
Incremental Placement
for Layout-Driven Optimizations on FPGAs

Deshanand P. Singh, Stephen D. Brown
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, CANADA

singhd|brown@eecg.toronto.edu.com

ABSTRACT
This paper presents an algorithm to update the placement
of logic elements when given an incremental netlist change.
Specifically, these algorithms are targeted to incrementally
place logic elements created by layout-driven circuit restruc-
turing techniques. The incremental placement engine as-
sumes that the restructuring algorithms provide a list of
new logic elements along with preferred locations for each
of these new elements. It then tries to shift non-critical logic
elements in the original placement out of the way to satisfy
the preferred location requests. Our algorithm considers
modern FPGA architectures with clustered logic blocks that
have numerous architectural constraints. Experiments indi-
cate that our technique produces results of extremely high
quality.

1. INTRODUCTION
FPGA designers are increasingly facing the dilemma that

their designs are dominated by the connection delays routed
along the programmable interconnect. The interconnect
provides the ability to implement arbitrary connections; how-
ever, it contains both highly capacitive and resistive ele-
ments. The delay experienced by any connection depends
on the number of routing elements used to route the connec-
tion. These delays are only fully known after the placement
and routing phases of the FPGA CAD flow.

One strategy to cope with these routing delays is to tightly
couple timing-driven logic optimizations with the placement
step of the CAD flow. Within the placement phase there
is still the freedom to add new elements to the netlist of
logic elements, and the routing delays can be accurately ap-
proximated for most architectures. In this manner, critical
portions of the circuit can be restructured to account for
the routing delays. We know of no reported work that can
simultaneously optimize a general circuit and produce a le-
gal placement that respects the many constraints that exist
in modern FPGA architectures. Thus we have adopted a
three-step approach to the coupling of placement with netlist
optimizations.

The first step is to execute the conventional CAD flow
of HDL → synthesis → techmapping → placement. In
the second step, routing delays for every connection are
estimated by calculating their fastest possible route. Any
timing-driven netlist optimization technique can then be ap-

.

plied to perturb the circuit to reduce the critical path(s).
The estimation and optimization techniques are collectively
referred to as layout-driven optimizations since the layout
of the logic elements directly effects how the circuit is per-
turbed. Every additional logic element introduced in the cir-
cuit is given a preferred physical location. These preferred
locations ignore even the most fundamental architectural
constraints of the programmable device under consideration
but are chosen strictly on the basis of improving timing.

LUT LUT

LUT

LUT

A B

Retiming Move
FP

G
A

r

Figure 1: Layout driven retiming.

Figure 1 shows an example of a layout-driven sequential
retiming technique described in detail in [5]. The netlist
contains lookup tables, registers and delay-buffers. Regis-
ters and lookup tables compose the basic building blocks
of the FPGA logic elements. The delay-buffers are used to
represent the estimated routing delay along every connection
between logic elements. For example, the logic element B is
far away from logic-element A. Thus the delay-buffer on the
connection between A → B has a much larger delay-value
than any other buffer shown in the netlist. One possible
timing-optimization would be to move the register r from
logic-element B to the corresponding output of A. The reg-
ister r is now given a preferred location that is identical to
the current location of A. This represents the request that A
and r should be as close as possible to each other in the final
placement. If r was placed far away from A, then the new

0-7803-7607-2/02/$17.00 ©2002 IEEE

placement would do a poor job of reflecting the optimization
proposed by the retiming algorithm. Note, as explained in
Section 2, that modern FPGAs have multiple elements at
each “location”.

Note that the preferred locations for unchanged logic el-
ements in the original netlist are assigned to a preferred
location equal to their current location chosen in the first
phase. Thus any netlist optimization that adds only a small
amount of logic to the netlist must result in a set of preferred
locations that is mostly legal.

The final step of our three-step flow occurs after the pre-
ferred locations have been generated. The job of the in-
cremental placement (ICP) engine is to perturb the pre-
ferred locations as little as possible to ensure that the final
placement respects all architectural constraints. Ideally, the
netlist contains a number of non-critical logic elements that
can be moved from their preferred locations to resolve archi-
tectural violations, while truly critical elements stay at their
preferred locations for delay and area reasons. An example
of the three-step flow can be found in [5], where we show that
flow of placement → retiming → preferred locations →
incremental placement results in 20% increase in operat-
ing frequency in comparison to retiming before placement.
In the context of layout-driven optimzations, ICP is a tool
whose main goal is to produce the best possible performance
by ensuring that restructuring techniques can interact with
placement as closely as possible. In [6], we show that more
disjoint techniques, such as circuit restructuring followed by
complete re-placement, produce far worse results than the
integrated techniques described in this paper. The ICP algo-
rithm is not something primarily intended for compile time
savings, but one intended to help with convergence in the
interactions between restructuring and placement.

