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Abstract— Many engineering problems can be cast as op-
timization problems subject to convex constraints that are
parameterized by an uncertainty or ‘instance’ term. A recently
emerged successful paradigm for attacking these problems is
robust optimization, where one seeks a solution which simul-
taneously satisfies all possible constraint instances. In practice,
however, the robust approach is computationally viable only
for problem families with rather simple dependence on the
instance parameter (such as affine or polynomial), and leads in
general to conservative answers, since the solution is computed
transforming the original semi-infinite problem into a standard
one, by means of relaxation techniques.

In this paper, we take an alternative ‘randomized’ or
‘scenario’ approach: by randomly sampling the uncertainty
parameter, we substitute the original infinite constraint set
with a finite set of N constraints. We show that the resulting
randomized solution fails to satisfy only a small portion of
the original constraints, provided that a sufficient number of
samples is drawn. Our key result is to provide an efficient
and explicit bound on the measure (probability or volume)
of the original constraints that are possibly violated by the
randomized solution. This volume rapidly decreases to zero
as N is increased. The proposed paradigm is here applied
to the solution of a wide class of NP-hard control problems
representable by means of parameter-dependent linear matrix
inequalities.

I. INTRODUCTION

Convex optimization, and semidefinite programming in
particular, has become one of the mainstream frameworks for
control analysis and synthesis. It is indeed well-known that
standard linear control problems such as Lyapunov stability
analysis and H2 or H∞ synthesis may be formulated (and
efficiently solved) in terms of solution of convex optimization
problems with linear matrix inequality (LMI) constraints, see
for instance [7], [14]. More recently, research in this field has
concentrated on considering problems in which the data (for
instance, the matrices describing a given plant) are uncertain.
A ‘guaranteed’ (or robust) approach in this case requires the
satisfaction of the analysis or synthesis constraints for all
admissible values of the uncertain parameters that appear in
the problem data. Therefore, in the ‘robustified’ version of
the problem one has to determine a solution that satisfies
a typically infinite number of convex constraints, generated
by all the instances of the original constraints, as the uncer-
tain parameters vary over their admissible domains, see for
instance [1].

This ‘robust’ convex programming paradigm has emerged
around 1998 (see [4], [17]) and, besides the systems and
control areas, has found applications in, to mention but a
few, truss topology design, robust antenna array design, port-
folio optimization, and robust estimation [16]. Unfortunately

however, robust convex programs are not as easily solvable as
standard ones, and are NP-hard in general, [4]. This implies
that – unlike standard semidefinite programs (SDP) – simply
restating a control problem in the form of a robust SDP does
not mean that the problem is amenable to efficient numerical
solution.

The current state of the art for attacking robust convex
optimization problems is by introducing suitable relaxations
via ‘multipliers’ or ‘scaling’ variables [6], [17]. The main
drawbacks of the relaxation approach are that the extent of
the introduced conservatism is in general unknown, and that
the method itself can be applied only when the dependence
of the data on the uncertainties has a particular and simple
functional form, such as affine, polynomial or rational.

In this paper, we pursue a different ‘probabilistic’ approach
to robustness in control problems, in which the ‘guarantees’
of performance are not intended in a deterministic sense
(satisfaction against all possible uncertainties) but are instead
intended in a probabilistic one (satisfaction for ‘most’ of the
uncertainty instances, or ‘in probability’). This probabilistic
approach gained increasing interest in the literature in recent
years, and it is now a rather established methodology for
robustness analysis, see for instance [12], [21], [24], [26].
However, the probabilistic approach has found to date limited
application for robust control synthesis. Basically, two dif-
ferent methodologies are currently available for probabilistic
robust control synthesis: the approach based on the Vapnik-
Chervonenkis theory of learning, see [28] and the references
therein, and the sequential methods based on stochastic
gradient iterations [11], [13], [23] or ellipsoid iterations, [19].

The first approach, proposed in the seminal paper [28], is
to date the most general one, since it permits to tackle non-
convex and NP-hard design problems. However, it suffers
from the conservatism of the Vapnik-Chervonenkis theory,
which requires a very large number of randomly generated
samples (i.e. it has high ‘sample complexity’) in order to
achieve the desired probabilistic guarantees. Moreover, the
design methodology proposed in [28] does not directly aim
to enforce the synthesis constraints in a (probabilistically)
robust sense, but it rather aims at satisfying them on average.

