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Abstract 
This paper introduces a contanuous version of retzmzng 

(called c-retiming). As retaming, a c-retzmzng of a circuit 
i s  also an  asszgnment of values to the nodes an the circuzt. 
However, values zn c-retzmzng can be real numbers as op- 
posed to integers zn retimzng. Retzmzng and  c-retzming are 
strongly related. I n  fact, a c-retamzng can be converted to a 
retzmzng by a sample rounding, and the potentzal degradation 
zn clock period zs less than the largest gate delay an a car- 
curt. C-retimzng has two very attractive propertzes. I t  can 
be computed much more eficzently than retzmzng. Conse- 
quently, one can compute a retnmzng by computing a proper 
c-retimzng. Our ezperzmental results indzcate thzs approach 
can drastzcally speed up the solutzon of retzmzng problems. 
More amportantly, c-retiming can be combzned wzth ctrcuit 
modifications. Because of this propertb, c-retzmang can be 
used as  a tool to study syntheszs and optzmizatzon problems 
in conjunction wzth retzmzng. We demonstrate thzs uszng 
the classzcal tree mapping problem, for which we derzve a n  
algortthm that produces a solution with a clock perzod prou- 
ably close to optimal while considering retzmzng. 

1 Introduction 
Retiming is a transformation that relocates the sequen- 

tial elements in a circuit while preserving the functionality. 
It can be applied to circuits with either edge-triggered flip- 
flops (FFs) [I] or level-sensitive latches [Z, 31. In this paper, 
we focus on circuits with FFs but the ideas may also be ap- 
plicable to circuits with latches. Retiming can be used to 
optimize the clock period, the number of FFs, or both with- 
out modifying the logic of a circuit. Many algorithms for 
doing so have been proposed [1]-[8]. 

In this paper, we introduce a continuous version of retim- 
ing (referred to  as c-retiming). As (conventional) retiming, 
a c-retiming is also an assignment of values to the nodes 
in a circuit. The values can, however, be real numbers as 
opposed to integers in retiming. To put it in another way, 
we allow the introduction of fractional FF in c-retiming. 

The main motivation of introducing c-retiming is to 
study synthesis and optimization problems that involve cir- 
cuit modifications, in conjunction with retiming None of 
the existing retiming approaches allow us to do so. As a re- 
sult, retiming is mostly used as a stand-alone optimization 
technique and its potential is not fully utilized. 

C-retiming has several other important properties. It 
is closely related to retiming. By a simple rounding, a 
c-retiming can be converted to a retiming with limited PO- 
tential degradation in clock period. Moreover, the problem 

of determining a c-retiming for a target clock period can 
be reduced to a single-source longest path problem on the 
circuit graph. 

We also present new retiming algorithms based on 
c-retiming. The algorithm is able to minimize the clock 
period of each of the sequential benchmark circuits in IS- 
CAS89 suite in a few seconds on a SPARC 5 .  

The remainder of this paper is organized as follows: In 
Section 2 ,  we introduce c-retiming. We also discuss how 
to  minimize the clock period and the amount of fractional 
FF in c-retiming. In Section 3, we show the clo 
ship between retiming and c-retiming. esent a faster 
algorithm for c-retiming a circuit to a 
in Section 4. Section 5 presents a new retiming algorithm 
based on c-retiming and pres ur experimental results 
on ISCXS89 circuits. In Sec , we use the tree map- 
ping problem as an example to show how c-retiming can be 
used to study synthesis and optimization pr 
junction with retiming. Finally, Section 7 
paper. 

2 C-retiming 

nodes are the 
(POs), and the logic gates. The weight, d(v) of a node U 

represents the propagation delay 
the interconnections. The weigh 
U to 1’ (denoted by U 2 v) is t h  
interconnection. 

Retiming a node by a value i is an operation that re- 
moves z FFs from each fan-out edge and adds z FFs to each 
fan-in edge of the node. Figure 1 shows the case where 
2 = 1 and -1. In general, the nodes in a 
retimed collectively. It has been shown reti 
the functionality, when the retiming values for the PIS and 
POs are zero’ [l, 91. 

