
tinuous Retiming: Algorithms and Applications

Peichen Pan
Department of Electrical and Computer Engineering

Clarkson University, Potsdam, NY 13699
panp@sun.soe.clarkson.edu

Abstract
This paper introduces a contanuous version of retzmzng

(called c-retiming). As retaming, a c-retzmzng of a circuit
i s also an asszgnment of values to the nodes an the circuzt.
However, values zn c-retzmzng can be real numbers as op-
posed to integers zn retimzng. Retzmzng and c-retzming are
strongly related. I n fact, a c-retamzng can be converted to a
retzmzng by a sample rounding, and the potentzal degradation
zn clock period zs less than the largest gate delay an a car-
curt. C-retimzng has two very attractive propertzes. I t can
be computed much more eficzently than retzmzng. Conse-
quently, one can compute a retnmzng by computing a proper
c-retimzng. Our ezperzmental results indzcate thzs approach
can drastzcally speed up the solutzon of retzmzng problems.
More amportantly, c-retiming can be combzned wzth ctrcuit
modifications. Because of this propertb, c-retzmang can be
used as a tool to study syntheszs and optzmizatzon problems
in conjunction wzth retzmzng. We demonstrate thzs uszng
the classzcal tree mapping problem, for which we derzve a n
algortthm that produces a solution with a clock perzod prou-
ably close to optimal while considering retzmzng.

1 Introduction
Retiming is a transformation that relocates the sequen-

tial elements in a circuit while preserving the functionality.
It can be applied to circuits with either edge-triggered flip-
flops (FFs) [I] or level-sensitive latches [Z, 31. In this paper,
we focus on circuits with FFs but the ideas may also be ap-
plicable to circuits with latches. Retiming can be used to
optimize the clock period, the number of FFs, or both with-
out modifying the logic of a circuit. Many algorithms for
doing so have been proposed [1]-[8].

In this paper, we introduce a continuous version of retim-
ing (referred to as c-retiming). As (conventional) retiming,
a c-retiming is also an assignment of values to the nodes
in a circuit. The values can, however, be real numbers as
opposed to integers in retiming. To put it in another way,
we allow the introduction of fractional FF in c-retiming.

The main motivation of introducing c-retiming is to
study synthesis and optimization problems that involve cir-
cuit modifications, in conjunction with retiming None of
the existing retiming approaches allow us to do so. As a re-
sult, retiming is mostly used as a stand-alone optimization
technique and its potential is not fully utilized.

C-retiming has several other important properties. It
is closely related to retiming. By a simple rounding, a
c-retiming can be converted to a retiming with limited PO-
tential degradation in clock period. Moreover, the problem

of determining a c-retiming for a target clock period can
be reduced to a single-source longest path problem on the
circuit graph.

We also present new retiming algorithms based on
c-retiming. The algorithm is able to minimize the clock
period of each of the sequential benchmark circuits in IS-
CAS89 suite in a few seconds on a SPARC 5 .

The remainder of this paper is organized as follows: In
Section 2 , we introduce c-retiming. We also discuss how
to minimize the clock period and the amount of fractional
FF in c-retiming. In Section 3, we show the clo
ship between retiming and c-retiming. esent a faster
algorithm for c-retiming a circuit to a
in Section 4. Section 5 presents a new retiming algorithm
based on c-retiming and pres ur experimental results
on ISCXS89 circuits. In Sec , we use the tree map-
ping problem as an example to show how c-retiming can be
used to study synthesis and optimization pr
junction with retiming. Finally, Section 7
paper.

2 C-retiming

nodes are the
(POs), and the logic gates. The weight, d(v) of a node U

represents the propagation delay
the interconnections. The weigh
U to 1’ (denoted by U 2 v) is t h
interconnection.

Retiming a node by a value i is an operation that re-
moves z FFs from each fan-out edge and adds z FFs to each
fan-in edge of the node. Figure 1 shows the case where
2 = 1 and -1. In general, the nodes in a
retimed collectively. It has been shown reti
the functionality, when the retiming values for the PIS and
POs are zero’ [l, 91.