More formally, the input to the ICP algorithm consists of
an architectural description, A, and a netlist, N(E, C), con-
taining a set of logic elements, E, and a set of connections,
C. Each element, e, is associated with a preferred physical
location, (px(e), py(e))1. The set, P = {∀e ∈ E | (px(e), py(e))},
contains the set of all preferred locations. At completion the
ICP algorithm will return a single boolean value indicating
success or failure, along with a set of mapped locations,
M = {∀e ∈ E | (mx(e), my(e))}, for each logic element in
N . If the incremental placement algorithm is successful, the
mapped locations are guaranteed to be a feasible placement
for the architecture described by A. The ICP algorithm
tries to find a mapping from preferred locations to mapped
locations, P → M , such that the mapped locations are ar-
chitecturally feasible as well as being minimally disruptive.
The definition of minimal disruption depends on the goal of
the netlist optimization. In this paper, our focus is on incre-
mental placement for timing-driven optimizations. Let T (S)
represent an estimate of the critical path delay if all logic
elements in E are mapped to (sx(e), sy(e)). This estimate
ignores the legality of the locations and is computed assum-
ing a best case route is possible for each connection. Hence
the mapping P → M is minimally disruptive if it minimizes
{T (M)− T (P)}. Any logic element can be moved from its
preferred location as long as it does not degrade the critical
path.

Although our concerns center on circuit timing, we must
also track routing area to ensure that there will not be exces-

1Cartesian coordinates are used in this study, but any rep-
resentation may be used.

sive routing congestion that will prevent the estimated tim-
ing from being achieved. Let A(S) represent the routing area
consumed if the logic elements are mapped to (sx(e), sy(e)).
Thus a mapping is only minimally disruptive if it preserves
both timing and routing area. This condition can be satis-
fied by minimizing the following:

{T (M)− T (P)}+ {A(M)−A(P)} (1)

The remainder of this paper is organized as follows: Sec-
tion 2 describes the FPGA architectural constraints that
make incremental placement difficult. Section 3 introduces
basics of the ICP algorithm, while Section 4 presents a di-
rected hill-climbing strategy that significantly increases the
success rate of the basic ICP algorithm. Section 5 discusses
specific ICP implementation issues. Sections 6 and 7 present
results and conclusions.

2. ARCHITECTURAL CONSTRAINTS
Before describing the ICP algorithm, this section provides

a review of the architectural constraints that must be con-
sidered for incremental placement. Nearly all architectural
constraints in modern FPGAs [1] [7] are found in the logic
block. Figure 2 shows a simplified version of a commercial

LUT

A

B
C

D

D QLUT

A

B
C

D

D Q

LUT

A
B
C

D

D QLUT

A
B
C

D

D Q

LUT

A

B
C

D

D QLUT

A

B
C

D

D Q

R

R

R

I
O

Reset

Clk

Figure 2: Simple clustered logic block.

logic block. Note that only a subset of the multiplexers is
shown for the sake of clarity.

Logic blocks are configured as groups of logic elements.
Each logic element is a 4-input lookup table with a config-
urable register at its output. Communication between logic-
elements within clusters is far faster than communication
between clusters. The clustered logic block contains a small
set of input pins, I, and output pins, O, that connect to the
general-purpose routing fabric so that clusters can commu-
nicate with each other. Every input of each lookup table

can connect to any one of these inputs or output pins using
the appropriate configuration bits for each multiplexer. In
general, each cluster contains nE logic elements, nI inputs
and nO outputs. In academic literature [2], typical values
are set at nE = 4, nI = 10 and nO = 4. These numbers
imply an important constraint. Even if 4 logic elements are
packed into a given clustered logic block, there is no guaran-
tee that these 4 elements use 10 or fewer inputs. Hence the
problem of incremental placement is far more complex than
simply making space for the additional elements introduced
by the netlist perturbation algorithm.

