
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003 825

Layout Driven Retiming Using the
Coupled Edge Timing Model

Ingmar Neumann and Wolfgang Kunz, Member, IEEE

Abstract—Retiming is a widely investigated technique for per-
formance optimization. It performs powerful modifications on a
circuit netlist. However, often it is not clear whether the predicted
performance improvement is still valid after placement has been
performed. This paper presents a new retiming algorithm using
a highly accurate timing model. It takes into account the effect
of retiming on capacitive loads of single wires as well as fanout
systems. Further, we propose the integration of retiming into a
timing-driven standard cell placement environment. Retiming is
used as an optimization technique throughout the whole placement
process. The experimental results show the benefit of the proposed
approach. In comparison with the conventional design flow based
on the standard FEAS algorithm, our approach achieved an im-
provement in cycle time of up to 34% and 17% on the average.

Index Terms—Interconnect delay, logic-layout interaction,
placement, retiming.

I. INTRODUCTION

RETIMING, originally proposed by Leiserson and Saxe [1],
[2], is a powerful and well-known technique for perfor-

mance optimization of digital circuits. It is based on relocating
registers while preserving the functionality of the circuit. Many
improvements and extensions to the original ideas have been de-
veloped, like acceleration techniques [3] dramatically speeding
up execution time, concepts for integrating retiming into logic
synthesis [4], algorithms for retiming level clocked circuits [5],
[6], algorithms taking register setup and hold times into account
[7], [8], algorithms for retiming registers with enable inputs [9],
and as algorithms that can improve testability [10].

When optimizing large sequential circuits the use of retiming
is very attractive. Other sequential optimization techniques like
state re-encoding suffer from the state explosion problem and
usually fail for circuits containing more than a few hundred reg-
isters. Retiming on the other hand does not require an explicit
representation of the state set. It operates directly on a netlist
description of the circuit and can handle circuits with thousands
of registers.

Nevertheless, retiming has encountered only limited accep-
tance in industrial practice. This is mainly for two reasons.
First, a retimed circuit is very hard to verify against the original
circuit.

However, in recent years there have been advances in the area
of sequential equivalence checking for retimed circuits [11],

Manuscript received July 8, 2002; revised October 28, 2002. This paper was
recommended by Associate Editor S. Hassoun.

The authors are with the Department of Electrical Engineering and Infor-
mation Technology, University of Kaiserslautern, D-67653 Kaiserslautern,
Germany.

Digital Object Identifier 10.1109/TCAD.2003.814253

Fig. 1. Retiming sink gates of a multisink net.

[12]. There is the promise that industrial tools capable of ver-
ifying retimed circuits are becoming available. This paper deals
with a second problem affecting the acceptance of retiming in
practice. The choice of an accurate timing model in combina-
tion with an appropriate retiming algorithm is a delicate issue.

With conventional timing models and retiming techniques, it
often remains unclear whether the predicted performance im-
provement is still valid after placement has been performed.

The original FEAS algorithm, developed by Leiserson and
Saxe, finds retiming for a circuit such that a given cycle time
is met provided such a retiming exists. It is based on a simple
timing model assuming gate delays to be load independent. Un-
fortunately for CMOS technology, this model is not accurate
enough as gate delays cannot be considered to be load indepen-
dent, and retiming registers change the loads of the gates.

In [13]–[15], more sophisticated timing models are used. For
each edge in the retiming graph, several delay values are calcu-
lated covering the two cases that this edge can contain zero or
at least one register. This is already a strong improvement over
previous models. However, these models do not correctly de-
scribe situations given at fanout trees, as shown in Fig. 1.

In real circuits, retiming gates and change the load
(drawn in bold lines) seen by gate and, therefore, also
changes the delay of gate A. This, however, not only affects the
data arrival time at gates and , but also at gate .

In practice, retiming of registers into fanout trees may change
the topology of the affected nets dramatically and can change
arrival times even on paths where no registers have been moved.
Ignoring this effect may lead to unpredictable results.

The advent of deep-submicron technologies introduced ad-
ditional difficulties by increasing the influence of wire length
on the total delay. Loads resulting from wires are affected by
retiming even more than loads resulting from gate inputs and,
above all, are not known before placement.

An interesting approach for integrating retiming into the
design flow was presented in [16]. Retiming is coupled with
partitioning-based floor planning, allowing performance opti-
mization during an early physical design stage. However, the
limited accuracy of the wire-length data being available during
floor planning limits the accuracy of the delay calculations.

0278-0070/03$17.00 © 2003 IEEE

826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

An approach to integrate retiming into detailed placement
was presented in [17]. After performing a conventional place-
ment and routing procedure, an optimization loop consisting of
wire-length estimation, retiming, and register insertion is en-
tered. Even though this approach produces promising results,
it does not fully exploit the potential of coupling placement and
retiming. Note that a timing-driven placer aggressively tries to
shorten wires on critical paths while paying less attention to less
critical wires. This can lead to a balance of path lengths reducing
the optimization potential for retiming.

In order to take all of the above into account, we propose a
new approach for making retiming more practical. It consists of
the following two parts. The first part consists of a new timing
model being used in the retiming graph and a new retiming
algorithm. The timing model allows an accurate modeling of
load changes in fanout systems caused by retiming. The retiming
algorithm is able to exploit the increased optimization potential
resulting from the improved accuracy while preserving the
polynomial time complexity of the original FEAS algorithm.
Furthermore, we propose a tight coupling of retiming and
simulated annealing-based detailed placement. This approach
does not use retiming for a postplacement optimization, but
employs it as an optimization technique throughout the whole
placement process.

