
Simultaneous Circuit Partitioning/Clustering with Retiming for Performance 
Optimization 

Jason Cong and Honching Li and Chang Wu 
Department of Computer Science 

University of California, Los Angeles, CA 90095 
{ cong, honching, changwu}@cs.ucla.edu 

Abstract 

Partitioning and clustering are crucial steps in circuit layout 
for handling large scale designs enabled by the deep submi- 
cron technologies. Retiming is an important sequential logic 
optimization technique for reducing the clock period by op- 
timally repositioning flipflops [7]. In our exploration of a 
logical and physical co-design flow, we developed a highly 
efficient algorithm on combining retiming with circuit par- 
titioning or clustering for clock period minimization. Com- 
pared with the recent-result by Pan et al. [lo] on quasi- 
optimal clustering with retiming, our algorithm is able to 
reduce both runtime and memory requirement by one order 
of magnitude without losing quality. Our results show that 
our algorithm can be over lOOOX faster for large designs. 

1 Introduction 

Retiming is a very important sequential logic optimization 
technique to minimize the clock period by optimally reposi- 
tioning flipflops (FFs) [7]. However, it is usually performed 
at the logic design level and suffers from the lack of estima- 
tion of the interconnect delay, which becomes more and more 
important for large deep submicron designs. Circuit clus- 
tering and partitioning are two very important techniques 
for large scale system design and provide the first order of 
information about local and global interconnects. However, 
traditionally, retiming and partitioning or clustering are usu- 
ally separated. Most existing clustering algorithms consider 
only combinational circuits [6, 12,  91. For sequential circuits, 
they need to cut of f  all the flipflops and process each com- 
binational subcircuit independently, which may only lead 
to inferior results. On the other hand, most partitioning 
algorithms minimize only the cut size between different par- 
titions without considering the performance issue 14, 11, 51. 
Recent work by Liu et al. [8] proposed to combine retiming 
and logic replication for bi-partitioning for clock period min- 
imization. However, for general k-way partitioning, iterative 
application of such bi-partitioning often lead to sub-optimal 
solutions. 

Recently, Pan et al. [IO]  proposed a polynomial time 
quasi-optimal clustering with retiming algorithm which guar- 
antees to produce a clustering solution with delay of no more 
than D over the minimum delay, where D is the maximum 
interconnect delay between clusters. For circuit with n gates 
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and m edges, the time complexity is U(B.n.m.log2n), where 
B = U ( n 2 D ) .  Although B can be very small in practice 
with careful implementation of the algorithm, the overall 
complexity is still very high for large designs. (Our test indi- 
cates that it takes more than 20 hours without generating a 
result for a circuit with 9817 nodes on a Sun Enterprise 4000 
with 1.5GB memory.) Moreover, the algorithm needs an n 
by n matrix to store all-pair longest paths before comput- 
ing an optimal clustering, which requires prohibitively large 
amount of memory for designs with over 100,000 gates. 

In this paper, we consider a generic framework for both 
clustering and k-way partitioning with simultaneous retim- 
ing for performance optimization. We consider the general 
delay model and partition a sequential circuit into separate 
blocks under the area bound constraint. For clustering, the 
area bound A of each cluster is a given constant. For k-way 
partitioning, we set A M We propose a highly efficient 
and scalable quasi-optimal algorithm for sequential circuits 
with retiming to minimize the clock period. Our algorithm 
works in U ( B  . A . n . Zogn) time, where B is a very small 
number (4 to 25) in practice. Furthermore, our algorithm 
does not need to pre-compute and store the huge all-pair 
longest-path matrix, and reduces the space complexity from 
O ( n 2  + m) to O ( A  . n + m) which is the limiting factor for 
large designs.. Although our algorithm is mainly for clus- 
tering, it can be applied for k-way partitioning as well. 