Let r be a retiming of a circuit where ~ ( v )  is the retiming 
value for a node v he weight of an edge U 5 v in the 
retimed circuit, w is w(e) + ~ ( v )  - .(U). A retiming 

the combination 

‘Actually, as long as the PIS and POs have the s a m e  retnmng 
value, the functionality is preserved. 
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Figure 1: Retiming a node. 

retiming such that the retimed circuit has the clock period. 
The following is an equivalent definition: 

Definit ion 1 A ccrcuzt is retmed to a clock percod 4 b y  
a retiming T if the following two conditions are satisfied: 
( 1 )  wr(e) 2 0 and (2) wr(p) 2 1 f o r  each path p such 
that d ( p )  > 4, where Wr(p) = z e C p w r ( e )  and d ( p )  = 
c v E p  d ( v ) -  

As retiming, a c-retiming is also an assignment of values 
to the nodes. However, the values can be a real numbers. 
The  values for the PIS are zero, but the values for the POs 
can be nonzero but must be less than or equal to 1. We will 
use s to denote a c-retiming. In a c-retiming we can move 
a fraction of a FF across a gate. Similar to retiming, the 
amount of fractional FF on an edge U 5 v in the retimed 
circuit is w , ( e )  = w ( e )  + s(v) - .(U). We define the clock 
period in a c-retimed circuit as follows: 

Def in i t ion  2 A circuit is c-retimed to  a clock period of 4 
by a c-retiming 8 if w , ( e )  2 9 for  each edge U 5 U. 

Let us discuss the intuition behind Definition 2. As 
in retiming, we also require nonnegative edge weight after 
c-retiming. The condition w , ( e )  2 obviously enforces 
that, but it does even more. Let p be a path from ZCI to 
u2 in the circuit, we then have w,(p) 2 d(p)-+4u11, where 

Therefore, the condition in Definition 2 plays the similar 
roles as both conditions (1) and (2) in Definition 1. 

To compute a c-retiming for a target clock period 4, we 
introduce another set of weights on the edges in the circuit. 
The  second weight w l ( e )  of an edge U 2 v is defined as 
-w(e) + 9. We have the following results: 

wS(p)  = C s G p w s ( e ) .  If d(p )  - d ( w )  2 4, then W ~ P )  1 1. 

Theorem 1 A circuit can be c-retimed to  a clock period of 
4 i f l  the weight of the longest paths from the PIS to each 
PO is  less than or equal to  1, using the w1 edge weight. 

Based on Theorem 1, we can determine whether or not 
a circuit can be c-retimed to a given clock period by solving 
a single-source longest path problem on the circuit graph. 
In fact, if the weight of the longest paths for each PO is no 
more than 1, the c-retiming value of a node can be set to 
the weight of the longest paths from the PIS to the node. 
Figure 3 shows the pseudo-code for computing a c-retiming 
for a target clock period 4. I t  returns ‘success’ if such a re- 
timing exists; otherwise it returns ‘failure’. The algorithm 
is essentially the Bellman-Ford algorithm [lo]. The differ- 
ence is that  the relaxation is reorganized in such a way 
that all edges ending at the same node are relaxed as a 

for each node v 
if (v is a PI) s(v) + 0; 
else s(v) t -CO; 

done t TRUE; 
for each node ‘U { 

for i + 1 to n { // n, the number of nodes 

tmp c max e {s(a) - w(e) + y} 
if (v is a PO and tmp > 1) return failure; 
if (tmp > s (v) )  { 

s(v) + tmp ; 
done - FALSE; 

U-v 

1 
1 
if (done = TRUE) return success; // s achieves 4. 

1 
return failure; 

Figure 2: Algorithm for computing a c-retiming for a 
target clock period. 

group. This grouping is useful for integrating other design 
transformations into the algorithm. 

