
Balancing Interconnect and Computation in

a Reconfigurable Computing Array

(or, why you don’t really want 100% LUT utilization)

AndrkDeHon
Berkeley Reconfigurable, Architectures, Software, and Systems

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720-1776

<andre@acm.org>

Abstract 4. Map circuits to a range of points in the interconnect space, and
assess their total area and utilization.

FPGA users often view the ability of an FPGA to route designs with
high LUT (gate) utilization as a feature, leading them to demand
high gate utilization from vendors. We present initial evidence
from a hierarchical array design showing that high LUT utilization
is not directly correlated with efficient silicon usage. Rather, since
interconnect resources consume most of the area on these devices
(often SO-SO%), we can achieve more area efficient designs by al-
lowing some LUTs to go unused-allowing us to use the dominant
resource, interconnect, more efficiently. This extends the “Sea-of-
gates” philosophy, familiar to mask programmable gate arrays, to
FPGAs. Also introduced in this work is an algorithm for “depop-
ulating” the gates in a hierarchical network to match the limited
wiring resources.

5. Examine relationship between LUT utilization and area.

2 Relation to Prior Work

Most traditional FPGA interconnect assessments have been limited
to detailed population effects [1] [15]. In particular, they let the
absolute amount of interconnect (i.e. number of wiring channels
or switches) float while assessing how closely a given population
scheme allows detailed routing to approach the limit implied by
global routing. They also assume that the target is to fully populate
the LUTs in a region of the interconnect.

1 Introduction

The ability of an FPGA to support designs with high LUT usage
is regularly touted as a feature. However, high routability across a
variety of designs comes at a large expense in interconnect costs.
Since interconnect is the dominant area component in FPGA de-
signs, simply adding interconnect to achieve high LUT utilization
is not always area efficient. In this paper, we ask:

Instead, we take the viewpoint that a given FPGA family will
have to have a fixed interconnect scheme and we must assess the
goodness of this scheme. To make maximum use of the fixed inter-
connect, in regions of higher interconnect requirements where the
design is more richly connected than the FPGA, we may have to use
the physical LUTs in the device sparsely resulting in a depopulated
LUT placement. This represents a “Sea-of-Gates” usage philos-
ophy as first explored for FPGAs in University of Washington’s
Triptych design [4].

l Is an FPGA with higher LUT usage more area ejicient than
one with lower LUT utilization?

l That is: Is LUT usabili4 directly correlated with area efi-
ciency ?

Our results to date suggest that this is often not the case-
achieving high LUT utilization can often come at the expense of
greater area than alternatives with lower LUT utilization. While
additional interconnect allows us to use LUTs more heavily, it often
causes us to use the interconnect itself less efficiently.

To answer this question, we proceed as follows:
1. Define an interconnect model which allows us to vary the rich-

ness of the interconnect.
2. Define a series of area models on top of the interconnect model

to estimate design areas.

For the sake of illustration, consider a design which has a small,
but heavily interconnected controller taking up 20% of the LUTs
in the design. The rest of the design is a more regular datapath
which does not tax interconnect requirements. If we demanded full
population, we would look at the interconnect resources necessary
to fully pack the controller, and those requirements would set the
requirements for the entire array. However, the datapath portion of
the chip would not need all of this interconnect and consequently
would end up with much unused interconnect. Alternately, we can
spread out the controller, ignoring some LUTs in its region of place-
ment, so that the whole FPGA can be built with less interconnect.
Now, the controller may take up 30% of the device resources since
it cannot use device LUTs 100% efficiently, but the whole device is
smaller since it requires less interconnect.

3. Develop an algorithm for mapping to the limited wiring re-
sources in a particular instance of the interconnect model.

Permission to make digital or hard copies of all or part ul’this work ~OI

personal or classroom use is gr-antcd without fee provided that cop!cs

arc not made or distrihutcd for profit or commercial advantaSc and that

copies bear this notice and the full citation on the first page. lo copy

otherwse. to republish, to post on wwrs or to redistribute to lists.

rqu~rss prior specific permission andJor a kc.