The remainder of the paper is organized as follows. Sec- 
tion 2 presents the problem formulation and preliminaries. 
Section 3 presents a review of the algorithm in [lo]. Our 
algorithm is presented in Section 4. The experimental re- 
sults are presented in Section 5. Discussions and conclusions 
are given in Section 6. Due to page limit all proofs of the 
theorems are omitted and can be found in [2]. 

2 Problem Formulation and Preliminaries 

The clustering problem is to decompose a given circuit into 
a number of clusters such that their sizes are bounded by a 
given number A.  For performance optimization, we study 
the following problem. 

Problem 1 For a sequential circuit, construct a clustered 
circuit with the minimum clock period under retiming with 
possible node replication. The area of each cluster i s  bounded 
by a given number A .  

As in [9, 12, 101, the general delay model is used in this 
paper, which assumes that each gate v has a delay of d ,  
and each interconnect between clusters has a delay of D ,  

'This may not guarantee exact k partitions after clustering. Post- 
processing of merging small clusters may be needed. 
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the local interconnect delay within each cluster is 0.' The 
size of each gate v is a, .  We ignore the setup and hold times 
and the size of flipflops (FFs) as previous works on retiming 
[7, lo]. We assume that both D and d ,  are  integer^.^ The 
computation of minimum clock period is achieved by solving 
a sequence of the decision problem formulated below: 

Problem 2 For a sequential circuit with a given target clock 
period 4 and given area bound on each cluster, decide if 
there exists a clustered circuit with retiming and possible 
logic replication with a clock period of no more than 4 under 
the general delay model. 

We use G(V, E ,  W )  or G to denote the retiming graph [7] 
of a sequential circuit, where V is the set of nodes represent- 
ing gates in the circuit, E is the set of edges representing 
the connections between gates, W is the set of edge weights. 
The number of nodes in G is denoted n and the number 
of edges is denoted m. Edge e(u ,  v) denotes the connection 
from gate U to gate v and w ( e )  denotes the number of FFs 
on the connection. For an 
edge e(u ,  v) and a given clock period 4, the edge length, de- 
noted length(e),  is defined to be -$ .  w ( e )  + d , .  The path 
length, denoted length(p) of a path p ,  is xeEp length(e).  In- 
tuitively, the length of a path represents the node delay on 
the path less the delay which can be reduced with retiming. 
More specifically, in a clustered circuit C ,  the delay of an 
edge e(u ,  v), denoted d c ( e ) ,  is 0 if U and v are in the same 
cluster, and D if they are in different clusters. The length 
of an edge e in C, denoted l engthc(e) ,  is length(e) + d c ( e ) .  
The path length of a path p in C ,  denoted l engthc(p) ,  is xeEp l engthc(e) .  The 1-value l c ( v )  of a node v in C is the 
maximum path length from primary inputs (PIS) to v in C. 
Based on the retiming theory, it was shown in [IO] that: 

Theorem 1 In a clustered circuit C of a sequential circuit 
with a target clock period 4, if there is a primary output 
(PO) whose 1-value is greater than 4 ,  the clustered circuit 
C cannot be retimed to 4 or less. If, on the other hand, 
the 1-values of all POs are less than or equal to 4, C can be 
retimed to a clock period less than 4 + D .  

The delay of a node v is d , .  

Basically, the clock period computed with I-values will 
differ with the minimum clock period no more than D. Un- 
der a target clock period 4, for every node v in the origi- 
nal circuit, let node label, denoted lop t (v ) ,  be the minimum 
lc(v) among all clustered circuits C. Based on Theorem 1, 
to check if there exists a feasible solution for a given 4, one 
can compute node labels and check if lopt(PO) 5 4 holds for 
every PO. Let 4m,n be the minimum clock period computed 
by labeling, 4 be the achieved clock period by labeling, and 
4' be the real minimum clock period among all clustered 
circuits. We have that: 

Corollary 1 5 4*  5 6 < 4min + D. 

Therefore, computing with label computation, we 
can guarantee to find a clustered circuit with clock period 4 
less than &in + D 5 4* + D. 