II. RETIMING WITH ACCURATE TIMING MODEL

A powerful and efficient retiming algorithm for cycle time
minimization is FEAS [1], [2]. The FEAS algorithm has many
attractive properties and, therefore, we wish to adopt the general
FEAS strategy also in this work. However, combining the basic
idea of FEAS with an accurate timing model is a delicate issue.
The difficulty arises from the fact that FEAS is based on an as-
sumption called path delay monotonicity constraint in [14]. It
is assumed that for any path of the circuit the data arrival time
at a register can never grow if the register is moved backward
in the circuit. The simple timing model of the original FEAS
always fulfills this assumption. Unfortunately, this can change
if more complex timing models are used. If we consider the wire
loads in gate netlists mapped for typical standard cell libraries,
it turns out that, in practice, the monotonicity assumption holds
for two terminal nets in the vast majority of the cases. How-
ever, the problem occurs at the point where we model situa-
tions as shown in Fig. 1 more realistically. In such cases, the
monotonicity assumption indeed may be violated. There is also
a second problem with multisink nets. Even if monotonicity is
not violated, the FEAS strategy of retiming a critical vertex often
leads to suboptimal results. Note that shifting a register into one
branch of a multiterminal net also affects the data arrival time
on paths leading through the other branches of that net.

Trying to maintain the efficiency of FEAS on one hand and
using a realistic timing model on the other hand requires a more
sophisticated solution for retiming critical vertices.

Our new retiming algorithm follows the same strategy as
the well known FEAS-algorithm. We perform an alternating
sequence of running timing analysis and eliminating constraint
violations locally by retiming critical vertices. However, since
we use a more complex and accurate timing model, extensive

Fig. 2. Timing model for single sink net edge.

modifications were necessary both of the arrival time calcula-
tion and of the strategy of deciding when to retime a vertex.

A. Circuit Model

The circuit is mapped onto a weighted directed graph
. Each logic gate is mapped onto a vertex , being as-

signed a delay and a retiming value which is initially
0 and can be incremented during retiming. The logic gate cor-
responding to a vertex is denoted by in the following.

As in [2], is extended by a host vertex representing the
environment of the circuit.

A net driven by gate with driven gates is
modeled as a bundle of edges (“branches”)

. Each edge
is assigned a weight denoting its initial number of reg-
isters. The number of registers on during or after retiming is
denoted by . Furthermore, each
edge is assigned several delay values as explained in the fol-
lowing sections.

1) Single Sink Net Edges: Nets with a single sink are mod-
eled by edge bundles containing only one edge each. For these
edges, our timing model is similar to the model proposed in [13].
An edge is assigned three delay values modeling two
different cases as shown in Fig. 2.

• : delay for a signal propagating from to in the case
that there is no register on , i.e., ;

• : delay for a signal propagating from to the data input
of a register on if there is at least one register on , i.e.,

;
• : delay for a signal propagating from the output of a

register on to , if .

During data arrival time calculation, either and or
are used, depending on . Data arrival time calculation is ex-
plained in more detail in Section II-C1.

2) Multisink Net Edges: A net with sinks is modeled by a
bundle of edges .

As explained in the introduction of the paper the delay of a
particular branch of a multisink net (i.e.,) depends on the
register arrangements in the other branches of that net. To model
these dependencies in the retiming graph, the delay values , ,
and of an edge have to depend on the weights of the
other edges , belonging to the same bundle as .

We handle this in our model by assigning three delay tables to
each edge. Each table contains different values for , , or ,
respectively, according to distinguishable register arrangements
in . Each table entry contains one delay value being valid for
one particular register arrangement.

For distinguishing register arrangements, we have developed
two models with different table sizes. This is elaborated in the
following sections.

NEUMANN AND KUNZ: LAYOUT DRIVEN RETIMING USING THE COUPLED EDGE TIMING MODEL 827

Fig. 3. Distinct register arrangements for a net with two sinks.

a) Complex model: At first, we describe the more accurate
complex model. In real circuits, driving different combinations
of cells leads to different sums of gate-input capacitances.
Furthermore, this requires nets of different topologies with
different lengths. Our complex model enables us to take these
effects into account so that circuit timing can be calculated
in an accurate way.

Let us first consider the situation for the net at the inputs of
the registers, i.e., the net being driven by . In the following,
we denote the branch bundle representing this net by . The

-values and -values of the graph edges depend on
the load dependent portion of the delay of . The load being
driven by depends on the set of gates that has to drive.
The weights of the graph edges determine which gates

belong to that set. These weights also determine whether
has to drive registers. Consequently, if we wish to consider

all cases for the calculation of the load that has to drive, we
have to distinguish for each branch whether or

. For consisting of branches we can enumerate
distinct cases. For each of these cases we can calculate for every
branch a -value and a -value, respectively. Since is only
defined for branches without registers and only for branches
with at least one register, this leads to entries for the -and

-tables of each branch. The -and -tables consist of key-
value pairs, where the key denotes an identifier for a register
arrangement and the value denotes the corresponding -and

-value, respectively.
Let us look at an example. Fig. 3 shows the graph represen-

tations for all possible register arrangements for a net with two
sinks. Because the edge bundle consists of two branches, we
can distinguish four cases. This leads to two different values for

and two different values for each branch. Each register
arrangement is given a binary number shown below the corre-
sponding diagram. For illustration, in this example, the timing
values are given two indices. The first index denotes the branch
number and the second index denotes its position in the table.
The vectors representing delays are drawn a bit shorter than
the vectors to illustrate the fact that a register located on an
edge is an endpoint of a signal path.

For the register arrangements shown in Fig. 3, the tables of
timing values are as follows:

at branch at branch

For each branch, we have one -table and one -table. Each
table row represents a delay value being valid for a particular
register arrangement. The second column contains the delay

Fig. 4. Creating circuit from retiming graph.

values itself, and the first column contains the number of the
register arrangement for which the delay is valid.