FPGA 99 Monterev CA USA

Recently, N’IT argued for more wires and less LUTs [171, and
HP argued for rich interconnect which will meet or exceed the re-
quirements of logic netlists [2]. Earlier Triptych showed density
advantages over traditional alternatives with partially populated de-
signs [4]. The N’lT paper examined two points in the space, while
HP and University of Washington each justified a single design
point. In this paper, we build a model which allows us to explore
the tradeoff space more broadly than a few isolated design points.
The. model is based on a hierarchical network design and captures
the dominant switch and wire effects dictating wire area. This gen-
eralization, of course, comes at the cost of modeling the design
space more abstractly than a particular, detailed FPGA design.

Copyright ACM 1994 l-581 13.088-0/99/02...$5.00

69

Figure 1: Tree of Meshes

We will be using a hierarchical interconnect scheme as the
basis of our area model. Agarwal and Lewis’s HFPGA [I] and
Lai and Wang’s hierarchical interconnect [1 I] are the most similar
interconnect schemes proposed for FPGA interconnect. As noted
above neither of these studies made an attempt to fix the wiring
resources independent of the benchmark being studied as we are
doing here. To permit a broad study of interconnect richness, our
interconnect scheme is also defined in a more stylized manner as
detailed in the next section.

3 Interconnect Model

The key requirements for our interconnect model is that it:
l represent interconnect richness in a parameterized way
l allows definition of a reasonable area model

To meet these goals, we start with a hierarchical model based
on Leighton’s Tree of Meshes [13] or Leiserson’s Fat Trees [14].
That is, we build a tree like interconnect where the bandwidth grows
toward the root of the tree (See Figure 1). We use two parameters
to describe a given interconnect scheme:
1. c = the number of base channels at the leaves of the tree
2. p (cu) = the growth rate of interconnect toward the root

Note that we realize p by using one of two kinds of stages in the
tree of meshes:

l non-compressing (2: 1) stages where the root wires are simply
equal to the sum of root wires from the two children so there
is no net bandwidth reduction

l compressing (1: 1) stages where the root wires are the same
as each of the root wires from the children, so that only half
of the total children wires can be routed upward

By selecting a progression of these stages we can approach any
bandwidth growth rate (See Figure 4).

If we use a repeating pattern of stage growths, we approximate
a geometric bandwidth growth rate. That is, a subtree of size 2 . n
has 2p times as much bandwidth at its root as a subtree of size
n, or every tree level has (Y = 2’ more wires than its immediate
children. This is roughly the model implied by Rent’s Rule [121
(IO = c. Np). More precisely, it represents a bifurcator as defined
by Bhatt and Leighton [3] (See Figure 2).

Intuitively, p represents the locality in interconnect require-
ments. If most connections are purely local and only a few connec-
tions come in from outside of a local regionp will be small. If every
gate in a region had a unique signal coming from outside the region,
then p -+ 1 .O. So think ofp as describing how rich our interconnect
needs to be. If p = 1, we are effectively building a crossbar with no
restrictions. If p = 0, we are building a 1D systolic array or pure
binary tree whose IO bandwidth does not grows as the array grows.

00 00 00 00
0 . . . 00 0 .

00
. . 0

0

Figure 2: (F,cY)-bifurcator

4 Area Effects

For our basic area model, we perform a straightforward layout of
the elements shown in Figure 4. That is, we have:
l Logic Block of size A,,
l Switches of size A,,,,
l Wires of pitch WP

Each subtree is built hierarchically by composing the two children
subtrees and the new root channel. Channel widths are determined
by either the area required to hold the switches or the width implied
by the wire channels, depending on which is greater. We assume
a dedicated layer for each of horizontal and vertical interconnect.
The result is the “cartoon” VLSI layout as shown in Figure 3.

Figure 3: “Cartoon” Layout of Hierarchical Interconnect

70

Note that the number of base channels (c) is 3 in all these examples.

Figure 4: Programming Growth for Tree of Meshes

c=5

t k=3

Figure 5: c choose Ic LUT Input Population (c = 5, Ic = 3)

Typical values for an SRAM programmable device:’
A,, = 40KX’ - this would hold 16 memory bits for a 4-LUT
(16 x 1 .2KX*/SRAM-bitz20KX2) plus a the LUT multiplexor
and optional output flip-flop (13KX* in [.5], 15KX* in [S]).
A - 2.5KX2 for a pass transistor switch (including its ded- SW -
icated SRAM programming bit) - to model mask or antifuse
programmable devices, we would use a much smaller size for
this parameter.
WP = 8X for the metal 2 or metal 3 wire trace and spacing
We assume the channels are populated with c choose k input

selectors [7] on the input and have a fully populated output con-
nection (See Figure 5). Switch boxes are either fully populated or
linearly populated (see Figure 6) with switches.