As an alternative, when the original synthesis problem is
convex (which includes many, albeit not all, relevant control
problems), the sequential approaches based on stochastic
gradients [11], [13], [22], [23] or ellipsoid iterations, [19],
may be applied with success. However, these methods are
currently limited to convex feasibility problems, and have
not yet been satisfactorily extended to deal with optimiza-
tion. More fundamentally, these algorithms have asymptotic



nature, i.e. they are guaranteed to converge to a robust
feasible solution (if one exists) with probability one, but the
total number of uncertainty samples that need to be drawn
in order to achieve the desired solution (i.e. the ‘sample
complexity’ of the algorithm) cannot be fixed in advance,
unless unrealistic a-priori assumptions are made.

The main contribution of the present work is to propose a
general framework for solving in a probabilistic sense convex
programs affected by uncertainty. Specifically, we show that
many control problems (both of analysis and synthesis) for
uncertain systems that currently cannot be efficiently solved
in a deterministic sense are amenable to efficient solution
within the proposed probabilistic paradigm. In the key result
of this paper (Theorem 1) we provide an efficient bound
on the sample complexity of our randomized technique, as
a function of the required probabilistic robustness levels.
Also, a notable improvement upon the stochastic sequential
methods of [11], [13], [19], [22], [23] is that our result
holds for robust optimization problems (and not only for
feasibility), and that an explicit a-priori bound is given on
the sample complexity of the method.

This paper is organized as follows. Section II motivates our
developments by showing several relevant control problems
that are naturally cast in the form of robust convex programs,
and pinpoints the specific limitations of the deterministic
solution methods available in the literature. Section III is
the main section. There, the sampled counterpart of a robust
convex program is defined and the fundamental result assess-
ing the properties of the solution of the randomized problem
is stated (Theorem 1). Section IV reports a numerical control
design example, while conclusions are drawn in Section V.

II. ROBUST CONVEX PROGRAMS IN CONTROL

By a robust convex program (RCP) is here meant a convex
optimization problem of the form (see e.g. [4])

RCP : minx∈X cT x subject to: (1)

f(x, δ) ≤ 0,∀δ ∈ ∆, (2)

where x ∈ X is the optimization variable, X ⊆ R
nx is

convex and closed, and ∆ ⊂ R
d is a closed set. The function

f(x, δ) : X × ∆ → R
nf is continuous and convex in x for

any fixed δ ∈ ∆, and the inequality f(x, δ) ≤ 0 is intended
element-wise. Important special cases of the above problem
are robust linear programs [5], for which f(x, δ) is affine
in x, and robust semidefinite programs [6], [17], for which
f(x, δ) = λmax[F (x, δ)], where

F (x, δ) = F0(δ) +
n∑

i=1

xiFi(δ), Fi(δ) = FT
i (δ).

Similarly, one can consider the related problem of robust
feasibility (RFP), i.e. determine (if one exists) x ∈ X such
that f(x, δ) ≤ 0,∀δ ∈ ∆. This feasibility problem can be
cast in an equivalent minimization form in the augmented
variables x, η

minx∈X ,η∈R η subject to: (3)

f(x, δ) − η1 ≤ 0,∀δ ∈ ∆, (4)

where 1 is a vector of ones. Provided that the optimum in
the above problem is attained, the original problem (RFP)
is feasible if and only if the RCP (3)-(4) has a non-
positive optimal objective, and it is strictly feasible if the
optimal objective is negative. Hence, the class (1)-(2) actually
encompasses both feasibility and optimization problems.

In this section, we survey some relevant control analysis
and synthesis problems that can be naturally cast in the
above form. This list of problems is by no means complete
or representative of all the interesting problems that can be
encountered in the literature. However, our aim is here to
motivate the introduction of the probabilistic approach by
showing a selection of problems for which no deterministic
polynomial-time algorithm is known that computes an exact
solution. We refer the reader to [1] for further examples along
this line.