Next, we consider the nets at the outputs of the registers and
analyze the different cases for the values of . We make the
assumption that a bundle is realized with a minimal number
of registers (register sharing) when the netlist is created from
the retiming graph. An example is shown in Fig. 4.

We believe this assumption to be reasonable because in
typical standard cell libraries, latch cells have a much higher
area requirement than simple logic cells. Therefore, if the
driving force of a register is not sufficient to drive a long
and widely spread net it is usually more effective to buffer
the net and to replicate buffers rather than to replicate area
consuming registers.

Consequently, for calculating the values for a particular
branch we need to distinguish for each other branch

, , whether or .
This models the fact that under the assumption described above,
two gates and with are driven by
the same register. In the circuit shown in Fig. 4, this is the case
for and .

Because values are only defined for edges with at least one
register, we conclude that also for the tables for we have to
distinguish different cases leading to table entries.

b) Simple model: The complex model permits an accu-
rate modeling of the real situation but it has the drawback of an
exponential table growth. This makes it impossible to use this
model for large fanout systems. Therefore, we propose a second
model with linear growth of the table size.

To reach linear growth, we assume that the values of and
the values of of a particular branch are the same for
all configurations containing the same number of branches
with , , .

In other words, for the calculation of the delay values of a
particular branch, we only care about how many of the other
branches of the bundle carry at least one register and not in
which other branches these registers are located. This ignores
the differences in the input capacitances of different gate types
as well as the differences in the wire loads for the different
register arrangements. Note, however, that the total load rep-
resented by a net and its sinks increases with the number of
branches in this net. Therefore, the error resulting from ignoring
the above-mentioned differences decreases for nets with a large
number of branches. For nets with a small number of branches,
we can afford to use the complex model.

Similarly, for the -values of , we assume that they are
the same for all configurations containing the same number of
branches with , , .

This limits the size of each table for each branch in a bundle
to . In our implementation we use the complex model for

828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

bundles with at most four branches. For the circuits examined
in our experiments, it turned out that more than 90% of all nets
can be described using the complex model. For the few larger
nets with more than four sinks, we use the simple model.

B. Parameter Calculation

This section explains how the values of , , , and are
determined from a circuit netlist.

The delay of a vertex denotes the load independent
portion of the delay of gate . The calculation of the edge
delays is based on a simple -model based approach

delay (1)

This model is widely used for delay calculation in cases
where no detailed routing information is available, e.g., during
placement. In the equation shown above, denotes the capaci-
tive load being driven by a particular gate, and and denote
electrical parameters of the gate as they are derived from a cell
library.

To calculate the edge delays , , and of the outgoing
edges of a vertex , we have to determine the loads seen by

for all possible register arrangements. The load seen by
for a particular register arrangement consists of the input

capacitances of the gates driven by and the capacitance of
the net connecting them.

In cases where no wire-length information is available, e.g.,
when retiming is performed during logic synthesis, wire capac-
itances may be assumed to have zero value.

In the following, we describe a wire-length-prediction
method being applicable when placement data are available.
This method is used for integrating retiming into placement as
will be described in a later section.

The net lengths are predicted for each possible register
arrangement using different methods for the simple and the
complex delay model.

1) Complex Model: In this model, we assume specific reg-
ister positions for the estimation of the net lengths. For the cal-
culation of the -and -values in a branch bundle

, , the length of net driven by is
required. To estimate , we determine a (minimum size) rec-
tangle containing and those gates that are driven
by . If no register is present we use the half of the perimeter
of as . If registers are present, we determine a rectangle

containing the gates that are driven by a register. If
and overlap, we assume the register to be positioned inside

and we use the half of the perimeter of as . If they do
not overlap, we determine a minimum size rectangle which
touches and . The center of gives the assumed location
for the register. As , we use the sum of the half perimeter of

and the quarter perimeter of . Fig. 5 shows the estimation
of for the register arrangements shown in Fig. 3. The binary
number shown below the diagrams correspond to the numbers
introduced in Fig. 3.

For a particular and , respectively, we obtain

in (2)

Fig. 5. Estimation of length
�������

of a net
�

driven by �
�	�
�

for different cases.

and

in

setup (3)

where denotes the driving force of , stands for the
capacitance per unit length, denotes the input capacitance
of a port, and setup denotes the setup time of the register.

For the calculation of a value of a branch for a particular
register arrangement, the length of net driven by a reg-
ister is required. For the estimation of , we determine a
rectangle containing all gates that are driven by this
register and a rectangle containing and those gates
driven by or by other registers. If and overlap, we
assume the register to be positioned inside and we use the
half of the perimeter of as . Otherwise, we determine
a minimum size rectangle touching and and assume
the register to be located at the center of . is calculated
using the sum of the half of the perimeter of and the quarter
of the perimeter of . For a particular , we obtain

(4)
where denotes the driving force and the load indepen-
dent clock to output delay of the register.

2) Simple Model: As already mentioned in the simple
model, we care only about how many branches of a bundle

, carry a certain number of
registers but not in which branches these registers are located.
Therefore, we do not determine register positions for the length
estimation. Instead we use a simplified length-estimation
method using the half perimeter of the rectangle containing

and all with .
For the calculation of the -and -values of , the length

of net driven by is required. Our estimation relies on
the observation that the net length grows with increasing number

NEUMANN AND KUNZ: LAYOUT DRIVEN RETIMING USING THE COUPLED EDGE TIMING MODEL 829

of gates driven by . The more gates are driven by
registers the fewer gates need to be driven by . For a register
arrangement containing branches with ,

, we estimate as follows:

perimeter
(5)

In most cases, we observed that taking the square root gives
more realistic values than a linear model.