Figure 7 shows cartoon layouts for 3 different choices of p,
highlighting the area implied by each choice. Two things we can
observe immediately from this simple model comparison:

l For reasonable parameters, interconnect requirements dominate
logic block area; e.g. at c = 6, p = 0.67, a design with 1024
LUTS has only 5% of its area in LUTs (estimated area per LUT
including interconnect is ~750KX*) - while this is a simple
area model, the area and ratio are not atypical of real FPGA
devices; they are also consistent with prior studies (e.g. 6% for
600 4-LUT design in [5]).

‘X = half the mmnnum feature stze for a VLSI process Assumng lmear scalmg
of all features, X2 area should be the same across processes

Figure 6: Linear Switchbox Population for Hierarchical
Interconnect

p = 0.50 p = 0.67 p = 0.75
Rel. Area = 0.25 Rel. Area = 0.37 Rel. Area = 1.00

Figure 7: Effects of p on Area at 1 K LUTs

71

14 /
Design /

1 4 Lib 7 7

4 35 44

Wwe Schedule

oesign mapped.c- 12
4

n&work by ‘pulbng’
d&i up fixed wire
scheduleuntilmatch
design wife requirements. x) 7 7

4

Figure 8: “Pulling” design up tree to match fixed wire schedule

l Interconnect parameter richness has a large effect on total area.
To further build intuition, let’s assume for a moment that adesign

can be perfectly characterized by a growth exponentp. If the growth
exponent for the interconnect matches the growth of the design
@interconnect = pdesign 7) then the network will require minimum
area. What happens if these two are not perfectly matched? There
are two cases:

l pinterconnect > pdesZgn - we have more interconnect than
necessarily. The design can use all the LUTs in the network,
but the network has more wires. As a result, the area per LUT
is larger than the matched case-that is, mapping the design
on the richer interconnect takes more area than the matched
design case.

l pinterconnect < p&sign - we have less interconnect than
necessary. We cannot pack the design into a minimum num-
ber of LUTs in order to fit the design. Instead we must pull the
design up the tree, effectively depopulating the logic blocks,
until the tree provides adequate connectivity for the design
(See Figure 8). As a result, we have leaves in the tree which
are not fully utilized. As we will see, this also takes more
area than the matched design case.

Figure 10 shows the area overhead required to map various designs
onto interconnects with various growth factors. As we expect,
it shows that the matched interconnect point is the minimum point
with no overhead. As we go to greater or lesser interconnect offered
by the network, the area overhead grows, often dramatically.

5 Design Requirements

In practice, of course, c and p values are a rough characterization
of the interconnect requirements for a real design. With multiple
subgraphs of a given size (subtrees at the same height in the tree) we
get more than one l/O to subgraph relationship. Further, the growth
is seldom perfectly exponential. Finally, even asking if a graph has
an (F, cY)-bifurcator is an NP-hard problem. So, the bifurcations

Figure 9: I/O versus Partition size graph for i10

a

we construct are heuristic approximations biased by the tools we
employ.

Figure 9 shows the I/O versus subgraph relationship for the one
of the IWLS93 benchmark (ilO).
l Mapped for area with SIS [161 and Flowmap [6]
l Recursively bisected using a single Eigenvalue spectral parti-

tioner
The recursive bisection approximates the natural bandwidth versus
subtree sizes which exist in the design. We see the I/O to subgraph
relationship is not 1:l. We also see that the max and average
contours can be matched well to a geometric growth rate (e.g. Rent’s
Rule-average c = 5, p = 0.7; max c = 7, p = 0.7).

The left of Figure 11 shows the I/O versus subgraph relationship
for all the IWLS93 benchmarks area mapped to 2000 or fewer
LUTs using SIS, Flowmap, and spectral partitioning as above. On
the right it shows the distribution of Rent parameter estimates for
these benchmarks. Here we see that while we may be able to pick
“typical”c andp values, there is a non-trivial spread in interconnect
requirements across this set of designs.