A. Analysis via parameter-dependent Lyapunov functions
Consider the finite-dimensional linear uncertain system de-
scribed in state-space form as

ξ̇ = A(δ)ξ, (5)

where ξ ∈ R
n is the state variable. Assume further that the

system matrix is a generic function of a vector of uncertain
parameters δ ∈ R

d, which belongs to a closed set ∆ ⊂ R
d.

The uncertain parameter is unknown, but constant in time.
Let a symmetric matrix function P (θ, δ) be chosen in a

family parameterized by θ ∈ R
p, and assume that P (θ, δ) is

affine in θ, for all δ ∈ ∆. The dependence of P (θ, δ) on the
uncertainty δ, as well as the dependence of A(δ) on δ, are
otherwise left generic. We introduce the following sufficient
condition for robust stability, which follows directly from the
standard Lyapunov theory.

Definition 1 (Generalized quadratic stability – GQS):
Given a symmetric matrix function P (θ, δ), affine in θ ∈ R

p

for all δ ∈ ∆, the system (5) is said quadratically stable
with respect to P (θ, δ) if there exist θ ∈ R

p such that

P (θ, δ) � 0, AT (δ)P (θ, δ) + P (θ, δ)A(δ) ≺ 0, ∀δ ∈ ∆.
(6)

For specific choices of the parameterization P (θ, δ), the
above GQS criterion clearly encompasses the popular
quadratic stability (QS, [7]) and affine quadratic stability
(AQS, [15]) criteria, as well as the biquadratic stability con-
dition of [27]. For instance, the quadratic stability condition
is recovered by choosing P (θ, δ) = P (i.e. θ contains the
free elements of P = PT , and there is no dependence on
δ), which amounts to determining a single Lyapunov matrix
P that simultaneously satisfies (6). The AQS condition is
instead obtained by choosing

P (θ, δ) = P0 + δ1P1 + · · · + δdPd, (7)

where θ represents the free elements in the matrices Pi =
PT

i , i = 0, . . . , d. Notice that QS, AQS and GQS constitute a
hierarchy of sufficient conditions for robust stability having
decreasing conservatism. However, even the simplest (and
most conservative) QS condition is hard to check numeri-
cally, except for the ‘polytopic’ case, see [7]. The AQS con-
dition is computationally hard even in the polytopic case with



fixed number of vertices, and therefore convex relaxations
that lead to numerically tractable sufficient conditions for
AQS have been proposed in the literature, see for instance
[15]. Notice also that the generic parameter dependent Lya-
punov functions introduced in Definition 1 may also be used
to assess other Lyapunov-based performance measures, such
as the H2 and H∞ norms.

This first problem instance serves to highlight the fact
that (as it is well-known) no efficient deterministic algorithm
exists for (6) in the case of generic dependence on δ.
However, a key feature of the conditions (6) is that for any
fixed δ ∈ ∆ they represent a convex LMI condition in θ,
and therefore this problem is amenable to the probabilistic
solution technique proposed in Section III.

B. Robust synthesis for LPV systems

Consider a parameter-varying linear system (LPV) of the
form

[
ξ̇
z
y

] [
A(δ(t)) B1(δ(t)) B2(δ(t))
C1(δ(t)) D11(δ(t)) D12(δ(t))
C2(δ(t)) D21(δ(t)) 0

] [
ξ
w
u

]
(8)

where ξ ∈ R
n is the state, w ∈ R

nw is the exogenous
input, u ∈ R

nu is the control input, z ∈ R
nz is the

performance output, y ∈ R
ny is the measured output, and

δ(t) ∈ R
d is a time-varying parameter, usually referred

to as the scheduling parameter. In the LPV setting, the
parameter δ(t) is known to be contained in a set ∆, whereas
its actual time value δ(t) is a-priori unknown but can be
measured online. The LPV formulation has recently received
considerable attention, since it forms the basis of systematic
gain-scheduling approaches to non-linear control design, see
for instance [3] and the survey [25].