We now consider the problem of minimizing the amount 
of (fractional) FF subject to a given clock period 4. This 
problem is simply the following linear program: 

minimize E, w, (e )  

subject to: w , ( e )  2 - d ( v )  for each U 1, v 
4 

As in retiming, the dual of this program is an uncapac- 
itated min-cost flow problem. However, the flow network 
is simply the circuit graph. The  net flow out of each node 
is the difference of the out-degree and the in-degree of the 
node. The cost of an edge e is simply w l ( e ) .  Fractional FF 
sharing can also be modeled in the min-cost flow formula- 
tion. We omit the details. 

3 Retiming and c-retiming 
The purpose of introducing c-retiming is to use it as a 

tool to study retiming. Hence, i t  is important to know the 
relationship between them. Ultimately, we retime (not c- 
retime) a circuit. 

C-retiming is more flexible in moving FFs around since 
i t  can reposition a portion of a FF across a gate. As a 
result, one would expect if a clock period is achievable by 
retiming, i t  should also be achievable by c-retiming. This 
is true as we have the following result: 

Theorem 2 If a circuit can be retimed to a clock period of 
4, then it can also be c-retimed to 4. 

On the  other hand, retiming can be viewed as a coarse- 
grain version of c-retiming. Converting a c-retiming to a 
retiming in general may not preserve the clock period. How- 
ever, it can be shown that the possible degradation is very 
limited. Let D be the largest gate delay in a circuit, we 
have the following result: 
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Theorem 3 Lets  be a c-retiming that achieves clockperiod 
Q, Let T be the retiming defined as follows: 

v os a PI or a PO 
{ O  rs(v)1 - 1 otherwise. T ( V )  = 

Then r can achieve a clock period less than 4 + D.  

The following is a corollary of Theorems 2 and 3: 

Corollary 1 The minimum clock period that can be 
achieved by retiming is less than D plus the minimum clock 
period that can be achieved b y  c-retiming. 

When each gate has one unit of delay (the unit-delay 
model), D = 1 and the clock period of a retimed circuit is 
an integer. In this case, from Theorem 3, the clock period 
from the retiming T is less than Q + 1. Thus, it  is less 
than or equal to Q if 4 is an integer.. Combining the above 
analysis with Theorem 2, we have the following result for 
the unit-delay model. 

Corollary 2 Assuming the unit de lay  model, for any pos- 
itive integer Q, Q circuit can be c-retimed to a clock period 
of Q ifl the crrcuit can be retomed to of clock period of 4. 

We are not able to establish any formal relationship 
between minimizing the total amount of fractional FF  in 
c-retiming and minimizing the number of FFs in retiming. 
Our experimental results seem to indicate that minimizing 
total amount of fractional F F  is a reasonably good heuristic 
for minimizing the number of FFs, but further research is 
needed in this direction. 

4 A faster c-retiming algorithm 
In this section, we present a faster algorithm for deter- 

mining a c-retiming for a target clock period. 
We have shown that determining a c-retiming for a target 

clock period is equivalent to solving a single-source longest 
path problem on the circuit graph using the wl edge weight. 
The algorithm in Figure 2 has a time cost O ( n m ) ,  where n 
and m are the respective numbers of nodes and edges in the 
circuit. In this section, we describe a technique to speed up 
the algorithm. With the speed-up the algorithm exhibits a 
time cost O(n + m) in practice. 

The technique is based on the observation that if the cir- 
cuit contains no feedback loops, The c-retiming algorithm in 
Figure 2 needs only one iteration of relaxation if the nodes 
are relaxed in topological order starting with the PIS. A 
topological order respects all node dependencies by finding 
longest paths to predecessors before successors. For a cir- 
cuit with feedback loops, there is no linear ordering that 
respects all dependencies. Intuitively, however, the more 
dependencies the algorithm respects during relaxation, the 
less the number of relaxation iterations there are. To for- 
malize this idea, let U be a feedback vertex set (FVS) of 
the circuit. That  is, the removal of the vertices in U breaks 
all feedback loops in the circuit. Let V be a topological 
ordering of the nodes in the circuit excluding PIS and POs, 
after the nodes in U are removed. Consider the following 
ordering of the nodes in the circuit: PIS, V ,  U followed by 

POs (referred to as a pseudo-order). If the nodes are relaxed 
according to a pseudo-order, we expect the algorithm needs 
fewer relaxation iterations than using an arbitrary order. 
This is indeed the case as we have the following result: 

Theorem 4 If the nodes are relaxed according to the 
pseudo-order, the algorithm stops in a t  most /U[ + 1 re- 
laxation iterations af there a~ no posatzve cycle. 