6 Mapping to Fixed Wire Schedule

We have now seen that we can define a parameterized interconnect
model with a fixed wire schedule. Designs have their own re-
quirements which do not necessarily match the fixed wire schedule
available from a device’s interconnect. When the device offers more
interconnect than a design needs, mapping is easy, we simply place
the design on the interconnect and waste some wires. However, if
the design has more interconnect needs than the device provides,
how do we map the design to the device?

As suggested in Figure 8, we can start with the recursively bi-
partitioned design and simply pull the whole design up the tree until
all the interconnect wires meet or exceed the design requirements.
However, keeping the groupings originally implied by the recursive
bisection is overly strict. In particular, re-associating the subgraphs
based on interconnect availability can achieve tighter packings (See
Figure 13). That is, we do not really want a bisection of the LUTs,
but a bisection of the total capacity including both interconnect
and LUTs. Intuitively, the size of a subgraph is determined by the
greater of its LUT requirement and its interconnect requirement
relative to the fixed wire schedule of the device.

To attack the problem of regrouping subtrees to fit into the fixed
wire schedule, we introduce a dynamic programming algorithm
which determines where to split a given subgraph based on the
available wire schedule. That is, we start with a linear ordering
of LUTs. Then, we ask where we should cut this linear order-

72

18 I- \

0 16
._
$ 14

yj 12
0

0 I I I I I I I I I (

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

pdesign

Figure 10: Theory: effects of mismatched between interconnect networkp and design requirements

Figure 11: I/O versus Partition size graph for Benchmark Set

II size[start,finish] represents the smallest subtree which will
II contain the set of LUTs between position start andjinish
II uniqueio(o,i j) returns the number of unique nets which appear both in the subrange i-j,
II and outside of that range
o = order all LUTs
for i=O to o.length

size[i,i] t size(l,unique(o,i,i)) II base case c single LUTsubtrees
for len=2 to 0.lengtl-r

for start=0 to o.length-len If process all subranges of specified length
minsize=MAX
end=start+len- 1
isize=uniqueio(o,start,end)
for mid=start+l to end II searchfor best split point

msize=l+max(size[start,mid],size[mid+l,end])
size=max(msize,iolevel(isize))
minsize=min(size,minsize)

size[start,end]tminsize
llfinal result is size[O,o.length-1]

Figure 12: Dynamic Programming Algorithm to Map to Fixed Wire Schedule

73

Wire Schedule

Figure 14: Example showing the limitations of a Single Linear
Ordering

results are, nonetheless, good enough to give us interesting depop-
ulations as we will see in the next section.

Regroup subtrees
to match fixed
wire schedule
constraints in
target network.

Figure 13: Re-associating Subgraph clusters to match Fixed Wire
Schedule

ing of LUTs into two subtrees in order to minimize the total area
required-typically, minimizing the heights of the two subtrees.
Each of the subtrees are then split in a similar manner. To make
the decision of where to cut a subtree, we examine all cut points.
As long as we have a single linear ordering for LUTs, this is very
similar to the optimal parenthesis matching problem. In a similar
manner, we can solve this problem with a dynamic programming
algorithm.

The dynamic programming algorithm (Figure 12) finds the op-
timal sub&cc decomposition given the initial LUT ordering. The
trick here, and the source of non-optimality, is picking the order of
the LUTs. For this we use the ID spectral ordering based on the
second smallest Eigenvalue which Hall shows is the optimal linear
arrangement to minimize squared wire lengths [lo].

Figure 14 shows why the single linear ordering is non-optimal.
Here we see a LUT B placed to minimize its distances to A, C,
and D. The order is such as to keep B, C, and D together for cut
3. However, if we take cut 4, then it would be more appropriate to
place B next to A since we have already paid for the wires to C and D
to exit the left subgroup. However, as long as we are using a single
linear ordering, we do not get to make this movement after each cut
is made. In general to take proper account of the existing cut, we
should reorder each of the subgraphs ignoring ordering constraints
originally imposed by the wires which have already been cut.

To avoid this effect, we would have to reorder each subtree
after each cut is made. In addition to increasing the complexity
of each cut, this would destroy the structure we exploited to apply
dynamic programming-that is, the sub-problems would no longer
be identical. Of course, since the spectral partitioning does not even
give an optimal cut point for the bisection problem, the ordering
effect alone is not the only element of non-optimality here.