The design objective is to determine a controller that
processes at the time-instant t not only the measured output
y(t) but also the measured parameter δ(t), in order to
determine the control input u(t) for the system. A simplified
form of such controller is

[
ξ̇k

u

]
=

[
Ak(δ(t)) Bk(δ(t))
Ck(δ(t)) 0

] [
ξk

y

]
. (9)

This controller should exponentially stabilize the system (8),
and achieve an L2 performance specification on the w − z
channel. The main difficulty of the problem resides in the
fact that in natural applications of the LPV methodology
the dependence of the data on the scheduling parameter
is non-linear. We refer the reader to [13] for a further
discussion on the difficulties involved in the solution of the
LPV design problem. This latter paper also proposes a new
randomization-based solution technique, which motivated the
introduction of this section in the present paper. Indeed, the
parameter-dependent inequalities derived in [13] are there
solved using sequential stochastic gradient methods (see also
[11]), while the same inequalities are here viewed as an
instance of a robust convex feasibility problem, and hence
directly amenable to the randomized solution proposed in
Section III.

Under standard regularity assumptions (see [13]), the L2

quadratic LPV control problem is formalized as follows:
Given γ > 0, find matrices Ak(δ(t)), Bk(δ(t)), Ck(δ(t))
such that the closed-loop system is exponentially stable, and
has L2 gain smaller than γ, for all δ(t) ∈ ∆. The solvability
conditions for this problem are directly stated in terms of
robust feasibility of three LMIs in [3] (Theorem 4.2), or in an
equivalent quadratic matrix inequality form in [13] (Lemma
1). We state these conditions in the following lemma.

Lemma 1 (Robust quadratic LPV synthesis): The L2 qua-
dratic LPV control problem is solvable if and only if there
exist 0 ≺ P = PT ∈ R

n,n and 0 ≺ Q = QT ∈ R
n,n such

that, for all δ ∈ ∆,
[

A(δ)P + P A(δ) + γ−2B1(δ)BT
1 (δ) − B2(δ)BT

2 (δ) P CT
1 (δ)

∗ −I

]
≺ 0

[
AT (δ)Q + QA(δ) + γ−2CT

1 (δ)C1(δ) − CT
2 (δ)C2(δ) QB1(δ)

∗ −I

]
≺ 0

[
P γ−1I
∗ Q

]
� 0.

The sampling technique presented in Section III can then
be used to determine an approximately feasible solution
P � 0, Q � 0 to these parameterized LMIs. The LPV
controller matrices can be subsequently recovered using
standard formulas.

C. LP-based robust controller design

We consider next a robust controller design technique based
on (robust) linear programming, proposed in [20] for SISO
continuous-time uncertain plants.

Let a SISO continuous-time plant be described by the
proper transfer function

G(s, δ) .=
b(s, δ)
a(s, δ)

=
b0(δ) + b1(δ)s + · · · + bm(δ)sm

a0(δ) + a1(δ)s + · · · + an(δ)sn
,

where the polynomial coefficients depend in a generic non-
linear way on the uncertain parameter δ ∈ ∆ ⊂ R

d, and
are regrouped in vectors a(δ), b(δ). Consider a control setup
with a fixed-structure negative feedback proper controller of
degree r

C(s) .=
f(s)
g(s)

with numerator and denominator coefficient vectors
f, g. Clearly, the closed-loop denominator dcl(s, δ) =
a(s, δ)g(s) + b(s, δ)f(s) has a coefficient vector dcl(f, g, δ)
which is affine in the controller parameters f, g. The robust
control problem discussed in [20] is then of the following
type: given a target stable interval polynomial family

F .
= {p(s) : p(s) = c0 + c1s+ · · ·+ cn+rs

n+r, ci ∈ [c−i , c+
i ], ∀i}

determine if there exist f, g such that dcl(f, g, δ) ∈ F , for
all instances of δ ∈ ∆. It is then straightforward to see that
this problem amounts to checking robust feasibility of a set
of linear inequalities in f, g. A specific case of this problem,
where the numerator and denominator of G are assumed to
be affected by affine interval uncertainty is solved in [20] by
reducing it to a standard LP, using a vertexization argument.
In the generic non-linear case discussed here this approach



is no longer viable, and therefore we look at the problem
as a robust convex (and actually linear) program, which is
amenable to the randomized solution proposed in the next
section.

III. SAMPLED CONVEX PROGRAMS AND PROBABILISTIC

ROBUSTNESS

We show in the sequel that the difficulty in the solution of
(1)-(2) is mainly due to the fact that one insists on satisfying
the problem constraints for all admissible instances of the
uncertainty, and that this difficulty is released if a certain
risk of constraint violation is tolerated.