Figure 3 is the improved algorithm. Its time cost is 
O(lUlm) in the worst-case. A more detailed analysis can 
show the time cost is O ( c m ) ,  where c is the maximum num- 
ber of nodes shared by U and any simple path from a PI to 
a PO. c is expected to be much smaller than IUI. 

CTCHECK(G,~)  
// G is the circuit and Q is the target clock period 
Let 81, v2, . . . , vn be a pseudo-order of the nodes; 
for each node v 

if (U is a PI) s(v) t 0; 
else s(v) c -a; 

f o r i t 1  t o [ U 1 + 2 {  
done +- TRUE; 
for 3 + 1 to n { 

t m p  c max e 

if (vu3 is a PO and tmp > 1)  return failure; 
if ( i m p  > s(vu3)) { 

I 

{.(U) - w(e) + y} u-uJ 

s(vj) - tmp ; 
done + FALSE; 

I 
if (done = TRUE) return success; 

I 
return failure; 

Figure 3: Improved algorithm for computing a 
c-retiming for a target clock period. 

One issue we have yet to address is finding a FVS. Al- 
though finding a minimum FVS is an NP-hard problem, 
finding a FVS is not difficult. An obvious FVS consists 
of all nodes that have at least one fan-out edge with non- 
zero weight. This is a FVS because if we remove all such 
nodes (and also the edges incident to  them), the remainder 
of the circuit contains no FFs, so must be acyclic. Simi- 
larly, the nodes having a non-zero weight fan-in edge also 
form a FVS. Note that the number of nodes in either of 
these FVS’s is less than or equal to the number of FFs in 
the circuit. If we use either of these FVS’s, the algorithm 
in Figure 3 will have a time cost O( f (n  + m ) ) ,  where f 
is the number of FFs in the circuit. For practical circuits, 
obviously f << n. Thus, the modified algorithm is much 
faster even if we use these obvious FVS’s. Moreover, effi- 
cient heuristic algorithms exist that can find a FVS with 
a size very close to minimum for practical circuits (see, for 
example, [Ill). Our experiments show even using the obvi- 
ous FVS’s the algorithm stops in less than ten iterations in 
all cases. Thus, in practice, the algorithm exhibits a time 
cost of O(n + m).  

118 



5 Retiming via c-retiming 
We now present a retiming algorithm based on 

c-retiming. The algorithm first searches for the minimum 
clock period that can be achieved by c-retiming. This can 
be done by calling the procedure CTCHECK to  carry out a 
binary search on the target clock period. After the min- 
imum clock period is found, the algorithm determines a 
c-retiming by minimizing the total amount of fractional 
FF subject to  the minimum clock period. Finally, the 
c-retiming is converted to  a retiming according to Theo- 
rem 3. Figure 4 is the pseudo-code of the algorithm where 
c is a controlling factor. 

RECRE( G, e) 
4 h  +- largest combinational delay in G ;  
41 - smallest combinational delay between FFs in G; 
while (h - 4t 2 E) { 

’#’ + (41 + (Ph)/% 
if ( CTCHECK( G, 4 )  = success) ‘#h t 4; 
else $1 - 4; 

1 
Determine a c-retiming s that minimizes the amount 

Convert s to  retiming T ;  

Retime G according to 7 ;  

Return the retimed circuit: 

of fractional FF  subject to the clock period 

Figure 4: A retiming algorithm based on c-retiming. 

Let &pc be the minimum clock period that can be 
achieved by retiming. Based on the discussion in Section 3, 
we have the following result: 

Theorem 5 The clock period of the circuit returned by 
RECRE is less than bop + D + e .  When eacii gate in G 
has one unit of delay and c = 1, the clock period of the 
circuit i s  ezactly dopt .  