For the load capacitance seen by , we obtain

load (6)

where denotes the average input capacitance of all input
ports driven by when no registers occur on any branch, i.e.,

for all . For , at least one gate is
driven by a register. So, has to drive one register in addition
to the logic gates and we have to add the input capacitance

of the register. (Remember that we assume register sharing
as described in Section II-A2a.

For a particular and , we obtain

load and load setup (7)

For determining a particular value of , the length of
net driven by the register is required. For a particular branch

, let denote the number of branches , ,
showing the same register count as , i.e., .
We calculate as follows:

perimeter
(8)

The load seen by the register is

load (9)

The corresponding value of results to

load (10)

C. Retiming Algorithm

Like in the FEAS-algorithm, we basically perform an al-
ternating sequence of calculating arrival times and retiming
critical vertices.

We have already explained that retiming one particular end
vertex of a branch bundle has an influence on the delay of
paths leading through other end vertices of the same bundle.
We also showed that our coupled edge timing model enables
us to take this effect into account. Now, we explain how to
exploit the resulting optimization potential. For this purpose,
we have to extend the basic FEAS-strategy of retiming critical
vertices. In order to identify feasible register arrangements in
a branch bundle, we have to consider all end vertices of the
bundle simultaneously. Furthermore, we have to consider data
arrival times at registers positioned on edges of that bundle as
well as data arrival times at registers positioned on outgoing
edges of end vertices of the bundle. The details are given in the
following subsections.

1) Arrival Time Calculation: Recall that our timing model
from Section II-A assigns distinct delays to both vertices and

Fig. 6. Definition of edge arrival time.

edges. Consequently, we can associate different arrival times
with a vertex and its outgoing edge. First, for each edge, we
determine , , and for the actual situation. The arrival time

of a vertex is calculated from the delay values of the
incoming edges and the arrival time of the prede-
cessor vertices of as follows:

(11)
For an edge , we define an edge arrival time :

(12)
The parameter denotes the time to register for a vertex
and is calculated as

(13)

using the values for the case that . In other words,
for the case that there is a register on , denotes the signal
arrival time at the input of this register. Otherwise, if no register
is present, denotes the latest arrival time at an assumed
(not necessarily yet present) register on an outgoing edge of .
An illustration of this definition is shown in Fig. 6.

This calculation model is motivated by the retiming proce-
dure of the following section. This procedure takes into account
that a previously critical end vertex of a bundle may become
uncritical by retiming another end vertex of the same bundle.
In this case, however, since this effect is of limited strength, we
assume that an immediate successor of remains critical and
needs to be retimed.

2) Retiming Critical Vertices: In contrary to the FEAS-
algorithm which inspects each vertex separately when deciding
whether or not to retime it, we consider all end vertices of a
branch bundle at one glance.

This is motivated by the fact that the data arrival times of these
vertices depend on each other, and it enables us to detect solu-
tions where retiming some of the end vertices of a bundle can
remove a constraint violation in a neighbor branch, as shown
in Fig. 7. Retiming gate allows a register configuration as
shown on the right side which leads to a load reduction for gate

. This effect may be large enough to let all critical paths be-
come uncritical.

At the core of our retiming algorithm, we have function ana-
lyze_nets shown in Fig. 8. It investigates each edge bundle and
marks vertices for retiming.

830 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

Fig. 7. Retiming example.

Fig. 8. Algorithm analyze_nets().

Definition 1: An edge is critical if .
Definition 2: An edge bundle is critical if at least one edge

is critical.
If an edge bundle is critical, then we

try to find a register arrangement on the edges that is
reachable by backward retiming some vertices . If an appro-
priate arrangement is found, we mark all vertices that need to be
retimed in order to achieve this arrangement. If more than one
solution is found, function select_retiming chooses one of them
heuristically using the following heuristic.

1) Choose the solution forcing the minimum number of end
vertices of uncritical edges to be retimed.

2) If multiple choices still exist, choose the one forcing a
minimum number of end vertices of critical edges to be
retimed.

3) If multiple solutions still exist, choose the one minimizing
.

The idea behind this heuristic is to perform only as much re-
timing as necessary to remove local timing constraint violations,
i.e., we attempt to be as conservative as possible. In this way, we
make sure that we do not destroy solutions that may be found
in a later processing step. This is also important for our theoret-
ical considerations in Section III. If no arrangement is found, all
vertices with , are marked.

The basic philosophy of our procedure is to exploit load cou-
pling between branches in order to extend the number of feasible
retimings in a fanout system. By exploring these additional pos-
sibilities, our approach may find a feasible retiming where the
conventional approach (which considers each vertex separately)
fails.

Our modified FEAS-algorithm using the coupled edge timing
model (FEAS_CTM) tries to find a retiming for a given cycle
time , as shown in Fig. 9.

If no feasible retiming exists, the original FEAS algorithm de-
tects this in iterations of its inner loop. Standard FEAS tries

Fig. 9. Algorithm FEAS_CTM().

to satisfy violated timing constraints locally by retiming a crit-
ical vertex . FEAS_CTM, however, first attempts to resolve the
violation by retiming one or more successors of , whereas
itself eventually may be retimed during a later iteration. There-
fore, FEAS_CTM needs

iterations to test whether or not it can reach a feasible retiming.