Consider (2), and assume that the support ∆ for δ is
endowed with a σ-algebra D and that a probability measure
P over D is also assigned.

Definition 2 (Violation probability): Let x ∈ X be a can-
didate solution for (1)-(2). The probability of violation of x
is defined as

V (x) .= P{δ ∈ ∆ : f(x, δ) 	≤ 0}
(here, it is assumed that {δ ∈ ∆ : f(x, δ) 	≤ 0} is an element
of the σ-algebra D). �

For example, if a uniform (with respect to Lebesgue
measure) probability density is assumed, then V (x) measures
the volume of ‘bad’ parameters δ such that the constraint
f(x, δ) ≤ 0 is violated. Clearly, a solution x with small as-
sociated V (x) is feasible for ‘most’ of the problem instances,
i.e. it is approximately feasible for the robust problem. This
concept of approximate feasibility seems to have been first
introduced in the context of robust control in [2]. We have
the following definition.

Definition 3 (ε-level solution): Let ε ∈ [0, 1]. We say that
x ∈ X is an ε-level robustly feasible solution if V (x) ≤ ε. �
Our goal is to devise an algorithm that returns a ε-level
solution, where ε is any fixed small level. To this purpose, we
now introduce the sampled counterpart of the robust problem
(1)-(2).

Definition 4 (Sampled convex program): Assume that N
independent identically distributed samples δ(1), . . . , δ(N) are
drawn according to probability P. The sampled counterpart
of RCP is given by the convex optimization problem

RCPN : minx∈X cT x subject to: (10)

f(x, δ(i)) ≤ 0, i = 1, . . . , N.
Notice that RCPN is a standard convex program with a
finite number of constraints, and therefore it is usually
solvable efficiently by means, for instance, of interior point
techniques.

In the sequel, we shall make the assumption that RCPN

admits a unique optimal solution. Clearly, should RCPN

be unfeasible (i.e. ∩i=1,...,N

{
x : f(x, δ(i)) ≤ 0

} ∩ X = ∅),
then RCP would be unfeasible too. Removing the uniqueness
assumption entails some technical difficulties that would lead
us beyond the scope of this presentation, but does not affect
the main result. For the interested reader, these details as
well as the proof of Theorem 1 below, are reported in the
technical paper [9].

Let then x̂N be the unique solution of problem RCPN .
Since the constraints f(x, δ(i)) ≤ 0 are randomly selected,
x̂N is a random variable. The following fundamental theorem
pinpoints the properties of x̂N .

Theorem 1: Fix two real numbers ε ∈ [0, 1] (level param-
eter) and β ∈ [0, 1] (confidence parameter) and let

N ≥ nx

εβ
− 1. (11)

Then, with probability not smaller than 1−β, the randomized
optimization problem RCPN returns an optimal solution x̂N

which is ε-level robustly feasible. �
In the theorem, probability 1−β refers to the probability PN

(= P× · · · ×P, n times) of extracting a ‘bad’ multisample,
i.e. a multisample δ(1), . . . δ(N) such that x̂N does not meet
the ε-level feasibility property. We here remark that the
‘sample complexity’ of the algorithm (i.e. the number N of
random samples that need to be drawn in order to achieve
the desired probabilistic level in the solution) scales linearly
with respect to 1/εβ, and with respect to the number nx

of decision variables. The original semi-infinite problem is
therefore replaced by a standard convex problem with many
constraints. For reasonable probabilistic levels, the required
number of these constraints appears to be manageable by
current convex optimization numerical solvers.

Remark 1 (Role of probability P): Probability P plays a
double role in our approach: on one hand, it is the probability
according to which the uncertainty is sampled; on the other
hand, it is the probabilistic measure according to which the
probabilistic levels of quality mentioned in the above theorem
are assessed. In certain problems, P is the probability of
occurrence of the different instances of the uncertain param-
eter δ. In other cases, it more simply represents the different
importance we place on different instances. Extracting δ
samples according to a given probability measure is not
always a simple task to accomplish, see [10] for a discussion
of this topic and polynomial-time algorithms for the sample
generation in some matrix norm-bounded sets.