3 

In this section we review the labeling algorithm in [lo] for 
checking the feasibility for a target clock period. In [lo], the 
authors propose to solve a simple clustering problem for a 
target clock period. A clustered circuit C is simple if 

1) Each cluster has only one output, which is called the 
root of the cluster; 

2) For each node, there is a t  most one cluster in C rooted 
at the node; 

3) If the cluster rooted at  U is connected to the cluster 
rooted at v, the cluster rooted at v must not contain a copy 
of U .  

Note that, although in general each cluster can have mul- 
tiple outputs, the simple clustering problem considers clus- 
ters with only one output. It was shown in [lo] that there 
exists a simple clustered circuit whose clock period after 
retiming is the minimum clock period among all clustered 
circuits with retiming. The second and third criterion are 
mainly for restricting unnecessary node duplications which 
cannot help to reduce the clock period. 

The major step in checking the feasibility of a target 
clock period is the label computation. It starts with lower 
bounds I(v) on Iopt(v) and repeatedly increases their values 
until they all converge to lopt(v). The initial lower bounds 
are zero for PIS and -CO for the other nodes. Based on the 
current set of [(U), a tighter lower bound lnew(v) is computed 
in each step as follows. 

Let A ( u ,  U) be the maximum path length from U to v in 
the original circuit. Based on the current set of lower-bounds 
1(u), the height of a cluster C, rooted at v is defined to be 
h ( C , )  = m a z { l ( u )  + A ( u ,  U) + D I Vu i s  an  input to  C,}. A 
cluster C, is legal if I C, 15 A .  The new lower bound of v is 

= v legal c, rooted at v 

It was computed with binary search of values in the set of 
{ l ( u )  + A ( u ,  v) + D I V v E V}. 

For each target value L for lnew(v)  in binary search, 
it was proposed in [lo] to construct a (minimum volume) 
cluster C",L and check if its size is larger than A ,  where 
C,,L = { U  I U v and l ( u )  + A ( u , v )  + D > L } .  Clearly, 
lnew(v) 5 L if I C,,L 15 A .  Otherwise, lnew(v) > L. C,,L 
can be computed in O(n + m) time if A ( u ,  v) is known for 
every U .  Since there are a t  most n candidates, lneW(u) can 
be computed in O((n+m)logn) time if the A ( u ,  v) for every 
U is known. Let one labeling iteration be the process that 
each node's label is updated once; B be the number of la- 
beling iterations needed to compute all node labels for each 
target clock period 4. The labeling time for a given clock 
period 4 is thus O(Bn(n + m)logn) .  For a given 4, A ( u , v )  
can be pre-computed and kept in an n by n matrix. The 
computation time for all A ( u ,  v) is O(n210gn + nm) [3]. Bi- 
nary searching from 1 to nD,  the minimum clock period can 
then be computed in O ( B n ( n  + m)log2n) time with space 
requirement of O(n' +m),  where B = O(n2D) .  Clearly, the 
time complexity is high for large designs with over 100,000 
gates. Most of all, the quadratic order of space requirement 
is impractical for large applications. 

Review of the Previous Work 

min { h(CV 1 1. (1) 

'Local interconnect delay can be estimated and the average num- 

31n case D and d, are real numbers, we can scale them based on 
ber can be lumped into the node delay d, for simplicity. 4 Optimal Label Computation 

the required precision on clock period estimation. For example, the 
typical values of D and d, in current technologies is d, = Sops N 
IOOps, D = 200 N 500ps (for global interconnect of length 5 N 20 
mm) after proper buffer insertion and wire sizing. We can scale them 

In this section, we propose a highly efficient and scalable la- 

tering with retiming for period minimization* Our 
bel computation algorithm to compute quasi-optimal clus- 

to be d, = ~ l  and D = 2 N 10. algorithm can be used for both clustering (A is fixed) and 
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Label(G(V,E, W, d, A )  
1 set initial lower-bounds of all nodes 

sort all nodes based on depth-first search (DFS) from 
PIS to POS 

for i from 1 to B 2 
3 set converge = TRUE 
4 for each node v in the DFS order 
5 Ik,,(v) = LabelUpdate(v,d, A )  