RECRE has been implemented. In our implementation, 
we use a min-cost flow program based on the cost-scaling 
technique to  minimize the amount of fractional FF  [12]. 
Fractional F F  sharing is also included in our implementa- 
tion. We tested RECRE on the sequential benchmark cir- 
cuits in ISCAS89 suite. The  results are reported in Table 1. 
(We dropped small circuits and a few circuits without re- 
duction in clock period.) The unit-delay model is used in 
our experiment (so the clock period of the retimed circuit 
is actually minimum). The experiments were done on a 
SPARC 5 with 32MB memory. We list in the table the CPU 
times for searching the minimum clock period ( 4 )  and min- 
imizing the amount of fractional FF (FF). As can be seen, 
the algorithm is very efficient. 

Overall RECRE reduces the clock period by 30% with 
13% increase in the number of FFs. It should be pointed 
out the number of FFs may not be optimal. 

6 Applications 
Many existing approaches to sequential synthesis and 

optimization operate on only the combinational logic be- 
tween FFs. That  is, the FFs in a sequential circuit are 

circuit 11 initial 11 RECRE 11 times ( 8 )  

name I gates 1) d, 1 FFs 11 d,opt I FFs 11 d, I FF 

Total I 11 931 1 7493 (1 643 I 8474 (1 
Ratio I 11 1 I 1 11 0.69 I 1.13 11 

Table 1 : Experimental results: retiming via c-retiming. 

simply removed to obtain a combinational network. Then 
the combinational network is optimized. Finally, the FFs 
are connected back. Obviously, these approaches can only 
explore a small portion of the available design space since 
they do not consider different FF configurations that can 
be obtained by retiming. I t  also fails to consider the sig- 
nal dependencies across FF boundaries since the network 
is segmented into independent pieces after the removal of 
FFs. 

There have been a few methods that try to  consider re- 
timing during synthesis and optimization [13, 141. However, 
most of them use retiming as either a preprocessing step 
(i.e., determining a “good” initial FF configuration) [15], or 
a post-processing step [16, 171. In some cases, limited inter- 
action of retiming and circuit transformations is explored. 
By and large, retiming and other design transformations are 
done separately. One major obstacle to combining retiming 
with other design transformations is that existing retiming 
algorithms cannot give useful guidance to  these transforma- 
tions, since these algorithms assume the circuit structures 
and gate delays are given and fixed. 

We now use the tree mapping problem [la] as an example 
to  show that c-retiming can be combined with other design 
transformations. It should be pointed out that tree covering 
is a relatively simple problem. This is, in fact, one of the 
reasons we use i t  as an illustrating example. 

In the tree mapping problem we are given a cell library 
P,  a matching procedure MATCH, and a sequential tree net- 
work N .  The matching procedure takes a node U in the 
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network and the cell library P and produces all cells in P 
that match a subtree rooted at U. (We assume the match- 
ing algorithm ignores FFs in finding matches). Each cell 
p has a propagation delay d ( p ) .  The problem is to 
the network such that the clock period of the resultin 
work comprised of library cells (called bo 
minimized2. 

F P  cell1 

Figure 5: (a) A tree network, (b) a simple cell library, 
and  (c) a bound network f rom the  tradit ional approach. 

When the network is combinational, the problem can be 
solved optimally using dynamic programming [20, 19, 211. 
For sequential circuits, the traditional approach simply re- 
moves the FFs, covers the remaining combinational network 
optimally, and finally places the FF back. This approach, 
however, may not find the best solution. Consider the net- 
work in Figure 5(a) with a library having three cells as 
shown in Figure 5(b). We assume each cells has one unit 
delay. The solution produced by the traditional approach 
is shown in Figure 5(c). The resulting bound network has 
a clock period of two and retiming at  this stage cannot re- 
duce the clock period since there is a combinational path 
from a PI to the PO with two cells. However, if we move 
the two FFs on the output of gate f to its inputs and cover 
the network as shown in Figure 6(b) (NOT optimal for the 
combinational network), the resulting bound network can 
be retimed to  a clock period of one as shown in Figure 6(c). 