III. OPTIMALITY ISSUES

An important issue for any retiming algorithm is the cycle
time it achieves. The original FEAS algorithm guarantees that
it will find a solution for a given cycle time if at least one so-
lution exists under the assumption that all vertex delays have a
nonnegative value. For VLSI circuits, this is always the case.
For the more accurate Soyata–Friedman timing model the au-
thors of [14] proposed two approaches. For the general case
where no assumptions are made about edge delays in the re-
timing graph, they developed a branch and bound based retiming
algorithm which guarantees that a solution will be found if one
exists. However, this approach suffers from tremendous CPU
runtimes for larger circuits. Therefore, it is applicable only for
very small circuits. For the case that the monotonicity constraint
is not violated they showed that a standard algorithm for solving
linear inequalities, e.g., the Bellman–Ford algorithm, also guar-
antees that a solution will be found if one exists. It has been
shown in [2] that a relaxation algorithm like FEAS operating
directly on a retiming graph performs the same operations as
Bellman–Ford would perform on a constraint graph that has
been derived from the same retiming graph. For reasons of com-
putational efficiency, the Soyata–Friedman model is of practical
interest only in combination with an efficient constraint solver
like Bellman–Ford. Therefore, we consider this combination in
this section and use it as reference point for the following theo-
retical analysis of our approach.

Our new timing model allows a more precise representation
of a circuit than previous models and, consequently, it allows
finding feasible solutions that cannot be detected using simpler
models. However, because of the coupling between the edges,
our heuristics for selecting vertices for retiming cannot guar-
antee that local decisions always lead to the global optimum.
Hence, compared to standard FEAS or the above-mentioned
combination of Soyata–Friedman model and the Bellman–Ford

NEUMANN AND KUNZ: LAYOUT DRIVEN RETIMING USING THE COUPLED EDGE TIMING MODEL 831

algorithm, we lose an attractive theoretical property. On the
other hand, it turns out to be beneficial to sacrifice this theoret-
ical property. Known approaches are only optimal within their
inaccurate timing model. Their solutions may not be optimal any
more if delays are calculated in a more accurate way, e.g., in the
circuit netlist after remapping. Consequently, for comparing the
quality of solutions found by various algorithms, it is necessary
to consider the accuracy of the timing model being used.

Taking this into account, it is possible to prove that if
the Bellman–Ford algorithm using the Soyata–Friedman
timing model finds a feasible solution for a particular cycle
time, then FEAS_CTM always finds one, too. Consequently,
in a binary search-based optimization using FEAS_CTM
results in a smaller or at least the same cycle time than
using Bellman–Ford/Soyata–Friedman. This is shown in the
following.

Because the algorithms use different timing models, different
methods for mapping a circuit netlist onto a retiming graph are
required. Consequently, for a comparison of the results achieved
by the algorithms, we have to take into account how vertex de-
lays and edge delays in the retiming graph are derived from gate
delays and wire delays in the circuit netlist.

For our timing model, this has been described already
in the previous sections. In the following, we consider the
Soyata–Friedman model. We have already explained that the
delay for a signal propagating from one gate to an immediate
successor gate depends on the register arrangement in neighbor
paths of the fanout system. However, the Soyata–Friedman
model does not allow us to assign multiple delay values to
an edge as would be necessary for taking these dependencies
into consideration, so we have to opt for one particular value.
If we chose optimistic values for the edge delays, then the
Soyata–Friedman approach would achieve a solution that may
not be feasible anymore after mapping the retiming graph
back onto a circuit netlist. Consequently, if we want to be sure
that the final circuit reaches at least the cycle time that has
been measured in the retiming graph, it is mandatory to use
pessimistic values for , , and .

In other words, we can consider the Soyata–Friedman model
as a simplified version of our model where each delay table
contains only one entry. This entry corresponds to the maximum
entry in the corresponding table in our model. This leads to the
following.

Observation 1: A Soyata–Friedman retiming graph can
be derived from a FEAS_CTM retiming graph by replacing
each edge delay table by the maximum entry of that table.

For the remainder of the proof, we assume that monotonicity
constraints are not violated in because this is a precondition
for guaranteeing optimality when using Bellman–Ford.

Definition 3: An edge weighting (e.g., a register placement)
in a retiming graph is feasible if each register to register path
does not exceed the target cycle time .

Lemma 1: For each edge , the delay value(s) holding
for any edge weighting in are less or equal to the corre-
sponding delay values of the corresponding edge .

Proof: Follows from the way is derived as described
by Observation 1.

Lemma 2: For a particular edge weighting, each path in
has a smaller or the same delay than the corresponding path in

.
Proof: Results from Lemma 1. If each edge in has a

delay less or equal to the delay of the corresponding edge in
, then the same holds for each path.

Lemma 3: If an edge weighting in is feasible, then the
same edge weighting in is also feasible.

Proof: Results from Lemma 2.
Lemma 3 tells us that if a feasible solution is found in

by Bellman–Ford, then the same solution is also detected to be
feasible in by FEAS_CTM.

Next, we show that if Bellman–Ford finds a feasible edge
weighting in , then FEAS_CTM finds the same edge
weighting in except in the case when FEAS_CTM previously
finds another edge weighting which is also feasible. In those
cases, FEAS_CTM terminates and returns the feasible solution
found first. The basis for the proof is given by the behavior
of FEAS_CTM. FEAS_CTM attempts to remove a constraint
violation in always using the same, or a more conservative,
retiming than the one Bellman–Ford would apply in . This
means that each solution found by Bellman–Ford in is
reachable by FEAS_CTM in .

More formally, we can state it as follows.
Theorem 1: If FEAS_CTM decides to retime a critical vertex
to remove a constraint violation in , Bellman–Ford also re-

times the corresponding vertex in .
(Note that the opposite does not hold. This is the reason why

FEAS_CTM is able to detect feasible solutions in that cannot
be detected in .)