Let r be a retiming of a circuit where ~ (v) is the retiming
value for a node v he weight of an edge U 5 v in the
retimed circuit, w is w(e) + ~ (v) - .(U). A retiming

the combination

‘Actually, as long as the PIS and POs have the s a m e retnmng
value, the functionality is preserved.

116
1063-6404/97 $10.00 0 1997 IEEE

mailto:panp@sun.soe.clarkson.edu

Figure 1: Retiming a node.

retiming such that the retimed circuit has the clock period.
The following is an equivalent definition:

Definit ion 1 A ccrcuzt is retmed to a clock percod 4 b y
a retiming T if the following two conditions are satisfied:
(1) wr(e) 2 0 and (2) wr(p) 2 1 f o r each path p such
that d (p) > 4, where Wr(p) = z e C p w r (e) and d (p) =
c v E p d (v) -

As retiming, a c-retiming is also an assignment of values
to the nodes. However, the values can be a real numbers.
The values for the PIS are zero, but the values for the POs
can be nonzero but must be less than or equal to 1. We will
use s to denote a c-retiming. In a c-retiming we can move
a fraction of a FF across a gate. Similar to retiming, the
amount of fractional FF on an edge U 5 v in the retimed
circuit is w , (e) = w (e) + s(v) - .(U). We define the clock
period in a c-retimed circuit as follows:

Def in i t ion 2 A circuit is c-retimed to a clock period of 4
by a c-retiming 8 if w , (e) 2 9 for each edge U 5 U.

Let us discuss the intuition behind Definition 2. As
in retiming, we also require nonnegative edge weight after
c-retiming. The condition w , (e) 2 obviously enforces
that, but it does even more. Let p be a path from ZCI to
u2 in the circuit, we then have w,(p) 2 d(p)-+4u11, where

Therefore, the condition in Definition 2 plays the similar
roles as both conditions (1) and (2) in Definition 1.

To compute a c-retiming for a target clock period 4, we
introduce another set of weights on the edges in the circuit.
The second weight w l (e) of an edge U 2 v is defined as
-w(e) + 9. We have the following results:

wS(p) = C s G p w s (e) . If d(p) - d (w) 2 4, then W ~ P) 1 1.

Theorem 1 A circuit can be c-retimed to a clock period of
4 i f l the weight of the longest paths from the PIS to each
PO is less than or equal to 1, using the w1 edge weight.

Based on Theorem 1, we can determine whether or not
a circuit can be c-retimed to a given clock period by solving
a single-source longest path problem on the circuit graph.
In fact, if the weight of the longest paths for each PO is no
more than 1, the c-retiming value of a node can be set to
the weight of the longest paths from the PIS to the node.
Figure 3 shows the pseudo-code for computing a c-retiming
for a target clock period 4. I t returns ‘success’ if such a re-
timing exists; otherwise it returns ‘failure’. The algorithm
is essentially the Bellman-Ford algorithm [lo]. The differ-
ence is that the relaxation is reorganized in such a way
that all edges ending at the same node are relaxed as a

for each node v
if (v is a PI) s(v) + 0;
else s(v) t -CO;

done t TRUE;
for each node ‘U {

for i + 1 to n { // n, the number of nodes

tmp c max e {s(a) - w(e) + y}
if (v is a PO and tmp > 1) return failure;
if (tmp > s (v)) {

s(v) + tmp ;
done - FALSE;

U-v

1
1
if (done = TRUE) return success; // s achieves 4.

1
return failure;

Figure 2: Algorithm for computing a c-retiming for a
target clock period.

group. This grouping is useful for integrating other design
transformations into the algorithm.