7 
8 if I (u)  > for a PO w, return(FALSE) 
9 

6 if ( lkew(v)  > l ( ~ ) )  
set converge = FALSE and I(v) = Ikew(v) 

if (converne == TRUE). returnlTRUE) 
10 retu;n(FALsE) 

Figure 1: Label computation for a target clock period 4 and 
area bound A on each cluster. 

k-way partitioning ( A  M 2). I t  goes through the following 
steps: 

1. Binary search to get the minimum clock period with 
label computation, 

2 .  Form the clustered circuit based on node labels with 
respect to the minimum clock period computed, 

3. Retiming to achieve the best clock period. 
Notice that, although we separate retiming with clus- 

tering in different steps, our label computation in Step 1 
guarantees that the clock period computed is bounded by 
4' + D according to Corollary 1. In the next subsection, we 
will present a much faster label computation procedure for 
achieving the minimum clock period, which is our major con- 
tribution to solving the clustering problem very efficiently. 

4.1 Iterative label Computation for the Minimum Clock 
Period 

We binary search a range [Ib,up] to compute the minimum 
clock period 4*, where lb and up are a lower-bound and 
an upper-bound on the value of the minimum clock period 
precomputed by existing algorithms. For each target clock 
period 4, we compute the node labels with respect to 4 and 
check if lopt(PO) 5 4. If lopt(v)  5 4 hold for all the POs U ,  
we guarantee that 4' < q5 + D and start to check another 
smaller target clock period. If, however, there exists one PO 
v with lopt(v)  > q5, we claim that 4* > q5 and increase the 
target clock period for next round of checking. 

To compute all node labels lopt(v)  for a given 4, we assign 
a lower-bound l ( v )  on the value of lopt(v)  and iteratively 
update them until they all converge to lopt(v), or if we can 
determine that 4 is not a feasible value. Initially, l ( v )  = 0 
for PIS v and l ( v )  = -cm for all the other nodes v. A pseudo 
code of the label computation is shown in Figure 1, where 
B = n ( n  - 1)D is an upper-bound on the number of labeling 
iterations to guarantee that all l ( v )  will converge to lopt(v) .  
In practice, by labeling nodes in the depth-first search order 
from PIS to POs, our algorithm can always terminate in only 
a few iterations (ranging from 4 to 20 for all the examples 
we tested with 100 to 100,000 gates). 

In the remainder of this subsection, we present our effi- 
cient label update procedure LabelUpdate(v, 4, A )  for every 
node v with target clock period q5 and given area bound A .  

4.1.1 Monotone Property for label Update in Reduced 
Candidate Set 

To compute lnew(v) defined in Eqn. 1 for a node based on the 
current set of lower bounds 1(u), the method in [lo] performs 
binary search among all O(n) candidates in { I(u) + A ( u ,  v) + 
D I V v E V } .  In our algorithm, however, we compute a 
tighter lower bound lkew(v) by binary searching only D + 1 
candidates, which speeds up the algorithm by a factor of 
O(1ogn). More precisely, let 

L ( v )  = max { l ( u )  + length(e(u, w))}. 
Ve(u,W)EE 

We compute a tighter lower-bound lkew(v) by searching only 
the D + 1 integer values in the range of [L(v) ,  L(v)  + D] as: 

(2) 

where each C, is a legal cluster rooted at v with area bounded 
by A. The correctness of our approach is based on the mono- 
tone property of node labels. 

We say a set of { l ( v ) }  with respect to a given 4 is mono- 
tone if for any edge e ( u , v ) ,  l ( u )  + length(e) < Z(v), where 
length(e) = - 4 .  w ( e )  + d, .  I t  represents the monotonically 
increasing nature of node labels from PIS to POs. 