Notice also that there is a single clock line and a single
asynchronous set/reset line attached to each register in the
clustered logic block. Thus every register in the clustered
block must be clocked by the same signal and initialized by
the same signal. The number of clock lines available in the
clustered block is represented by nC while the number of
reset lines is represented by nR.

The term “location” used in this paper is a coordinate that
uniquely identifies a particular clustered logic block. Thus
a location may contain nE logic elements. More specific lo-
cations could be used, but in most commercial architectures
the logic elements within clustered blocks all have similar
delay characteristics.

The architecture described above is fairly simple in struc-
ture, but the ICP algorithm must operate on logic blocks
with an arbitrary number of complex constraints. This prop-
erty allows for architectural exploration of many logic block
variations. For example, we have been able to study a logic
block with increased register flexibility [6] that significantly
reduces the area penalties associated with sequential retim-
ing optimizations. The flexible nature of the ICP algorithm
allowed us to easily target this block.

3. THE ICP ALGORITHM
The design of the ICP algorithm is based on several key

assumptions about the nature of the interaction between
netlist optimizations and incremental placement:

• The number of architectural constraints violated by
the preferred locations will be relatively small. This
assumption is well founded as experiments indicate
that the number of additional logic elements added
to the netlist is typically small and the optimizations
themselves have some capability to produce sensible
preferred locations (i.e., not assigning all of the newly
synthesized logic to a single clustered logic block).

• An architecturally feasible set of mapped locations is
relatively close to the set of preferred locations in the
solution space. This assertion is implied from the pre-
vious assumption.

• Hill-climbing should be done only when absolutely nec-
essary. Excessive use of hill-climbing may lead us to
a solution which is far from the preferred locations.
Hence it may be difficult to find a solution that is min-
imally disruptive.

Considering the assumptions above, the ICP algorithm
was designed based on an iterative improvement strategy.
The first step assigns mapped locations to be equal to the
preferred locations: ∀e ∈ E, (mx(e), my(e)) = (px(e), py(e)).
The architectural violations are removed by iterating on this

starting solution. Every move is evaluated by a cost function
that guides the reduction of architectural violations while
ensuring minimal disruption. Recall that iterate improve-
ment algorithms have a general structure that is depicted
by the pseudocode in Figure 3. The cost function C and

procIterativeImprovement
begin

S = InitialSolution;
do

S′ = proposeMove(S);
ifC(S′) < C(S) then

S′ = S;
end if.

until exitCriterion = true;
end IterativeImprovement

Figure 3: Iterative Improvement Algorithm

move proposal function are described in the subsequent sub-
sections.

3.1 Cost Function
This ICP cost function includes the summation of three

distinct parts:

• Cluster Legality Cost - Each cluster is penalized
if it contains any architectural violations. The cost is
proportional to the total number of constraints vio-
lated.

• Timing Cost - The timing cost is used to ensure
that critical logic elements are not moved into loca-
tions that would drastically increase the critical path
delay. This component encourages the minimization
of T (M)− T (P).

• Wirelength Cost - Wirelength estimation is used to
ensure that the circuit is easily routable after the logic
element moves by minimizing A(M)−A(P).

The total cost is the weighted sum of the individual compo-
nents:

C = KL ∗ClusterCost+KT ∗Timing+KW ∗Wirelen (2)

The weighting coefficients are used to normalize the contri-
bution of each of these components so that each component
contributes equally when considering a move.

3.2 Cluster Legality Cost
There is a cluster legality cost associated with each cluster

CLi. This cost can be calculated as shown in Eq. 3.

ClusterCost(CLi) = kEi ∗ legality(CLi, nE) +

kIi ∗ legality(CLi, nI) +

kRi ∗ legality(CLi, nR) +

kOi ∗ legality(CLi, nO) +

kCi ∗ legality(CLi, nC) (3)

The legality(CLi, . . .) function returns a measure of legal-
ity for a particular constraint. A value of 0 indicates legal-
ity, while any positive value is proportional to the amount

to which the constraint has been violated. For example the
function legality(CLi, nI) evaluates if the cluster CLi has
a feasible number of inputs. A viable return value would be
min {nI −maxInputs, 0}. The exact nature of the function
is not important but it must provide enough information to
guide the algorithm to reduce the number of violations. This
characteristic is extremely important when several logic ele-
ments must be moved to create a legal cluster configuration.