We now consider the problem of minimizing the amount
of (fractional) FF subject to a given clock period 4. This
problem is simply the following linear program:

minimize E, w, (e)

subject to: w , (e) 2 - d (v) for each U 1, v
4

As in retiming, the dual of this program is an uncapac-
itated min-cost flow problem. However, the flow network
is simply the circuit graph. The net flow out of each node
is the difference of the out-degree and the in-degree of the
node. The cost of an edge e is simply w l (e) . Fractional FF
sharing can also be modeled in the min-cost flow formula-
tion. We omit the details.

3 Retiming and c-retiming
The purpose of introducing c-retiming is to use it as a

tool to study retiming. Hence, i t is important to know the
relationship between them. Ultimately, we retime (not c-
retime) a circuit.

C-retiming is more flexible in moving FFs around since
i t can reposition a portion of a FF across a gate. As a
result, one would expect if a clock period is achievable by
retiming, i t should also be achievable by c-retiming. This
is true as we have the following result:

Theorem 2 If a circuit can be retimed to a clock period of
4, then it can also be c-retimed to 4.

On the other hand, retiming can be viewed as a coarse-
grain version of c-retiming. Converting a c-retiming to a
retiming in general may not preserve the clock period. How-
ever, it can be shown that the possible degradation is very
limited. Let D be the largest gate delay in a circuit, we
have the following result:

117

Theorem 3 Lets be a c-retiming that achieves clockperiod
Q, Let T be the retiming defined as follows:

v os a PI or a PO
{ O rs(v)1 - 1 otherwise. T (V) =

Then r can achieve a clock period less than 4 + D.

The following is a corollary of Theorems 2 and 3:

Corollary 1 The minimum clock period that can be
achieved by retiming is less than D plus the minimum clock
period that can be achieved b y c-retiming.

When each gate has one unit of delay (the unit-delay
model), D = 1 and the clock period of a retimed circuit is
an integer. In this case, from Theorem 3, the clock period
from the retiming T is less than Q + 1. Thus, it is less
than or equal to Q if 4 is an integer.. Combining the above
analysis with Theorem 2, we have the following result for
the unit-delay model.

Corollary 2 Assuming the unit de lay model, for any pos-
itive integer Q, Q circuit can be c-retimed to a clock period
of Q ifl the crrcuit can be retomed to of clock period of 4.

We are not able to establish any formal relationship
between minimizing the total amount of fractional FF in
c-retiming and minimizing the number of FFs in retiming.
Our experimental results seem to indicate that minimizing
total amount of fractional F F is a reasonably good heuristic
for minimizing the number of FFs, but further research is
needed in this direction.

4 A faster c-retiming algorithm
In this section, we present a faster algorithm for deter-

mining a c-retiming for a target clock period.
We have shown that determining a c-retiming for a target

clock period is equivalent to solving a single-source longest
path problem on the circuit graph using the wl edge weight.
The algorithm in Figure 2 has a time cost O (n m) , where n
and m are the respective numbers of nodes and edges in the
circuit. In this section, we describe a technique to speed up
the algorithm. With the speed-up the algorithm exhibits a
time cost O(n + m) in practice.

The technique is based on the observation that if the cir-
cuit contains no feedback loops, The c-retiming algorithm in
Figure 2 needs only one iteration of relaxation if the nodes
are relaxed in topological order starting with the PIS. A
topological order respects all node dependencies by finding
longest paths to predecessors before successors. For a cir-
cuit with feedback loops, there is no linear ordering that
respects all dependencies. Intuitively, however, the more
dependencies the algorithm respects during relaxation, the
less the number of relaxation iterations there are. To for-
malize this idea, let U be a feedback vertex set (FVS) of
the circuit. That is, the removal of the vertices in U breaks
all feedback loops in the circuit. Let V be a topological
ordering of the nodes in the circuit excluding PIS and POs,
after the nodes in U are removed. Consider the following
ordering of the nodes in the circuit: PIS, V , U followed by

POs (referred to as a pseudo-order). If the nodes are relaxed
according to a pseudo-order, we expect the algorithm needs
fewer relaxation iterations than using an arbitrary order.
This is indeed the case as we have the following result:

Theorem 4 If the nodes are relaxed according to the
pseudo-order, the algorithm stops in a t most /U[+ 1 re-
laxation iterations af there a~ no posatzve cycle.