Theorem 2 (Monotone Property) If CI sequential circuit 
has a clustered circuit with the clock period of no more than 
Q given 4 under retiming, the node labels lopt(v)  with respect 
to 4 are monotone. That is, lop t (u)  + length(u, v) < lopt(v)  
for every edge e ( u ,  v) in the retiming grnph of the circuit. 

Theorem 3 If Q sequential circuit has Q clustered circuit 
with the clock period of no more than Q given 4 under retim- 
ing, the inequalities l ( ~ )  < lhe,(v) < lopt(v) hold after any 
sequence of label updates, which lkew(v) is computed accord- 
ing to Eqn. 2. 

Intuitively, the node labels monotonically increase for 
nodes from PIS to POs; and the lower-bounds we computed 
will also monotonically increase and converge to the node 
labels. 

l;,,(v) = min{h(C,) I L ( v )  I h ( C , )  L L(v) + D } ,  

4.1.2 longest Path Computation in linear Time 

For a node v to check if there exists a valid cluster C,J with 
size of no more than A for a target value L ,  the authors of 
[lo] propose to precompute and store all-pair longest pathes 
A ( u , v )  in an n by n matrix. This is very inefficient for 
large designs. First, to precompute the all-pair longest path, 
one needs O(n'1ogn + n m )  time with O ( n 2  + m) space [3]. 
Second, for each label update candidate value L ,  it needs 
O ( n  + m) time to search every node U which has a path 
to U. In particular, the O(n2 + m) space requirement is a 
serious limitation which prevents the algorithm to scale to 
large designs (with over 100,000 gates). In the following 
we shall show that we can check the feasibility of each L 
in at most O(h' . A . D )  time with O ( A )  space, where K 
is maximum number of fanins of each node. In case A is 
large, we shall propose two speedup techniques in the next 
subsection. 

Based on the monotone property of node labels, we pro- 
pose to construct C,,L and compute A ( u ,  v) simultaneously. 
Our computation is so efficient that we can afford to com- 
pute A ( u ,  v) many times without precomputation and large 
storage space. 

Since length(e(u, w)) = - 4 .  w ( e )  + d ,  can be either neg- 
ative or positive, in general, to compute all the A ( u ,  v) with 
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respect to a given one needs to perform the well-known 
Bellman-Ford algorithm which takes O(m . n )  time for a 
graph with n nodes and m edges [3]. However, we are able 
to reduce the time complexity to O ( A . l o g D )  by making use 
of the monotone property of node labels. This is our ma- 
jor contribution to the performance-driven clustering with 
retiming problem, as it reduces one order of magnitude of 
both runtime and space requirement of the previous work 
in [ l o ]  for A to be a constant. 

Our method is similar to but even faster than Dijkstra’s 
shortest path algorithm, which applies to special graphs 
with only positive edge length [3]. Even for this kind of 
special graphs, Dijkstra’s algorithm needs O(n . logn + rn) 
time [3]. 

For a given node v and target lower-bound L on v’s 
node label, we simultaneously compute A ( u , v )  and con- 
struct C,,L and check if its size is no more than A. The 
detailed procedure is as follows: We start from the root v 
and grow C,,L progressively towards PIS. At the begin- 
ning, C,,L = 0. To compute A(u,v) ,  we assign a lower- 
bound & ( u , v )  on A ( u , v )  which is -co for each U ,  and 0 
for v. In each step, we pick up one node U with the max- 
imum i ( ~ )  + & ( U ,  w) from nodes outside the current Cu,~. 
If Z ( U )  + 6 l (u , v )  + D 5 L for the node U and the size of 
the current C,,J is no more than A, we claim that L is a 
feasible value, i.e., lLew(v) 5 L. If, however, 1 ( ~ ) + 6 1 ( u , v ) +  
D > L ,  we put U in C,,L and check if I C,,L I> A. In 
case I C,,J I> A ,  we claim L is an infeasible value, i.e., 
lAew(v) > L. In case I C,,L 15 A, we update &(w) as fol- 
lowing for all the fanins w of U and continue the process 
by picking up another outside node U’ with the maximum 
!(U’) + S ~ ( U ’ ,  U). For every fanin w of U outside the current 
CUj, we update &(w, v) to be & ( U ,  U )  + Zength(e(w, U ) )  if 
&(w, w) < & ( U ,  v)+length(e(w, U ) ) .  Otherwise keep 61(w,v) 
to be unchanged. 