Proof: Let us first review under which conditions a vertex
is retimed. In there are no dependencies between

edge delay values and register arrangements in neighbor paths.
Vertex is considered to be critical (and is retimed) if the data
arrival time at the input of a register located on an outgoing edge
exceeds , e.g., if

(14)

Now, let us investigate under which circumstances a vertex
is retimed by FEAS_CTM. A vertex may be retimed
only if at least one incoming edge of belongs to a critical
edge bundle. Let us denote this edge by and the corresponding
critical bundle by . We have to distinguish the following cases.

Case 1) is critical.
Case 1.A: : This means that there is al-
ready at least one register present on . Remember
that in that case function analyze_nets does not
move another register onto , i.e., is not retimed
during this iteration.
Case 1.B: : in this case select_retiming
may select for retiming. From equations 12 and
13, it follows that

(15)

holds. From Lemma 1 and Lemma 2 it follows that
if 15 holds for , then 14 holds for the corre-
sponding vertex , too. Consequently,
is retimed, too.

832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

Case 2) is not critical, i.e., some other edge(s) of the bundle
is (are) critical: We distinguish further:

Case 2.A: : For the same reason as in
case 1.A, is not retimed.
Case 2.B: : In this case, may be
retimed despite is uncritical. We have to distin-
guish the following further.

Case 2.B.a: Retiming the end vertices only
of (some or all) critical edges of lets
become uncritical.

In this case, is not retimed. Remember
that analyze_nets tries to minimize the
number of retimed vertices that are end
vertices of uncritical edges. (This number is
zero in this case).
Case 2.B.b: Considering the end vertices
only of critical edges in for retiming is
not sufficient to let become uncritical i.e.,
it always leaves some edges in critical.

In this case, select_retiming decides to re-
time some end vertices of uncritical edges,
i.e., may be retimed. Now, let us consider
the corresponding vertex . If re-
timing the end vertices only of critical edges
in always leaves some edges in critical,
then applying the same retiming operations
to the corresponding vertices in leaves
the corresponding edges in critical. Con-
sequently, 0 holds for the start vertex of
these edges and, therefore, is retimed. But
this means that all successor vertices of
being reachable via zero weighted edges are
retimed, too. Consequently, is retimed,
too.

Theorem 1 tells us that Bellman–Ford moves every register
across a larger or at least the same number of vertices as
FEAS_CTM. Informally spoken, Bellman–Ford is always
ahead of FEAS_CTM with shifting registers. It remains to show
that in those cases when Bellman–Ford finds a feasible solution
FEAS_CTM also stops at that solution at last, i.e., FEAS_CTM
does not jump over that solution. In general, FEAS_CTM
may jump over feasible solutions because we do not presume
monotonicity in . However, because monotonicity is fulfilled
in , any solution being feasible in is not skipped by
FEAS_CTM in .

An example showing the difference in the behavior of
FEAS_CTM and Soyata–Friedman/Bellman–Ford is shown in
Fig. 10.

IV. INTEGRATION INTO PLACEMENT

A. Overview

The core of our approach is a timing driven simulated an-
nealing-based standard-cell placement algorithm following the
philosophy of common placement tools such as [18]. Note
that FEAS_CTM could also be integrated into other place-
ment algorithms which allow netlist modifications during the
placement process. Fig. 11 gives an overview of the placement

Fig. 10. Retiming with and without edge coupling.

Fig. 11. Placement at a particular temperature level.

procedure at a particular temperature level. First, a static timing
analysis is performed. For this analysis, wire-length estima-
tions obtained from the actual placement are used. If timing
constraints are already met, we continue with the placement
process immediately. Theoretically, it would be possible to
stop the placement process if timing constraints are already
met at the beginning. However, continuing with the placement
process in general makes sense because a further reduction of
total wire length often can lead to a more compact solution. If
timing constraints are not met at this point, a retiming-based
optimization step is performed. Afterwards, the newly created
registers are inserted into the placement using a fast placement
approach. Then, wire lengths are reestimated and the cycle
time is calculated again. If constraints are met now, or at least
an improvement has been achieved, the new configuration is
accepted, otherwise, all modifications of the netlist structure
and the placement are to be rejected. Afterwards, net weights
are recalculated and the placer begins another iteration.

The following sections describe the steps of the placement
process in more detail.

B. Register Placement

In general, a simulated annealing-based placer is able to find
good positions for the newly created registers, independent of
their initial position. But this process takes a lot of time if reg-
isters are inserted randomly, making it impossible to verify im-
mediately after register insertion whether or not a cycle-time
improvement has been really achieved.

Furthermore, it saves a lot of work for the placer if new reg-
isters are inserted at “reasonable” locations, especially at low
temperatures when cells are not allowed to make large jumps.

NEUMANN AND KUNZ: LAYOUT DRIVEN RETIMING USING THE COUPLED EDGE TIMING MODEL 833

Fig. 12. Single register placement example.

Therefore, we use a separate register insertion step to provide
the timing analyzer quickly with realistic assumptions about the
wire lengths after retiming has been performed. For each new
register, a position is determined such that the sum of the lengths
of the nets connected to this register is minimized. In many sit-
uations, the result is not a particular vertex, but a target area
of rectangular shape. In the latter case, we look for the most
suitable cell gap inside this area and position the register there.
This helps to keep the modifications of the original placement as
small as possible. If the gap is not large enough, neighbor cells
are pushed aside first. By doing so, it is always guaranteed that
no cell overlapping occurs. At this point, no further work is done
to reuse gaps left by deleted registers. No work is done either to
balance the total row length because these tasks are performed
by the simulated annealing placer later. An example of inserting
a single additional register is shown in Fig. 12.