4 

2 

, .  

retiming value and  the best  cell at each 
i t ial  bound  network, 

network. 

2For simplicity reason, we ignore load in delay calculation. To 
consider load, the load binning technique [19, 181 can be easily 
incorporated. 

Grodstein et.  al. [22] proposed a tree mapping algorithm 
that takes into consideration of retiming. Using c-retiming, 
we derive another algorithm. Unlike the algorithm in [22], 
our algorithm does not enumerate all possible retiming val- 
ues a t  each node. 

Figure 7 summarizes our mapping algorithm for a target 
clock period 4 .  The algorithm examines the nodes in N in 
topological order starting with PIS. For each node, i t  calls 
BESTCELL to determine a cell for the node that results in 
the minimum c-retiming value at  the node. The algorithm 
can also be viewed as a modification of CTCHECK with the 
procedure BESTCELL is used to update t m p .  (Actually, 
variable t m p  is no longer needed and the value assigned 
to tmp can be directly assigned to  s(u) ,  since the network 
contains no loops.) 

SEQCE~-TIALTREEMAP( N, 4 )  
Let v1, v2,. . . , v n  be a topological order of the nodes 
in N, starting with PIS; 
for each node v 

for 3 +- 1 to n { 
if (v is a PI) s(v) +- 0; 

~ ( q )  + BESTCELL(W~, P ) ;  
if (v3 is a PO and s ( n J )  > 1) return failure; 

} 
return success; 

BESTCELL(V, P )  
d,,, + 00; 

for each p E ~~ATcH(w,P)  { 
for each U in i n p u t s ( p )  

f,, c the nnmber of FFs on the path from U to v - maxtnputs(p){s(~) - f u  + ?I; 
if (d,,, > d )  { 

1 

d,,,  - d ;  
cell t p ;  

Figure 7: Mapping algorithm for sequential tree net- 
work for the target clock period 4. 

After all the minimum c-retiming values have been com- 
puted, the next step is to cover the output of the network 
with the best cell (as determined by BESTCELL) and move 
any FFs covered by a cell t o  the inputs of the cell, then 
continue to  cover the inputs using the best cells until the 
PIS are reached. The final step is converting the c-retiming 
s to a retiming and apply the retiming to the initial bound 
network. For the network in Figure 5, assuming 
c-retiming values and the correspond 
in Figure 6(a) and Figure 6(b) is the 
We then convert the c-retiming to 
rem 3).  The retiming values are also s 
Applying the retiming to the bound network, we obtain ex- 
actly the network in Figure 6(c). We have the following 
result: 

120 



Theorem 6 I f  SEQUENTIALTREEMAP returns failure, 
then N does not have a bound network with a clock pe- 
riod of 4 ;  i f  returns success, the retiming converted from 
the c-retiming s achieves a clock period less than q5 + D ,  
where D is the largest cell delay. 

Using binary search on 4 as in RECRE, we can find a 
bound network with a clock period less than D + e away 
from the optimal one. 

7 Conclusion and future work 
In this paper, we introduce a fine-grain version of retim- 

ing called c-retiming. C-retiming has several nice proper- 
ties. The most important one is that it can be combined 
with other design transformations. It can also be computed 
much faster than retiming. A c-retiming can be converted 
to  a retiming with limited degradation in clock period and 
number of FFs. We proposed a fast retiming algorithm 
based on c-retiming. We also use an example to  illustrate 
that c-retiming can be used to  study synthesis and opti- 
mization problems in conjunction with retiming. 

Several directions are currently being pursued. One is 
using c-retiming to  re-examine other accepted techniques 
for sequential synthesis and optimization with the objective 
of incorporating retiming. In fact, the c-retiming concept 
has been applied to technology mapping for LUT-based FP- 
GAS and circuit clustering [23, 241. Novel algorithms have 
been proposed that can produce designs with optimal clock 
periods. Another problem is to study how to use c-retiming 
to  minimize the number of FFs. Yet another direction is 
to find direct retiming approaches (not via c-retiming) that 
can accommodate circuit modifications. 
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