The remaining problem is how to select an outside node 
U with the maximum Z ( U ) + ~ ~ ( U ,  v) to grow C,,L in each step. 
Since our interest is on deciding if I ( u )  + & ( a ,  v) + D 5 L 
or not, we only consider those nodes U with Z ( U )  + 61(u,v) 
in the range of [ L  - D ,  L].  The reason in doing in this way 
is that nodes with I ( u )  + & ( u , v )  < L - D will not be in 
C,,,L and need not to be considered; nodes with the value 
larger than L can be treated the same as those with the 
value of L based on the monotone property. This enables a 
linear time bucket sort for outside nodes U .  Clearly, D + 1 
buckets are enough. To select one node U with the maximum 
I(u)+Si(u, v) from the buckets needs only O(ZogD) time. To 
update &(tu, v) for the fanins w of U takes O ( K )  time, where 
K is the maximum fanin number of each node in the circuit. 
As we only need to pick A nodes to construct C,J, the total 
computation time for checking one L is O(K . A .  logD). 

One major difference between our algorithm with the 
Dijkstra’s algorithm is how to pick up a node U to grow 
C,J. Dijkstra’s algorithm picks up one with the maximum 
6i(u, v) which guarantees to be A(u, U) in case all edge length 
are n e g a t i ~ e . ~  Our algorithm, however, picks up a node U 

with the maximum Z ( U )  + 61(u,  v) in the range of [ L  - D ,  L].  
Within this range, we can easily pick a node U with the 
maximum l ( u )  + 6 1 ( ~ ,  U) with simple and fast bucket sort. 
The correctness of our approach is based on the following 
theorem. 

Theorem 4 If the current set of [ ( U )  satisfies the rnono- 
tone property, i.e., l ( v )  2 [ ( U )  +length(e(u,  v)) f o r  any edge 

4Notice that we compute the longest path, instead of the shortest 
path here. 

e(u,  U), & ( U ,  v) computed by our algorithm equals to A(u, v). 

During our labeling process, however, the current set of 
{ l ( u ) }  may not always satisfy the monotone property, thus, 
the & ( U ,  v) we computed may be less than A(u, U). However, 
in this case, our label computation process will not termi- 
nate because there must exist one edge e ( u , v )  such that 
I ( u )  + length(e(u, U)) > I(v).  No matter whether we com- 
pute the correct A ( u , v )  or not, the following inequalities 
still holds: lkew(v) 2 L(v)  2 Z ( U )  + length(e(u,v))  > Z(v). 
As a result, our labeling process will continue until the cur- 
rent set of { Z ( U ) }  satisfies the monotone property and then, 
we guarantee to compute the correct A(u, v). Consequently, 
we guarantee to compute the correct node labels when our 
label computation terminates. 

4.1.3 Further Speedup of the Label Computation 

For constant A ,  our algorithm runs in linear time. However, 
when A = O(n) ,  for example, in the case of k-way partition- 
ing with A M :, the algorithm still runs in quadratic order, 
which is impractical for large designs with over one million 
gates. In the following, we propose two methods to quickly 
predict if I C”,L I< A without really constructing C,,L to 
speed up the label update procedure. 