C. Repeated Check of Retiming and Placement

After retiming has been performed and the newly introduced
registers have been added to the placement, wire lengths are es-
timated again and timing analysis is repeated to check whether
cycle time really has been improved. At a first glance, this check
may seem unnecessary because retiming-based cycle time op-
timization of a synchronous network should at least not dete-
riorate the cycle time. However, in our experiments it turned
out that, when the effect of retiming on the placement is taken
into account, it is indeed possible that a retiming step increases
cycle time. The first reason for this is that retiming may increase
the number of registers in a circuit, sometimes dramatically. In
typical standard cell libraries, flip flops and latches have a far
greater area requirement than simple logic cells. Thus, already
small increases in register count may result in a significant in-
crease in area requirement. This leads to longer wires and may
offset the performance gain achieved by retiming. The second
reason is that modifying placement changes the positions of
cells and the lengths of nets which are not directly affected by
retiming. These effects cannot be taken into account by the re-
timing algorithm and may also result in cycle-time deterioration.

Therefore, a newly retimed configuration is only accepted if a
performance improvement has been achieved immediately after
the registers have been inserted. Otherwise, the modifications of
placement and netlist are rejected.

TABLE I
CYCLE TIME AND REGISTER COUNTS FOR FEAS_CTM

D. Accelerating Retiming

In our experiments, we observed that in those cases where
FEAS_CTM has been able to identify a feasible retiming it
needed only a very small number of iterations of its
inner loop. Consequently, the retiming process may be speeded
up by using a technique for detecting unreachable cycle times
early. The same observation was made by Shenoy and Rudell
[3] for the original FEAS-algorithm. In our implementation, we
use the acceleration technique described in [20].

V. EXPERIMENTAL RESULTS

In order to evaluate the benefit of our new timing model and
the tight integration of placement and retiming, a comparison of
three different design flows is of interest.

• A conventional design flow consisting of retiming a logic
netlist, followed by timing-driven placement.

• A design flow as in [17] consisting of timing-driven
placement, followed by retiming using the delay values
calculated from the final placement. After performing a
register insertion step as described in Section IV-B, some
additional placement steps at very low temperatures are
performed to achieve uniform row lengths again.

• A tight integration of retiming and placement as described
in this paper.

For our experiments, we mapped the larger circuits of the
ISCAS’89 benchmark set onto a 0.18- m-standard cell library.
The results are shown in Table I. Column 2 contains the achieved
cycle time for a timing-driven placement approach without any
application of retiming. Then, for each of the previously de-
scribed design flows using retiming, the achieved cycle time
(c.t.) in nanoseconds and the final number of registers (#FF)
are shown. Columns 3 and 4 contain results for preplacement
retiming, columns 5 and 6 contain results for postplacement re-
timing, and columns 7 and 8 show the results for the approach
presented in this paper. The wire length values used for cycle
time calculation have been estimated using the half-perimeter
bounding-box method commonly used in placement tools.

834 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 7, JULY 2003

TABLE II
RESULTS FOR STANDARD FEAS

TABLE III
RESULTS FOR SOYATA–FRIEDMAN TIMING MODEL

In order to show the impact of out new retiming algorithm
FEAS_CTM, we repeated these experiments for standard
FEAS (Table II) and for FEAS_CTM in combination with the
Soyata–Friedman model as described in Section III (Table III).

The experimental results show the following.

1) Using retiming only before placement achieved the
smallest performance improvement of all strategies. In
a few cases, cycle time was even larger after placement.
If retiming was applied after placement, we achieved
somewhat better results, and in no case was there was
an increase of cycle time. However, this approach was
outperformed by using tight integration as proposed in
Section IV. It achieved equal or better results for each
benchmark.

2) Using standard FEAS or retiming based on the
Soyata–Friedman model clearly achieved smaller
improvements than FEAS_CTM. This confirms that a
careful analysis of load changes caused by retiming
in fanout systems does indeed contribute to a further
reduction of cycle time.

Table IV gives a summarizing overview of the approaches by
comparing the achieved improvements in cycle time. We note

TABLE IV
ACHIEVED CYCLE TIME IMPROVEMENTS IN PERCENT

TABLE V
CPU RUNTIMES FOR RETIMING IN SECONDS

that both the coupled-edge time model and the integration of
retiming into placement substantially contribute to the quality
of our results.

Table V contains the CPU run times in seconds on a Sun Ultra
Sparc 5 Workstation for trying to reach a certain target cycle time
using various retiming algorithms. The runtimes are average
values being derived from numerous optimization runs using
different placements and different target cycle times. The table
shows that using a coupled-edge timing model (CTM) instead
of the Soyata–Friedman model (abbreviated by SF) enlarges the
runtime by a factor of 4–10. However, the total CPU time spent
for any of the retiming methods is negligible compared to the
computational effort spent in standard placement algorithms
or other optimizations performed during a typical design flow.

Overall, we observe that it is indeed of great interest to
investigate accurate timing models for retiming as well as the
integration of retiming into placement. In comparison with
the conventional design flow (preplacement standard FEAS,
followed by timing driven placement), our new approach (tight
coupling of FEAS_CTM and placement) achieved an improve-
ment in cycle time of up to 34% and 17% on the average.

VI. CONCLUSION

A new retiming algorithm has been developed using a highly
accurate timing model. This allows to model timing at fanout
trees correctly. In general, our approach pursues the same basic
retiming strategy as the conventional FEAS algorithm leading
to low complexity of the overall procedure. However, a more
detailed local analysis of fanout systems improves the accuracy
of the timing data and makes it possible to identify better reg-
ister locations than in previous approaches. Furthermore, we
present an approach for integrating retiming into the physical
design process. Instead of using retiming as a preplacement or
a postplacement optimization method it is applied as a cycle
time improvement technique throughout the whole placement

NEUMANN AND KUNZ: LAYOUT DRIVEN RETIMING USING THE COUPLED EDGE TIMING MODEL 835

process. The experimental results show that our integrated ap-
proach exploits the optimization potential of retiming and place-
ment significantly better than applying retiming only before or
after placement.