The weighting coefficients kEi, kIi, kRi, kOi, kCi are all
initialy set to 1 for every clustered logic block CLi in the tar-
get device. The usefulness of the constants will be described
in the next section which discusses Directed Hill-climbing.

3.3 Timing Cost
One component of the timing cost is based upon the cost

used by the VPR [2] placer. This cost is shown in Eq. 4.

TCV PR = Σccrit(c) ∗ delay(c) (4)

This function encourages critical connections to reduce de-
lay, while allowing non-critical connections to optimize wire-
length and other optimization criteria. The ICP algorithm
is not intended to actively improve the critical path delay
of the circuit after the netlist optimization, but rather to
preserve the delay by moving non-critical logic as little as
possible. This aggressive cost function can cause non-critical
connections to become critical. This phenomenon is shown

10

12

14

16

18

20

22

24

Iteration #

P
er

io
d

 (
n

s)

Figure 4: Oscillations in Fmax.

in Figure 4. This graph plots the critical path delay of a
particular benchmark circuit vs. iterations of the incremen-
tal placer. There is a significant amount of oscillation be-
cause the function in Eq. 4 reduces the delays of critical
connections, but as a side-effect the non-critical connections
now become critical. This behavior is controlled in VPR
through the use of a range-window that limits the motion
of logic blocks to a localized neighborhood whose size corre-
lates with the temperature of the anneal.

Unfortunately, a static range limitation for logic element
moves significantly impairs our ability to make arbitrary
moves that reduce architectural violations. Hence we intro-
duce the concept of a dynamic range window that is imple-
mented as a damping component of the timing cost function.

TCDAMP = Σcmax(delay(c)−maxdelay(c), 0.0)

maxdelay(c) = delay(c) + α ∗ slack(c) (5)

Consider the function shown in Eq. 5. This function penal-
izes any connection c whose delay delay(c) exceeds a certain
maximum value maxdelay(c). Any delay value less than the
maxdelay value is not costed. This step function character-
istic allows the freedom to make arbitrary moves along the
plateau defined by the maximum delays. These maxdelay
values are updated every time a timing analysis of the circuit
is executed and are controlled by the slack on the connection
being considered. The parameter α determines how much of
a connection’s slack will be allocated to the delay growth of
the connection. Thus the plateau is defined by the connec-
tion slack so that connections with large amounts of slack are
free to move large distances in order to resolve architectural
violations, while small slack values are relatively confined.
Values of α ranging from 0.35 − 0.55 produce results that
effectively control the critical path oscillation problem when
the Eq. 6 is used as the new timing cost.

TC = TCV PR + kDAMP ∗ TCDAMP (6)

Figure 5 shows the result of the damping cost on the critical
path oscillation problem. The magnitude of the oscillations
has been significantly reduced and hence the final critical
path delay is also much better as the algorithm never had
to recover from a sequence of poor moves that degraded the
critical path. It is also evocative to see that the final critical
path delay varied only slightly from the first iteration, where
M = P , indicating the T (M) ' T (P).

10

12

14

16

18

20

22

24

Iteration #

P
er

io
d

 (
n

s)

Figure 5: Effect of the Damping Cost.

Figure 6 shows a graphical description of the dynamic
cost. In this example, two connections are affected by the
movement of logic element x. For the connection c1, a circle
is drawn indicating the range of locations where delay(c1) ≤
maxdelay(c1). This condition is also graphically depicted
for c2. The intersection of these two circle is the free zone
for logic element x. It may move to any point within these
regions without being penalized for exceeding the maximum
delays for any of its affected connections. Hence the actual
range window varies in size and shape depending on the de-
lay characteristics of the effected connections. The bound-
aries of the window are also “soft” because logic elements
are not confined within their free zone, but rather they are
heavily penalized. This freedom is essential for resolving
difficult constraints.

Dynamic Range Window
x

c1

c2

Figure 6: Slack based range window

3.4 Wirelength Cost

Horizontal Cut

Vertical Cut

Figure 7: Local Congestion Estimation.

Figure 7 shows a high-level description of how the wire-
length is monitored. Horizontal and Vertical cut-lines are
placed in each horizontal and vertical channel of the target
device. These cut-lines are used to measure the number of
routing wires that intersect each cut. The cut-lines across
the channels of the chip provide a method to measure con-
gestion by finding the regions that contain the largest num-
ber of routing wires. This technique helps to ensure that the
resulting placement does not contain localized congested ar-
eas that can cause circuitous routes.

