contrary, our experiments (Section 6) show that the benchmark
random designs have on average a value of p = 0.6. Past literature
also exists [12] which shows that random designs usually exhibit a
value of 0.5<=p<=1.0. The locality of a connection is determined
by how far a given module can fanout under the timing constraints
dictated by the clock cycle time. This locality measure also reflects
the fact that signals have to arrive at input points of LBs at the cor-
rect time in order to maintain proper functionality in our architec-
ture. A range of systolic [13] and arithmetic circuits fall into the
category of feasible designs that require high throughputs. These
include most DSP applications that inherently and iteratively use
multiply and accumulate units and are fairly regular. Applications
such as FIR and IIR filters, data compressing, encrypting, image
template matching and data searching designs would naturally fit
in our architecture. These applications use only a few simple mod-
ules (mostly multiply and accumulate), can be expressed in a sys-
tolic fashion if necessary and can also be serialized in cases where
high throughput can be traded for a similar decrease in area. 

6    Results
To test the feasibility of our proposed architecture for throughput-
intensive applications, we laid out our FPGA logic block and pre-

liminary interconnect scheme in a 0.25µm CMOS 5-metal technol-
ogy. Each LB occupies 720λ x 920λ. Assuming a die size of 1.5cm
x 1.5cm, the chip can hold approximately 6400 such LBs (includ-
ing estimated area for interconnects and programming wires) or 

400 higher level clusters. We simulated the extracted SPICE netlist
of a LB and its neighboring interconnect and used this netlist to
validate four designs in our Wave-Steered FPGA fabric (we used
the routing architecture shown in Figure 5). These include a 4x4
array multiplier, a 2-bit correlator, a 3-tap bit level systolic FIR fil-
ter and an 8x8 image template matcher. Note that all these designs
conform to the feasibility analysis in Section 5 and fit naturally in
our architecture. With budgeting for programming wires and delay
induced by clock skew, all these designs can achieve throughputs
of 625 MHz in 0.25µm CMOS 5-metal technology at room tem-
perature. To get a picture of how performance is affected with rise
of on-chip temperature, we performed SPICE simulations at tem-
peratures from 25 to . Figure 8 shows how clock period
and power consumption per LB vary as temperature is increased.
These simulations were performed on a 4x4 pipelined array multi-
plier without considering any clock skews. The first graph shows a
performance degradation of 45% at  over the performance
at  in 0.25µm technology. Other processes (0.35µm and
0.5µm) show a similar trend. The second graph shows how power
consumption per LB varies as temperature is increased. Here,
power consumption at  decreases by 32% over power con-
sumption at  in 0.25µm technology when operating at 625
MHz. Note that all 3 technologies have different supply voltages
and hence the noticeable differences in dynamic power dissipa-
tions. 

In order to exhibit the ability of this architecture to handle random
designs (p > 0.5), we placed and routed some MCNC benchmarks
on our fabric. Table 3 shows the results. Figure 9 shows one such
circuit placed and routed in this architecture. These results are
obtained when we restrict the number of unique inter-cluster sig-
nals to 24. Increasing this limit renders some benchmark circuits
unrouteable. We see an average logic utilization of 55.3% (8.8
LBs/cluster) per cluster leaving 7.2 LBs/cluster for routing. In all
of the circuits in Table 3, almost all LBs not configured for logic
purposes are used for routing inside the cluster. To guarantee the
operation at a given frequency for these random circuits, we show
that the given placed and routed circuit can operate without any
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Figure 9: A random circuit placed and routed in 
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    Figure 8.b: Power vs. Temperature
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stalls at the LBs. This means that the pipeline elements should
account for delaying early arriving signals in such a way that all
signals at all LB input points arrive consecutively (i.e. within φ/2).
Table 3 shows the number of such interconnect latches needed to
ensure the wave-steering without stalling condition in random cir-
cuits. Note that we do not discuss interconnect latch counts for fea-
sible circuits because in our tested feasible circuits, signals
inherently tend to arrive at the required times and almost all signal
skewing/delaying is accomplished using the latches already
present in the LB feeder circuits. For random circuits, latch counts
are found from the arrival times at all LB inputs and then dividing
these arrival times into time domains dictated by the specified
clock period. The MCNC benchmarks can operate at a clock
period of 250 MHz. This clock period was arrived at by examining
the trade-offs between a faster clock speed and using more inter-
connect latches(Figure 10). 

There are 35 tracks per inter-cluster channel and each latch bank is
4-deep, hence, there is no latch congestion in any of these latch-
banks when the clock period is fixed at 250 MHz.  Since the qual-
ity of the placement solution directly affects the number of inter-
connect latches that are used, we are currently modifying our place
and route tool based on [3] to improve our solution quality.

7    Conclusions
In this paper, we discuss a pipelined interconnect architecture to
support a wave-steered FPGA fabric [19]. We categorize designs

into feasible and random designs based on the Rent’s parameter
and show that both these designs can be routed in our FPGA fabric
under the wave-steering without stalling condition, with the ran-
dom designs operating at speeds of 250MHz and the feasible
designs operating at 625 MHz in 0.25µm technology. This notice-
able difference in operating speeds highlights the attractiveness of
our architecture for feasible designs that can benefit most in a
throughput-intensive environment. Further, we show that as on-
chip temperatures increase, there is as much as 45% performance
degradation in performance over the room-temperature perfor-
mance. Future work in this area will focus on a few key architec-
tural improvements, including using LBs without feeder circuit
latches and reordering of LB input signals for latch minimization.
Clock and control signal distribution as well as placement issues
are also under investigation.
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