REFERENCES

[1] C. Leiserson and B. Saxe, “Optimizing synchronous systems,” J. VLSI
Comput. Syst., vol. 1, no. 1, pp. 41–67, 1983.

[2] , “Retiming synchronous circuitry,” Algorithmica, vol. 6, no. 1, pp.
5–35, 1991.

[3] N. Shenoy and R. Rudell, “Efficient implementation of retiming,”
in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 1994, pp.
226–233.

[4] S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli,
“Retiming and resynthesis: Optimizing sequential networks with com-
binational techniques,” IEEE Trans. Computer-Aided Design, vol. 10,
pp. 74–84, Jan. 1991.

[5] B. Lockyear and C. Ebeling, “Optimal retiming of level-clocked circuits
using symmetric clock schedules,” IEEE Trans. Computer-Aided De-
sign, vol. 13, pp. 1097–1109, Sept. 1994.

[6] A. Ishii, C. Leiserson, and M. Papaefthymiou, “Optimizing two-phase,
level-clocked circuitry,” in Proc. Brown/MIT Conf., Adv. Res. VLSI Par-
allel Syst., 1992, pp. 246–264.

[7] M. Papaefthymiou, “Asymptotically efficient retiming under setup and
hold constraints,” in Proc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 1998, pp. 288–295.

[8] V. Sundararajan, S. Sapatnekar, and K. Parhi, “MARSH: min-area re-
timing with setup and hold constraints,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 1999, pp. 2–13.

[9] K. Eckl, J. Madre, P. Zepter, and C. Legl, “A practical approach to
multiple-class retiming,” in Proc. ACM/IEEE Design Automation Conf.,
1999, pp. 237–242.

[10] A. El-Maleh, T. Marchok, J. Rajski, and W. Maly, “Behavior and
testability preservation under the retiming transformation,” IEEE Trans.
Computer-Aided Design, vol. 16, pp. 528–542, May 1997.

[11] D. Stoffel and W. Kunz, “Record & play: A structural fixed point iter-
ation for sequential circuit verification,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 1997, pp. 394–399.

[12] C. van Eijk, “Sequential equivalence checking without state space tra-
versal,” in Proc. Design Automation Test Eur., 1998, pp. 618–623.

[13] T. Soyata and E. Friedman, “Retiming with nonzero clock skew, variable
register, and interconnect delay,” in Proc. IEEE/ACM Int. Conf. Com-
puter-Aided Design, 1994, pp. 234–241.

[14] T. Soyata, E. Friedman, and J. Mulligan, “Incorporating interconnect,
register, and clock distribution delays into the retiming process,” IEEE
Trans. Computer-Aided Design, vol. 16, pp. 105–120, Jan. 1997.

[15] K. Lalgudi and M. Papaefthymiou, “DELAY: An efficient tool for re-
timing with realistic delay modeling,” in Proc. ACM/IEEE Design Au-
tomation Conf., 1995, pp. 304–309.

[16] J. Cong and S. Lim, “Physical planning with retiming,” in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, 2000, pp. 2–7.

[17] T. Tien, H. Su, Y. Tsay, Y. Chou, and Y. Lin, “Integrating logic retiming
and register placement,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 1998, pp. 136–139.

[18] C. Sechen, VLSI Placement and Global Routing Using Simulated An-
nealing. Norwell, MA: Kluwer, 1988.

[19] I. Neumann and W. Kunz, “Placement driven retiming with a coupled
edge timing model,” in Proc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, 2001, pp. 95–102.

[20] I. Neumann, K. Sulimma, and W. Kunz, “Accelerating retiming under
the coupled-edge timing model,” in Proc. IEEE Annu. Symp. VLSI, Apr.
2002, pp. 135–140.

Ingmar Neumann received the DipI.-Ing. degree
in electrical engineering from the University of
Karlsruhe, Karlsruhe, Germany, in 1992 and the
Ph.D. degree in computer science from the University
of Technology of Berlin, Berlin, Germany, in 1998.

From 1998 to 2001, he held a Postdoctoral po-
sition in the Computer Science Department at the
University of Frankfurt a.M., Frankfurt, Germany.
Currently, he is with the Electronic Design Au-
tomation Group of the Department of Electrical
Engineering at the University of Kaiserslautern,

Kaiserslautern, Germany. His research interests include VLSI logic and
layout synthesis, timing analysis, and layout-driven logic optimization for
deep-submicron technologies.

Wolfgang Kunz (S’90–M’91) received the Dipl.Ing.
degree in electrical engineering from the University
of Karlsruhe, Karlsruhe, Germany, in 1989 and the
Ph.D. degree from the University of Hannover, Han-
nover, Germany.

From 1989 to 1991, he was with the Electrical and
Computer Engineering Department at the University
of Massachusetts, Amherst. From 1993 to 1998,
he was with Max Planck Fault-Tolerant Computing
Group at the University of Potsdam. From 1998
to 2001, he was a Professor in the Department of

Computer Science at the University of Frankfurt. Since 2001, he has been a
Professor with the Department of Electrical Engineering at the University of
Kaiserslautern, Kaiserslautern, Germany. He conducts research in the areas of
logic and layout synthesis, test generation, and formal hardware verification.

Prof. Kunz has received several awards including the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN Best Paper Award. He is a member of the Asso-
ciation for Computing Machinery.