The total number of routing wires that intersect a partic-
ular cut can be calculated by finding all the nets which inter-
sect a particular cut-line and summing the average crossing-

count for each of these nets. The average crossing count for
a net can be computed using the techniques described in [3]
using the following formula:

CrossingCount(net) = q(NumCLBlockP ins(net)) (7)

The function q is described in [3] and given as a number
of discrete crossing counts as a function of net pin count.
The argument to the function q is the number of clustered
logic block pins used to wire the net. Since we are trying to
estimate the amount of general purpose interconnect used
by the circuit mapping, the number of clustered logic block
pins is used rather than the number of logic element pins
used to wire the net. For example, a net containing 8 logic
elements may be packed into two clusters so that the net
has a crossing count of 1 at any slice of the bounding box.

3.5 Move Proposals

Fanins

Fanouts

Sibling Sibling

x

Figure 8: Fanin, Fanout and Sibling relationships.

Each iteration of the ICP algorithm chooses a candidate
logic element x to move. Several different move types are
selected in a random fashion. The various moves are:

• Move-to-Fanin - Attempt to move x to a cluster that
contains a fanin of x.

• Move-to-Fanout - Attempt to move x to a cluster
that contains a fanout of x.

• Move-to-Sibling - Figure 8 depicts the sibling rela-
tionship to x. Choose a sibling and attempt to move
to the cluster that contains the sibling. The move-to-
fanin/fanout/sibling proposals are essential to ensure
that wirelength is not degraded. Each of these move-
types may lead to a smaller number of inter-cluster
connections and hence a smaller amount of general
purpose routing.

• Move-to-Neighbor - Attempt a move to any adja-
cent clustered logic block.

• Move-to-Space - Attempt a move to any random free
logic element location in the target device.

• Move in Direction of Critical Vector - The criti-
cal vector for x is shown in Figure 9. The direction of
the critical vector is computed by summing the direc-
tions of all the critical connections attached to x. An
attempt is made to move to a random cluster along
the critical vector. This move helps to correct any
mistakes when unexpected paths have become criti-
cal because of moves in previous iterations. Note that
the critical vector move is similar to the move types
attempted by iterative force directed placement algo-
rithms.

CriticalCritical

Non-Critical

Critcal Vector

Figure 9: Critical vector.

Although move selection is random, the proposed move is
always biased in the direction of regions of free logic ele-
ments. For example if the target device had a large amount
of free space close to the top edge of the chip, then moves
that move logic elements closer to the top edge are selected
more frequently.

4. DIRECTED HILL-CLIMBING

Figure 10: Trapped in a Local Minima.

The algorithm described so far is essentially greedy, be-
cause only moves that improve the cost function are ac-
cepted. The drawback with this approach is that the algo-
rithm could easily get trapped in a configuration where it
cannot find moves that decrease the current cost. Consider
the situation shown in Figure 10. Every possible move at-
tempted to resolve the architectural constraints of the center

cluster results in another architectural violation. This situa-
tion is quite common for architectural violations close to the
center of the chip as there are usually few available white
spaces. If all architectural violations are costed in the same
manner, then the algorithm described previously cannot re-
solve the constraint violation. Clearly the algorithm must
now execute some kind of hill-climbing step to escape this
local minima.

3

0

U
ns

at
is

fie
d

C
on

st
ra

in
ts

Configuration Space

Updating Constraint Weights

fills in the local minima.

Figure 11: Basin Filling.

Figure 11 shows the basic strategy for escaping local min-
ima. It shows a two dimensional slice of the multi-dimensional
cost function described in Section 3.3. The current state (shown
by the leftmost circle) represents the situation shown in Fig-
ure 10. No single move in the neighborhood of the current
state finds a solution with a lower cost, so we are trapped
in this state. However, the cost function itself could be
modified to allow us to climb the hill. Recall that the clus-
ter legality cost contains per-cluster weighting coefficients
for each legality cost. Suppose that the weights of these
coefficients were gradually increased for clusters that have
unsatisfied constraints; then the cost function itself would
actually be reshaped to allow for hill climbing. This tech-
nique gives a higher weight to unsatisfied constraints that
have been violated for a long time. Consider the situation
again in Figure 10. Once the weighting coefficients have
been increased for the center cluster we are free to make a
move to one of the adjacent clusters allowing us to shift the
violations “outward” closer to a free space.