In some applications (see e.g. [8]), probability P is not ex-
plicitly known and the sampled constraints are directly made
available as observations. In this connection, it is important
to note that the bound (11) is probability independent (i.e. it
holds irrespective of the underlying probability P) and can
therefore be applied even when P is unknown. �

Remark 2 (Feasibility vs. performance): Solution metho-
dologies for the RCP problem are known only for certain
simple dependencies of f on δ, such as affine, polynomial
or rational. In other cases, the randomized approach offers a
practicable way of proceeding in order to compute a solution.

Even when solving the RCP problem is possible, the
randomized approach can offer advantages that should be
considered when choosing a solution methodology. In fact,
solving RPC gives 100% deterministic guarantee that the
constraints are satisfied, no matter what δ ∈ ∆ is. Solving
RCPN leaves instead a chance to the occurrence of δ’s
which are violated by the solution. On the other hand,
RCPN provides a solution (for the satisfied constraints)
that outperforms the solution obtained via RCP in terms of



achieved optimal objective value. In this context, fixing a
suitable level ε is sometimes a matter of trading probability
of unfeasibility against performance. �

Remark 3 (A-priori and a-posteriori assessments): It is
worth noticing that a distinction should be made between
the a-priori and a-posteriori assessments that one can
make regarding the probability of constraint violation.
Indeed, before running the optimization, it is guaranteed by
Theorem 1 that if N ≥ n/εβ − 1 samples are drawn, then
(with probability not smaller than 1 − β) the solution of
the randomized program will be ε-level robustly feasible.
However, the a-priori parameters ε, β are generally chosen
not too small, due to technological limitations on the number
of constraints that one specific optimization software can
deal with.

On the other hand, once a solution has been computed (and
hence x = x̂N is fixed), one can make an a-posteriori assess-
ment of the level of feasibility using Monte-Carlo techniques.
In this case, a new batch of Ñ independent random samples
of δ ∈ ∆ is generated, and the empirical probability of
constraint violation, say V̂Ñ (x̂N ), is computed according to

the formula V̂Ñ (x̂N ) = 1
Ñ

∑Ñ
i=1 1(f(x̂N , δ(i))) ≤ 0), where

1(·) is the indicator function. Then, the classical Hoeffding’s
inequality, [18], guarantees that |V̂Ñ (x̂N )−V (x̂N )| ≤ ε̃ holds
with confidence greater than 1 − β̃, provided that

Ñ ≥ log 2/β̃

2ε̃2
(12)

test samples are drawn. This latter a-posteriori test can be
easily performed using a large sample size Ñ because no
optimization problem is involved in such an evaluation. �

IV. NUMERICAL EXAMPLE: ROBUST POLE ASSIGNMENT

We next consider a modification of an example originally
proposed in [20] concerning a fixed-order robust controller
design for a SISO plant. Consider the setup introduced
in Section II-C, with the plant described by the uncertain
transfer function

G(s, δ) = 2(1+δ1)
s2 + 1.5(1 + δ2)s + 1

(s − (2 + δ3))(s + (1 + δ4))(s + 0.236)
,

where δ = [δ1 δ2 δ3 δ4]T collects the uncertainty terms
acting respectively on the dc-gain, the numerator damping,
and the pole locations of the plant. In this example, we
assume

∆ = {δ : |δ1| ≤ 0.05, |δ2| ≤ 0.05, |δ3| ≤ 0.1, |δ4| ≤ 0.05}.
The above uncertain plant can be rewritten in the form

G(s, δ) .=
b(s, δ)
a(s, δ)

=
b0(δ) + b1(δ)s + b2(δ)s2

a0(δ) + a1(δ)s + a2(δ)s2 + s3
,

where b0(δ) = 2(1+ δ1), b1(δ) = 3(1+ δ1)(1+ δ2), b2(δ) =
2(1 + δ1), a0(δ) = −0.236(2 + δ3)(1 + δ4), a1(δ) = −(2 +
δ3)(1+δ4)+0.236(δ4−δ3)−0.236, a2(δ) = δ4−δ3−0.764.
Define now the following target stable interval polynomial
family

F = {p(s) : p(s) = c0 + c1s + c2s
2 + c3s

3 + s4, ci ∈ [c−i , c+
i ]},

with

c− .=





c−0
c−1
c−2
c−3



 =





38.25
57

31.25
6



 , c+ .=





c+
0

c+
1

c+
2

c+
3



 =





54.25
77

45.25
14



 .