Figure 3 is the improved algorithm. Its time cost is
O(lUlm) in the worst-case. A more detailed analysis can
show the time cost is O (c m) , where c is the maximum num-
ber of nodes shared by U and any simple path from a PI to
a PO. c is expected to be much smaller than IUI.

CTCHECK(G,~)
// G is the circuit and Q is the target clock period
Let 81, v2, . . . , vn be a pseudo-order of the nodes;
for each node v

if (U is a PI) s(v) t 0;
else s(v) c -a;

f o r i t 1 t o [U 1 + 2 {
done +- TRUE;
for 3 + 1 to n {

t m p c max e

if (vu3 is a PO and tmp > 1) return failure;
if (i m p > s(vu3)) {

I

{.(U) - w(e) + y} u-uJ

s(vj) - tmp ;
done + FALSE;

I
if (done = TRUE) return success;

I
return failure;

Figure 3: Improved algorithm for computing a
c-retiming for a target clock period.

One issue we have yet to address is finding a FVS. Al-
though finding a minimum FVS is an NP-hard problem,
finding a FVS is not difficult. An obvious FVS consists
of all nodes that have at least one fan-out edge with non-
zero weight. This is a FVS because if we remove all such
nodes (and also the edges incident to them), the remainder
of the circuit contains no FFs, so must be acyclic. Simi-
larly, the nodes having a non-zero weight fan-in edge also
form a FVS. Note that the number of nodes in either of
these FVS’s is less than or equal to the number of FFs in
the circuit. If we use either of these FVS’s, the algorithm
in Figure 3 will have a time cost O(f (n + m)) , where f
is the number of FFs in the circuit. For practical circuits,
obviously f << n. Thus, the modified algorithm is much
faster even if we use these obvious FVS’s. Moreover, effi-
cient heuristic algorithms exist that can find a FVS with
a size very close to minimum for practical circuits (see, for
example, [Ill). Our experiments show even using the obvi-
ous FVS’s the algorithm stops in less than ten iterations in
all cases. Thus, in practice, the algorithm exhibits a time
cost of O(n + m).

118

5 Retiming via c-retiming
We now present a retiming algorithm based on

c-retiming. The algorithm first searches for the minimum
clock period that can be achieved by c-retiming. This can
be done by calling the procedure CTCHECK to carry out a
binary search on the target clock period. After the min-
imum clock period is found, the algorithm determines a
c-retiming by minimizing the total amount of fractional
FF subject to the minimum clock period. Finally, the
c-retiming is converted to a retiming according to Theo-
rem 3. Figure 4 is the pseudo-code of the algorithm where
c is a controlling factor.

RECRE(G, e)
4 h +- largest combinational delay in G ;
41 - smallest combinational delay between FFs in G;
while (h - 4t 2 E) {

’#’ + (41 + (Ph)/%
if (CTCHECK(G, 4) = success) ‘#h t 4;
else $1 - 4;

1
Determine a c-retiming s that minimizes the amount

Convert s to retiming T ;

Retime G according to 7 ;

Return the retimed circuit:

of fractional FF subject to the clock period

Figure 4: A retiming algorithm based on c-retiming.

Let &pc be the minimum clock period that can be
achieved by retiming. Based on the discussion in Section 3,
we have the following result:

Theorem 5 The clock period of the circuit returned by
RECRE is less than bop + D + e . When eacii gate in G
has one unit of delay and c = 1, the clock period of the
circuit i s ezactly dopt .

RECRE has been implemented. In our implementation,
we use a min-cost flow program based on the cost-scaling
technique to minimize the amount of fractional FF [12].
Fractional F F sharing is also included in our implementa-
tion. We tested RECRE on the sequential benchmark cir-
cuits in ISCAS89 suite. The results are reported in Table 1.
(We dropped small circuits and a few circuits without re-
duction in clock period.) The unit-delay model is used in
our experiment (so the clock period of the retimed circuit
is actually minimum). The experiments were done on a
SPARC 5 with 32MB memory. We list in the table the CPU
times for searching the minimum clock period (4) and min-
imizing the amount of fractional FF (FF). As can be seen,
the algorithm is very efficient.