C1 C2 C3 C4

Figure 12: Thrashing.

This technique does more than allow us to temporarily es-

cape local minima, but it also allows for quick convergence
by preventing a phenomenon known as thrashing. Consider
using an alternative hill-climbing strategy where we select
the least uphill move instead of the most downhill move.
This type of hill-climbing will allow for the escape from lo-
cal minima but the situation is only temporary as shown
in Figure 12. To resolve the violation in cluster C1, a logic
element can be moved to C2. Resolving the constraints in
C2 is possible by returning to C1. The algorithm is trapped
in an endless cycle traversing two points in the configura-
tion space. The basin filling technique avoids this situation
because cycling between these two points would eventually
increase the cost of violation in C1 and C2 so much that a
move to C3 would eventually be accepted, and thus a chance
of constraint resolution with a move to C4.

The use of a TABU list could also be used to avoid cy-
cling by keeping track of the last points visited and explic-
itly avoid them from consideration. However this strategy
requires the evaluation of several points in the neighborhood
of the current solution because the hill-climbing strategy re-
quires that the least uphill move must be accepted. If the
size of the neighborhood is small, then the least uphill move
may be disastrous with respect to the timing and wirelength
cost.

4.1 Violation Shifting

C1

C2C3

r

Figure 13: Violation Shifting.

Figure 13 shows the process of constraint violation shift-
ing. Suppose that a register (shown in the center) is inserted
into the cluster C1 causing it to violate architectural con-
straints as only 4 logic elements are allowed in each cluster.
In this cluster, the logic element with the least timing crit-
ical connections (upper right LE in C1) is moved to cluster
C2 which contains one of its fanins. C2 now violates its ar-
chitectural constraints, but the adjacent cluster C3 contains
a free logic element. A nearest neighbor move can now easily
resolve the legality issues.

The process of violation shifting actively attempts to make
these sequences of moves possible by proposing a move that
shifts violations into regions with white space such as moving
to C2 because of the free space in cluster C3.

5. IMPLEMENTATION ISSUES

procICP
begin

while there is overuse remaining
choose any LUTi from an overused cluster;
select random move-type biased toward free spaces;
evaluate change in cost ∆C;
if∆C < 0 then

accept move;
end if.
every K iterations do

run TA update crit(c) and maxdelay(c).
call UpdateOveruseCoefs;

end.
if loopIterations > Threshold then

return NO-FIT;
end if.

end loop.
greedly optimize the placement of

clustered logic blocks;
end ICP.

Figure 14: Top Level ICP Algorithm

The basic cost function and move proposal schemes have
been discussed above. Figure 14 presents the pseudocode
for the entire ICP algorithm. The algorithm simply chooses
logic elements that participate in illegal clusters and tries
to move them to improve the cost function. Notice also
that simple Timing Analysis (TA) is performed every K
iterations. This call updates the maxdelay and connection
criticality values to reflect the current configuration. The
value of K is adaptively updated based on the amount of
overuse remaining.

procUpdateOveruseCoefs
begin

foreach cluster CLi with constraint violations do
kCi = KCi + γlegality(CLi, nC);
kEi = kEi + γlegality(CLi, nE);
kIi = kIi + γlegality(CLi, nI);
kRi = kRi + γlegality(CLi, nR);
kOi = kOi + γlegality(CLi, nO);

end loop.
end UpdateOveruseCoefs

Figure 15: Updating the Overuse Coefficients

The UpdateOveruseCoefs, shown in Figure 15, is also
called every K iterations to perform the basin filling proce-
dure for directed hill-climbing. Constraint weights are in-
cremented in proportion to the amount of violation. The
parameter γ is called the basin fill rate and it controls the
rate at which the local minima are filled. If γ is too large,
then basins become peaks of a hill too quickly and almost
any move is accepted even if it results in poor timing or

wirelength because violation shifting becomes much more
important than the timing or wirelength. A small value of
γ would result in long runtimes, as basins are slowly filled.

Note that the ICP approach is similar to the Pathfinder [4]
algorithm used for FPGA routing. However, in ICP the logic
elements “fight” for preferred cluster locations, by negotiat-
ing legality, timing and wirelength.