For each node v, we keep track of the size of C,,l(,) con- 
structed in the previous step and save the value as area(Cu) 
for each v. Initially, area(C,) = a,, which means that each 
v itself is a cluster. For a node v and a target L ,  let a (direct) 
fanin U be critical if l ( a )  + length(e(u,  U)) + D > L ,  which 
means U E C,J. We compute an upper-bound U ( v , L )  on 
I Cu,L I as U ( v ,  L )  = C{area(C , )  I V critical f a n i n  U of U}. 
Obviously, if U ( v , L )  5 A,  I C,,L 15 U ( v , L )  5 A and we 
can conclude that L is a feasible value, i.e., Zkew(v) 5 L .  
If, however, U ( v , L )  > A, we explicitly construct C,,L and 
check if its size is no larger than A .  After getting l i ew(v) ,  
we assign area(C,) to be U ( v , L )  in case U ( v , L )  5 A,  or 
I Cu,l;ew(y) I in case U ( v , L )  > A. For larger A, the proba- 
bility that U ( v , L )  5 A is higher, thus, the runtime can be 
reduced without really constructing C,,L in many cases. 

Our second method on reducing the runtime is based on 
the concept of stable and active nodes. A node v is stable if 
we can conclude that $,,(U) = Iop*(v) and we do not need 
to update the label of v any more. Otherwise, v is active. 
The details of our method are as follows. 

Initially, all nodes are active, except PIS which are stable. 
For the current node v during the labeling process, if v is 
active, we compute lAew(v) as usual by checking the values in 
[C(v), L(v) + D].  Suppose C, , l~Cw(u)  is a cluster constructed 
for lLeW(v). We mark v as a stable node if all inputs to 
the cluster are stable. Otherwise, we mark v as an active 
node. If the current is stable, we will not update I (v)  if 
the monotone property satisfied on every fanin edge of w. 
In other words, if l ( v )  2 C(v) and v is stable, we keep Z(v) 
unchanged. 

To further explain the label update based on idea of ac- 
tive/stable nodes, let us consider an extreme case of a loop- 
less circuit. We label all the nodes in a topological order 
from PIS to POs. Initially, all PIS are stable. The direct 
fanouts of PIS will also be marked stable after we update 
the labels for them, since their cluster inputs must all be 
PIS which are stable. By mathematical induction, when we 
reach a node v along the topologic order, all its predeces- 
sors are marked stable. As a result v will also be marked 
stable immediately after we update its label. After every 
node label being updated once, all nodes will be marked 
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cluster formation is omitted due to page limit and can be 
found in [2]. 

s’;able with I(v) = lopt(v), and the label computation can be 
s:opped. For sequential circuits with feedback loops, a few 
more iterations may be needed. 

We can prove by mathematical induction that: 

Theorem 5 Suppose initially only PIS are marked stable. 
Let lLew(v) be an updated lower-bound on Iopt(v) just  com- 
puted. If all inputs to cluster Cu,l;ew(w) are stable, then 
Zke,,(v) = Iopt(v), and v is also stable. 

Notice however, our algorithm may compute a smaller 
cluster c , , , ~  C C,,J in case the current set of { I (u)}  does 
not satisfy the monotone property, thus, Ikew(v) may still 
be less than lopt(v) even if all inputs to c , , , ~  are stable. To 
guarantee the optimality of our algorithm, if after one itera- 
tion no l ( v )  has been changed, we perform another labeling 
iteration as normal without the active/stable strategy, i.e., 
we reset all nodes except PIS to be active again and perform 
another iteration of label update. If then, there are some 
nodes v whose I(v) have been increased, we continue the la- 
beling process by enabling the active/stable strategy again. 
Otherwise, if there is no node whose l ( v )  has been increased, 
we can safely conclude that l ( v )  = Iopt(v) for every node v 
and the labeling process can be terminated. Our experimen- 
tal results show that for A = 6, these two strategies can 
reduce the number of label updates by a factor of 1 0 ~ 3 0 .  