Overall RECRE reduces the clock period by 30% with
13% increase in the number of FFs. It should be pointed
out the number of FFs may not be optimal.

6 Applications
Many existing approaches to sequential synthesis and

optimization operate on only the combinational logic be-
tween FFs. That is, the FFs in a sequential circuit are

circuit 11 initial 11 RECRE 11 times (8)

name I gates 1) d, 1 FFs 11 d,opt I FFs 11 d, I FF

Total I 11 931 1 7493 (1 643 I 8474 (1
Ratio I 11 1 I 1 11 0.69 I 1.13 11

Table 1 : Experimental results: retiming via c-retiming.

simply removed to obtain a combinational network. Then
the combinational network is optimized. Finally, the FFs
are connected back. Obviously, these approaches can only
explore a small portion of the available design space since
they do not consider different FF configurations that can
be obtained by retiming. I t also fails to consider the sig-
nal dependencies across FF boundaries since the network
is segmented into independent pieces after the removal of
FFs.

There have been a few methods that try to consider re-
timing during synthesis and optimization [13, 141. However,
most of them use retiming as either a preprocessing step
(i.e., determining a “good” initial FF configuration) [15], or
a post-processing step [16, 171. In some cases, limited inter-
action of retiming and circuit transformations is explored.
By and large, retiming and other design transformations are
done separately. One major obstacle to combining retiming
with other design transformations is that existing retiming
algorithms cannot give useful guidance to these transforma-
tions, since these algorithms assume the circuit structures
and gate delays are given and fixed.

We now use the tree mapping problem [la] as an example
to show that c-retiming can be combined with other design
transformations. It should be pointed out that tree covering
is a relatively simple problem. This is, in fact, one of the
reasons we use i t as an illustrating example.

In the tree mapping problem we are given a cell library
P, a matching procedure MATCH, and a sequential tree net-
work N . The matching procedure takes a node U in the

119

network and the cell library P and produces all cells in P
that match a subtree rooted at U. (We assume the match-
ing algorithm ignores FFs in finding matches). Each cell
p has a propagation delay d (p) . The problem is to
the network such that the clock period of the resultin
work comprised of library cells (called bo
minimized2.

F P cell1

Figure 5: (a) A tree network, (b) a simple cell library,
and (c) a bound network f rom the tradit ional approach.

When the network is combinational, the problem can be
solved optimally using dynamic programming [20, 19, 211.
For sequential circuits, the traditional approach simply re-
moves the FFs, covers the remaining combinational network
optimally, and finally places the FF back. This approach,
however, may not find the best solution. Consider the net-
work in Figure 5(a) with a library having three cells as
shown in Figure 5(b). We assume each cells has one unit
delay. The solution produced by the traditional approach
is shown in Figure 5(c). The resulting bound network has
a clock period of two and retiming at this stage cannot re-
duce the clock period since there is a combinational path
from a PI to the PO with two cells. However, if we move
the two FFs on the output of gate f to its inputs and cover
the network as shown in Figure 6(b) (NOT optimal for the
combinational network), the resulting bound network can
be retimed to a clock period of one as shown in Figure 6(c).

4

2

, .

retiming value and the best cell at each
i t ial bound network,

network.

2For simplicity reason, we ignore load in delay calculation. To
consider load, the load binning technique [19, 181 can be easily
incorporated.

Grodstein et. al. [22] proposed a tree mapping algorithm
that takes into consideration of retiming. Using c-retiming,
we derive another algorithm. Unlike the algorithm in [22],
our algorithm does not enumerate all possible retiming val-
ues a t each node.