There is certainly room for algorithmic improvement here. The

7 Results from Mapping

Rutting it all together:
l Start with the area targeted SIS and Flowmap 4-LUT networks

for the IWLS93 benchmarks under 2000 4-LUTs.
l Order using the second smallest Eigenvalue.
l Map to fixed schedule with the dynamic programming algo-

rithm; The results are shown in terms of relative number of
LUTs in the top left of Figure 15.

. Apply an area cost model such as shown in top right of Figure 15.

. Result is the relative area map shown at the bottom of Figure 15.
Figure 15 shows that there is a minimum area point across the

benchmark set. For our linear switch population model, this occurs
at c = 6, p = 0.6. As our theory predicts, too much interconnect
and too little interconnect both account for area overheads over the
minimum. Notice that the only points where the entire benchmark
achieves full utilization are c = 10, p 2 0.75 and p = 0.8, c 1 7,
all points which are above the minimum area point.

Table 1 examines the effects of picking a particular point in the
c-p-design space. For each design in the benchmark set, we can
compute the c,p-point which has mipimum area. We can then look
at the overhead area required between the “best” c, p, picked for
the individual design, versus the best c, p for the entire benchmark
under certain criteria. For the linear switch population case, we
see that average overhead between the benchmark minimum and
each benchmark’s best area is only 23% and that corresponds to
an average LUT utilization of 87%. Similarly, we see that picking
the smallest point where we get 100% device utilization results in
almost 200% area overhead. We see different absolute numbers,
but similar trends with other area models.

Given the range of .partition ratios and cut sizes we saw in
Figure 1 I, it is not that surprising that the full utilization point
is excessive for many designs and leads to many area inefficient
implementations. Figure 16 shows a slice in p-space for the single
design i10 whose I/O versus subgraph size curve we showed in
Figure 9. Notice that even for this single design, the minimum area
point does not correspond to full utilization. In fact, the minimum
area point is actually only 50% of the area of the full utilization
point. So, even for a single design allowed to pick the network
parameters c, p which minimizes device area, full LUT utilization
does not always correspond to better area utilization. We see here
that the effects of varying wire requirements, which we described
in Section 2, do actually occur in designs.

In the previous section, we noted that the fixed wire schedule
mapping algorithm in use is not optimal. It is worth considering
how a “better” algorithm would affect the results presented here.
A “better” algorithm could achieve better LUT utilization for the
points whcrc depopulation occurs. For the points on the graph
where no depopulation occurs, a better algorithm could offer no
improvement. As a result, we expect a better algorithm to magnify
these effects-making the depopulated designs tighter and take less

74

Area Estimate Mapping to Fixed Wire Schedule

Figure 15: Area Utilization Results Mapping Benchmark to Fixed Wire Schedules

I-

0.6 -

0.6 -

0.4 -

0.2 -

o-
0.3 0.4 0.5 0.7 0.8

Figure 16: p-space slice for i10 showing that area minimization is not directly correlated with high LUT usage

75

Wire Dominated WP = 8X, A,, = 64X2
Minimization params Sigma Max LUT

Obiective Cl P relative area relative area Utilization
_I I I

relative area 1 6 1 0.6 1 1.30 1 2.99 1 0.87
max relative area I 6 1 0.65 1 1.40 I 1.91 I 0.93

I

area with full utilization 1 10 1 0.75 1 3.23 1 6.94 1 1 .oo

Linear WP = 8X. A.,,, = 2500X2
Minimization params ‘Sigma Max LUT

Obiective Cl P relative area relative area Utilization ,
relative area 6 0.6 1.23 2.84 0.87

max relative area 6 0.65 1.24 2.38 0.89
area with full utilization 10 0.75 2.98 4.87 1.00

Switch Dominated (Quadratic)
WP = 8X, A,, = 2500X2

Minimization params Sigma Max LUT
Obiective Cl P relative area relative area Utilization

_I

relative area 1 6 1 0.6 1 1.32 1 3.50 I 0.87
max relative area I 4 I 0.65 I 1.47 I 2.31 I 0.49

area with full utilization I 10 I 0.75 I 4.25 1 11.5 I 1.00

Table 1: Compare Effects of Various Network Selection Points

area, while the full utilization designs stay at roughly the same
point.