The robust synthesis problem we consider is to determine (if
one exists) a first order controller

C(s) .=
f(s)
g(s)

=
f0 + f1s

g0 + s

such that the closed-loop polynomial of the system

dcc(s, δ) = a(s, δ)g(s) + b(s, δ)f(s) =

(b0(δ)f0 + a0(δ)g0) + (b1(δ)f0 + b0(δ)f1 +

a1(δ)g0 + a0(δ))s + (b2(δ)f0 + b1(δ)f1 +

a2(δ)g0 + a1(δ))s
2 + (b2(δ)f1 + g0 + a2(δ))s

3 + s4

belongs to F , for all δ ∈ ∆. Let x
.= [f0 f1 g0]T ∈ R

3 be
the design vector of controller parameters, and define

A(δ) .=





b0(δ) 0 a0(δ)
b1(δ) b0(δ) a1(δ)
b2(δ) b1(δ) a2(δ)

0 b2(δ) 1



 , q(δ) .=





0
a0(δ)
a1(δ)
a2(δ)



 .

Then, the robust synthesis conditions are satisfied if and only
if

c− ≤ A(δ)x + q(δ) ≤ c+, ∀δ ∈ ∆. (13)

To the the above robust linear constraints, we also associate a
linear objective vector cT .= [0 1 0] (this amounts to seeking
the robustly stabilizing controller having the smallest high-
frequency gain), thus obtaining the robust linear program

min
x

cT x, subject to (13). (14)

We remark that the solution approach of [20] cannot be
applied in this case, since the coefficients ai(δ), bi(δ) do not
lie in independent intervals. We therefore apply the proposed
probabilistic solution method: Assuming a uniform density
over ∆ and fixing the risk level parameter ε to ε = 0.01
and the confidence parameter to β = 0.01, we determine the
sample bound according to Theorem 1:

N ≥ 3
0.01 × 0.01

− 1 = 29, 999.

Then, N independent samples δ(1), . . . , δ(N) are generated,
and the robust problem (14) is substituted by its sampled
counterpart

min
x

cT x, subject to

c− ≤ A(δ(i))x + q(δ(i)) ≤ c+, i = 1, . . . , N.

The numerical solution of the above sampled linear program
yielded the solution x̂N = [9.0993 19.1832 11.7309]T , and
hence the controller

C(s) =
9.0993 + 19.1832s

11.7309 + s
.



Once we solved the synthesis problem, we can proceed to
an a-posteriori Monte-Carlo test, in order to obtain a more
refined estimate of the probability of constraint violation for
the computed solution. As discussed in Remark 3, we can use
a much larger sample size for this a-posteriori analysis, since
no numerical optimization is involved in the process. Setting
for instance ε̃ = 0.001, and β̃ = 0.00001, from the Chernoff
bound (12) we obtain that the test should be run using at least
Ñ = 6.103 × 106 samples. This yielded an estimated vio-
lation probability V̂Ñ (x̂N ) = 0.00074, and, from Hoeffding
inequality, we have that |V̂Ñ (x̂N ) − V (x̂N )| ≤ 0.001 holds
with confidence greater than 99.999%. From a practical point
of view, we can hence claim that the above robust controller
has violation probability which is at most 0.00174, i.e. it
satisfies more than 99.8% of the design constraints (15). We
also notice that the absolute value of the largest violation of
these constraints in our Monte-Carlo analysis was about 0.7.

V. CONCLUSIONS

This paper presented a novel approach to robust control
design. If the robustness requirements are imposed in a
probabilistic sense, then a wide class of control analysis and
synthesis problems are amenable to efficient numerical solu-
tion. This solution is computed solving a convex optimization
problem having a finite number N of sampled constraints.
The main contribution of the paper is to provide an explicit
and efficient bound on the number of samples required to
determine a solution that guarantees a-priori probabilistic
robustness level ε, with confidence 1 − β. This bound holds
for generic convex problems, it is distribution-independent,
and requires virtually no assumption on the ‘structure’ or
functional dependence of the data on the uncertainty.
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