Figure 7 summarizes our mapping algorithm for a target
clock period 4 . The algorithm examines the nodes in N in
topological order starting with PIS. For each node, i t calls
BESTCELL to determine a cell for the node that results in
the minimum c-retiming value at the node. The algorithm
can also be viewed as a modification of CTCHECK with the
procedure BESTCELL is used to update t m p . (Actually,
variable t m p is no longer needed and the value assigned
to tmp can be directly assigned to s(u) , since the network
contains no loops.)

SEQCE~-TIALTREEMAP(N, 4)
Let v1, v2,. . . , v n be a topological order of the nodes
in N, starting with PIS;
for each node v

for 3 +- 1 to n {
if (v is a PI) s(v) +- 0;

~ (q) + BESTCELL(W~, P) ;
if (v3 is a PO and s (n J) > 1) return failure;

}
return success;

BESTCELL(V, P)
d,,, + 00;

for each p E ~~ATcH(w,P) {
for each U in i n p u t s (p)

f,, c the nnmber of FFs on the path from U to v - maxtnputs(p){s(~) - f u + ?I;
if (d,,, > d) {

1

d,,, - d ;
cell t p ;

Figure 7: Mapping algorithm for sequential tree net-
work for the target clock period 4.

After all the minimum c-retiming values have been com-
puted, the next step is to cover the output of the network
with the best cell (as determined by BESTCELL) and move
any FFs covered by a cell t o the inputs of the cell, then
continue to cover the inputs using the best cells until the
PIS are reached. The final step is converting the c-retiming
s to a retiming and apply the retiming to the initial bound
network. For the network in Figure 5, assuming
c-retiming values and the correspond
in Figure 6(a) and Figure 6(b) is the
We then convert the c-retiming to
rem 3). The retiming values are also s
Applying the retiming to the bound network, we obtain ex-
actly the network in Figure 6(c). We have the following
result:

120

Theorem 6 I f SEQUENTIALTREEMAP returns failure,
then N does not have a bound network with a clock pe-
riod of 4 ; i f returns success, the retiming converted from
the c-retiming s achieves a clock period less than q5 + D ,
where D is the largest cell delay.

Using binary search on 4 as in RECRE, we can find a
bound network with a clock period less than D + e away
from the optimal one.

7 Conclusion and future work
In this paper, we introduce a fine-grain version of retim-

ing called c-retiming. C-retiming has several nice proper-
ties. The most important one is that it can be combined
with other design transformations. It can also be computed
much faster than retiming. A c-retiming can be converted
to a retiming with limited degradation in clock period and
number of FFs. We proposed a fast retiming algorithm
based on c-retiming. We also use an example to illustrate
that c-retiming can be used to study synthesis and opti-
mization problems in conjunction with retiming.

Several directions are currently being pursued. One is
using c-retiming to re-examine other accepted techniques
for sequential synthesis and optimization with the objective
of incorporating retiming. In fact, the c-retiming concept
has been applied to technology mapping for LUT-based FP-
GAS and circuit clustering [23, 241. Novel algorithms have
been proposed that can produce designs with optimal clock
periods. Another problem is to study how to use c-retiming
to minimize the number of FFs. Yet another direction is
to find direct retiming approaches (not via c-retiming) that
can accommodate circuit modifications.

References
[l] C. E. Leiserson and J. B. Saxe, “Retiming synchronous

[2] B. Lockyear and C. Ebeling, “Optimal retiming of
circuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

multi-phase level-clocked circuits,” in Advanced -Re-
search in VLSI, pp. 265-280, 1992.
A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou,
“Optimizing two-phase, level-clocked circuitry,” in Ad-
vanced Research in VLSI, pp. 245-264, 1992.
N. V. Shenoy and R. Rudell, “Efficient implementation
of retiming,” in Intl. Conf. on Computer-Aided Design

R. B. Deokar and S. S. Sapatnekar, “A fresh look a t
retiming via clock skew optimization,” in ACM/IEEE
Design Automation Conf. (DAC), pp. 310-315, 1995.