8 Limitations and Future Study

We have only scratched the surface here. As with any CAD effort
where we are solving NP-hard problems with heuristic solutions
there is a significant tool bias to the results. Flowmap was not
attempting to minimize interconnect requirements, and there is a
good argument that LUT covering and fixed-wire schedule parti-
tioning should be considered together to get the best results. At the
very least, it would be worthwhile to try different LUT mapping
strategies to assess how much these results are effected by LUT
covering.

The area model used assumes a purely hierarchical, 2-ary inter-
connect. ‘Iwo things one would like to explore are (1) the effects
of different arity (flattening the tree) and (2) the introduction of
shortcut connections (e.g. Fat Pyramid [9]). The shortcut connec-
tions will tend to reduce the need for bandwidth in the root channel
and may shift the balance in interconnect costs. Further, shortcuts
appear essential for delay-mapped designs, which we have also not
studied here.

We suspect the hierarchical model captures the high-level re-
quirements of any network, but it will be interesting to study these
effects more specifically for mesh-based architectures. The key
algorithmic enabler needed for both shortcuts and mesh-based ar-
chitectures is to identify good heuristics for spreading in two di-
mensions rather than the one-dimensional approach we exploited
here.

An important assumption we have made here is that interconnect
growth is geometric (power law). The c, p estimates shown in Fig-
ures 9 and 11 support the fact that a geometric growth relationship
seems fairly reasonable. Nonetheless, we have not directly ex-
plored wire-schedules which deviate from strict geometric growth,
and there may be better schedules to be found outside of the strict
geometric growth space explored here.

We concentrated on global wiring requirements here and have
not focussed on detailed switch population. The robustness of the
general trends across different area and population models shown
in Table 1 suggests that the major effects identified here are inde-
pendent of the switch population details. While this does show us
the relative merits of a given interconnect richness within a partic-
ular population model, we cannot, however, make any conclusions
about the relative merits of different population schemes without
carefully accounting for detailed population effects in both the area
model and routability assessment.

9 Conclusions

We see that wires and interconnect are the dominant area compo-
nents of FPGA devices. We also see that the amount of interconnect
needed per LUT varies both among designs and within a single de-
sign. Given that this is the case, we cannot use all of our LUTs
and all of our interconnect to their full potential all of the time-we
must underutilize one resource in order to fully utilize the other. If
we focus on LUT utilization, we waste significant interconnect-
our dominant area resource. This suggests, instead, it may be
more worthwhile for us to focus on interconnect utilization even if
it means letting some LUTs go unused. Answering our opening
question, we see that higher LUT usage does not imply lower area
and that LUT usability is not always directly correlated with area
efficiency.

Acknowledgements

This research is part of the Berkeley Reconfigurable Architectures
Software and Systems effort supported by the Defense Advanced
Research Projects Agency under contract numbers F30602-94-C-
0252 and DABT63-C-0048 and directed by Prof. John Wawrzynek
and the author.

Jason Cong’s VLSI CAD Lab at UCLA provided the Flowmap
implementation used to map LUTs here. Kip Macy did the actual

76

benchmark mapping to LUTs and developed the initial BLIF parser
used for these experiments.

Feedback from Randy Huang, Nicholas Weaver, John Wawrzynek,
and Eylon Caspi helped cleanup early drafts of this paper.

References

Ul

PI

[31

141

r51

[61

[71

PI

[91

DOI

Ull

u21

[I31

Aditya A. Agarwal and David Lewis. Routing Architectures
for Hierarchical Field Programmable Gate Arrays. In Pro-
ceedings 1994 IEEE International Conference on Computer
Design, pages 475-478. IEEE, October 1994.

Rick Amerson, Richard Carter, W. Bruce Culbertson, Phil
Kuekes, and Greg Snider. Plasma: An FPGA for Million
Gate Systems. In Proceedings of the International Symposium
on Field Programmable Gate Arrays, pages 10-16, February
1996.

Sandeep Bhatt and Frank Thomson Leighton. A Framework
for Solving VLSI Graph Layout Problems. Journal of Com-
puter System Sciences, 28:300-343, 1984.

Gaetano Boniello, Carl Ebeling, Scott Hauck, and Steven
Bums. The Triptych FPGA Architecture. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 3(4):491-
501, December 1995.