6. RESULTS

Table 1: Experimental Results

Circuit #LEs ∆LEs CP(M)
CP(P)

A(M)
A(P)

bigkey-mcnc 1707 215 1.01 1.02
dsip-mcnc 1370 199 1.01 1.00
diffeq-mcnc 1497 41 1.12 0.93
elliptic-mcnc 3604 472 0.93 0.88
frisc-mcnc 3556 400 1.03 0.95

s38417-mcnc 6406 257 0.94 0.85
tseng-mcnc 1047 83 0.95 0.95

hc11-oc 3877 145 1.02 0.86
des-fip 15509 1190 1.00 0.88
sisc8 1434 61 1.05 1.25

Table 1 shows the effectiveness of incremental placement
on several benchmark circuits. The circuits are initially
placed using the VPR tool and the netlist optimization used
is the sequential retiming procedure described in [5]. The
number of extra logic elements introduced by the retiming
optimization is shown in the column labelled ∆LEs. The
ratio of the critical path (CP) after ICP mapping divided
by the critical path after the netlist optimization shows our
success in minimally disrupting the timing of the preferred
locations. Similarly, the wirelength ratio is also shown.

These results indicate that the incremental placement al-
gorithm is quite sucessful at its goal of producing minimally
disruptive architecturally feasible mappings. Overall, there
is only a 0.8% speed penalty and a 4.1% wirelength improve-
ment in producing the mapping from preferred locations to
mapped locations. As reported in [6], the application of
post-placement retiming in conjunction with ICP results in
a 22% increase in operating frequency in comparison to pre-
placement retiming. ICP was key to achieving this result.
Specifically, if we did a complete re-placement instead of
an incremental placement, the speed increase due to retim-
ing was reduced to 6.9%. This shows that ICP allows for
better convergence for circuit optimizations that run after
placement. In the case of complete re-placement, there is
no guarantee that the optimizations based on the previous
placement will correspond to the new re-placement.

Finally, although runtime was not our primary concern,
the ICP algorithm runs almost eight times faster than VPR
placement on the largest circuit. However, this comparison
is not entirely fair because of many implementation differ-
ences. Figure 16 shows a graph depicting the number of
moves ICP uses to resolve illegality vs the numbers of logic
elements that have changed in the circuit after a netlist op-
timization. At first glance, there appears to be a polynomial
relationship between the number of moves and the number
of LEs changed in the circuit. Indeed, we are able to fit a

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

0 500 1000 1500
Delta LEs

N
u

m
b

er
 o

f
M

o
ve

s

Delta ̂1.7
Experimental

Figure 16: ICP Runtime.

curve to the experimental data of the form:

Moves = k1 ∗ (∆LE)1.7 + k2 (8)

This indicates to us that the typical runtime of the ICP
algorithm is O(∆1.7). The runtime increases in proportion
to the amount of logic cells that have changed, but it is
relatively independent of circuit size. When ∆ approaches
the number of LEs in the circuit, n, it is obvious that ICP is
worse than the VPR placer, as ICP runs in O(n1.7) time in
comparison to the O(n1.33) that is used by VPR. However,
for small changes to a large netlist, ICP can resolve illegality
in a smaller number of moves than complete replacement.

7. CONCLUSIONS
This paper has presented a high-quality incremental place-

ment algorithm targetted specifically at handling the dif-
ficult architectural constraints present in modern FPGAs.
ICP is intended to allow tight integration between netlist
optimizations and placement. In this way circuits can be
restructured with excellent information on the final delays
that will exist after placement and routing. We showed that
ICP does an excellent job in helping with convergence, as
it can maintain operating speed, improve wirelength and
resolve violations created by circuit restructuring.

8. REFERENCES
[1] Altera. Altera 2000 Databook.

[2] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, 1999.

[3] C. E. Cheng. RISA: Accurate and Efficient Placement
Routability Modeling. In ICCAD 1994, pages 690-695,
November 1994.

[4] L. McMurchie and C. Ebeling. PathFinder: A
negotiation-based performance-driven router for
FPGAs, 1995.

[5] D. Singh and S. Brown. Integrated Retiming and
Placement for Field Programmable Gate Arrays.
FPGA 2002.

[6] D. Singh. Ph.D. Thesis, University of Toronto.

[7] Xilinx. Xilinx 2000 Databook.