N. Maheshwari and S. S. Sapatnekar, “An improved
algorithm for minimum-area retiming,” in ACM/IEEE
Design Automatron Conf. (DAC), pp. 2-7, 1997.

T. Soyata and E. Friedman, “Retiming with non-zero
clock skew, variable register, and interconnect delay,”
in Intl. Conf. on Computer-Aided Design (ICCAD),

K. Lalgudi and M. Papaefthymiou, “DELAY: An ef-
ficient tool for retiming with realistic delay model-
ing,’’ in ACM/IEEE Destgn Automation Conf. (DAC),

(ICCAD), pp. 226-233, 1994.

pp. 234-141, 1993.

pp. 304-309, 1995.

[9] V. Singhal, C. Pixley, R. Rudell, and R. Brayton, “The
validity of retiming sequential Circuits,” in A CM/IEEE
Design Automation Conf. (DAC), pp. 316-321, 1995.

[IO] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Intro-
duction to Algorithms. New York: McGraw-Hill Book
Company, 1990.

[I13 D. H. Lee and S. M. Reddy, ”On determining scan
flip-flops in partial-scan designs,* in Intl. Conf. on
Computer-Aided Design (ICCAD), pp. 322-325, 1990.

[12] A. Goldberg, uAn efficient implementation of a scaling
minimum-cost flow algorithm,” Tech. Rep. STAN-CS-
92-1439, Stanford University, 1992.

[13] G . De Micheli, ”Synchronous logic synthesis: algo-
rithms for cycle-time minimization,” IEEE Trans. on
Computer-Aided Design, vol. 10, pp. 63-73, 1991.

[14] U. Weinmann and W. Rosenstiel, “Technology m a p
ping for sequential circuits based on retiming tech-
niques,” in Proc. European Design Automation Conf.,

[15] S. Malik, K. J. Singh, R. Brayton, and A. L.
Sangiovanni-Vincentelli, “Performance optimization of
pipelined logic circuits using peripheral retiming and
resynthesis,” IEEE Trans. on Computer-Aided Design,

[16] S. Dey, M. Potkonjak, and S. G. Rothweiler, uperfor-
mance optimization of sequential circuits by eliminat-
ing retiming bottlenecks,” in Intl. Conf. on Computer-
Aided Design (ICCAD), pp. 504-509, 1992.

[17] S. T. Chakradhar, S. Dey, M. Potkonjak, and S. G.
Rothweiler, “Sequential circuit delay optimization us-
ing global path delays,” in ACM/IEEE Design Au-
tomation Conf. (DAC), pp. 483-489, 1993.

[18] G. De Micheli, Synthesis and Optimization of Digital
Circuits. McGraw-Hill, Inc., 1994.

[19] R. Rudell, “Logic synthesis for VLSI design,” Tech.
Rep. Memorandum UCB/ERL M89/49, University of
California at Berkeley, 1989. (Ph.D. dissertation).

[20] K. Keutzer, “Dagon: Technology binding and local op-
timization by DAG matching,” in ACM/IEEE Design
Automation Conf. (DAC), pp. 341-347, 1987.

[21] H. Touati, “Performance-oriented technology map-
ping,” Tech. Rep. UCB/ERL M90/109, University of
California a t Berkeley, 1990. (Ph.D. dissertation).

[22] J. Grodstein, E. Lehman, H. Harkness, H. Touati, and

pp. 318-323, 1993.

vol. 12, pp. 568-578, 1993.

B. Grundmann, “Optimal latch mapping and retim-
ing within a tree,” in Intl. Conf. on Computer-Aided
Design (ICCAD), pp. 242-245, 1994.

P. Pan and C. L. Liu, “Optimal clock period
FPGA technology mapping for sequential circuits,”
in ACM,/IEEE Design Automation Conf. (DAC),

A. Karandikar, P. Fan, and C. L. Liu, ’Optimal clock
period clustering for sequential circuits with retiming,”
in Intl. Conf. on Computer Design (ICCD), 1997. (this
proceedings).

pp. 720-725, 1996.

12 1