Stephen D. Brown, Robert J. Francis, Jonathan Rose, and
Zvonko G. Vranesic. Field-Programmable Gate Arrays.
Khrwer Academic Publishers, 101 Philip Drive, Assinippi
Park, Norwell, Massachusetts, 02061 USA, 1992.

Jason Cong and Yuzheng Ding. FlowMap: An Opti-
mal Technology Mapping Algorithm for Delay Optimiza-
tion in Lookup-Table Based FPGA Designs. IEEE Trans.
on Computer-Aided Design, 13(1):1-12, January 1994.

Andre DeHon. Entropy, Counting, and Programmable In-
terconnect. In Proceedings of the 1996 International Sym-
posium on Field Programmable Gate Arrays. ACMISIGDA,
February 1996. Extended version available as Transit
Note #128 <http://www.ai.mit.edu/projects/
transit/transit-notes/tnl28.ps.Z>.

Andre DeHon. Reconfigurable Architectures for General-
PurposeComputing. AITechnicalReport 1586,MITArtificial
Intelligence Laboratory, 545 Technology Sq., Cambridge, MA
02139, October 1996.

Ronald Greenberg. The Fat-Pyramid and Universal Parallel
Computation Independent of Wire Delay. IEEE Transactions
on Computers,43(12):1358-1365,December 1994.

Kenneth M. Hall. An r-dimensional Quadratic Placement
Algorithm. Managment Science, 17(3):2 19-229, November
1970.

Yen-Tai Lai and Ping-Tsung Wang. Hierarchical Intercon-
nect Structures for Field Programmable Gate Arrays. IEEE
Transactions on VLSI Systems, 5(2):18&196, June 1997.

B. S. Landman and R. L. Russo. On Pin Versus Block Rela-
tionship for Partitions of Logic Circuits. IEEE Transactions
on Computers,20:1469-1479,197l.

Frank Thomson Leighton. New lower bound techniques for
VLSI. In Twethy-Second Annual Symposium on the Founda-
tions of Computer Science. IEEE, 198 1.

77

Charles E. Leiserson. Fat-Trees: Universal Networks for
Hardware Efficient Supercomputing. IEEE Transactions on
Computers, C-34(10):892-901, October 1985.

Jonathan Rose and Stephen Brown. Flexibility of Intercon-
nection Structures for Field-Programmable Gate Arrays. IEEE
Journal of Solid-State Circuits, 26(3):277-282, March 199 1.

Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho
Moon, Rajeev Murgai, Alexander Saldanha, Hamid Savoj,
Paul R. Stephan, Robert K. Brayton, and Albert0 Sangiovanni-
Vincentelli. SIS: A System for Sequential Circuit Synthesis.
UCB/ERL M92/41, University of California, Berkeley, May
1992.

Atsushi Takahara, Toshiaki Miyazaki, Takahiro Murooka,
Masaru Katayama, Kazuhiro Hayashi, Akihiro Tsutsui,
Takaki Ichimori, and Ken-nosuke Fukami. More Wires and
Fewer LUTs: A Design Methodology for FPGAs. In Pro-
ceedings of the I998 International Symposium on Field-
Programmable Gate Arrays, pages 12-19, 1998.

A Mapped Benchmarks Statistics used for Experiment

B Lsize and Level

When mapping to a hierarchical array, or any array for that matter, one problem to address
is how we count area used. Do we charge the design for the smallest tree hierarchy used?
If so, we only get a logarithmic estimation of size. Designs which are slightly larger than
a tree stage are charged the full cost of the next tree level. This could skew measures as
fl LUT at a power-of-two boundary has a big difference in metric, but elsewhere near
factor-of-two differences hardly matter. For the data shown here, we have counted size in
terms of the span of LUTs used (Isize - See adjacent diagram). That is, if we number the
tree LUTs in a linear order; we pack starting at LUT 0 and use the position of the highest
placed LUT to account for the capacity used. The LUTs above the last used subtree are
all free. Intuitively, if we consume all of a subtree of size 128 and one more subtree of
size 64, we still have a subtree of size 64 available for additional logic, so we charge the
design to be only of lsize 192. In practice, when we use level as a metric instead of lsize,
we see similar trends to those reported here but a larger benchmark-wide mismatch penalty,
especially when requiring full population, due to the logarithmic granularity effects.

Level = 3

Lsize = 5

78