4.2 Swmmary of label Computation 

For a given an area bound, our labeling algorithm binary 
search the minimum clock period in a range from 1 to n D  
or a much smaller range computed by existing algorithms. 
For each target clock period, we compute all node labels and 
check if the label of each PO is no more than the target. It 
can be proved that the maximum number of labeling iter- 
ations is bounded by B = n ( n  - 1)D. The total labeling 
time for each target clock period is O ( B . K . A . l o g 2 D ) .  The 
runtime to get the minimum clock period is O ( B  . K . A . 
log2 D . logn).  

5 Duplication-free Cluster Formation 

After getting the minimum clock period amin and the cor- 
responding node labels, one can construct the clustered cir- 
cuit easily for nodes from POs to PIS with a first-in-first-out 
queue Q. Initially, we put all POs in Q. Each time we ex- 
tract one node from Q and construct Cu,~opi(, ,)  as presented 
in the previous section. Then, we put all inputs of Cu,~opt(w) 
in Q. This process is repeated until Q is empty. Finally 
we can perform a separate retiming on the clustered circuit 
based on the algorithms in [7, 101 to achieve a clock period 
of no more than emin + D. This procedure can be done in 
O ( A  . n + rn) time, because we only form a cluster for each 
node once and the size of every cluster is bounded by A .  

For k-way partitioning, however, the area overhead due 
to node duplication can be large even with some postprocess- 
ing of duplication removal. For example, the postprocessing 
proposed in [lo] still results in 14% area overhead and 20% 
increase on the clock period based our experimental results 
with the program provided by the authors of [lo]. Their 
postprocessing also takes very long time and is not applica- 
ble for large designs. As a result, we propose a performance- 
driven heuristic to construct duplication-free clusters. On 
average, we can achieve results with the same clock period 
as that by the approach in [lo] and much smaller area in 
much shorter runtime. The details of our duplication-free 

6 Experimental Results 

Clusei 

circuit 
s208.1 

s298 
s344 
s349 
s382 
s386 

s420.1 
s444 
s510 
s526 
s820 
s832 

s838.1 
s5378 

s9234.1 
s1196 
s1423 
s1488 
s1494 

~ 3 8 4 1 7  
~38584.1 

bigkey 
clma 

geo-sub 

geo-mean 

- 
node 

77 
125 
122 
125 
150 
188 
165 
171 
213 
252 
468 
482 
341 

1494 
1313 
481 
508 
734 
746 

9817 
13292 
8607 

30556 
301 

585 

- 

- 

- 

ig with A = 

dL tL 
11 0.2 

6 1.0 
13 5.6 
14 4.2 

7 1.3 
11 3.3 
13 1.0 

8 1.5 
14 8.8 

8 7.1 
14 29.5 
14 38.0 
16 5.7 
12 157.2 
20 305.7 
21 4.6 
52 59.0 
15 56.0 
15 63.8 
- >20h 
- >20h 
- core 
- ofm 

13 8.7 
+o% 3 7 x  

- - 

PRIME 
bL tL 
11 0.0 

6 0.1 
13 0.1 
14 0.1 

7 0.1 
11 0.2 
13 0.0 

8 0.2 
14 0.7 

8 0.2 
14 0.4 
14 0.5 
16 0.1 
12 1.9 
20 5.6 
21 0.0 
52 0.8 
15 1.0 
15 1.3 
27 11.4 
29 8.1 

7 2.2 
54 1036.5 
13 0.2 

1 1 
15 0.5 

Table 1: Comparison of our labeling algorithm with CLUS 
[lo] for 16-way partitioning. Item “>20h” means CLUS has 
been stopped after running 20 hours on a SUN Enterprise 
4000 with 1.5GB memory without producing a result. Item 
“core” mean CLUS core dumpped for the example. Item 
“ofm” means CLUS run out of memeory on the SUN Enter- 
prise 4000. “geo-sub” means the geometric mean of the first 
19 examples. “geo-mean” means the geometric mean of all 
the examples. 

We have implemented our algorithm, named PRIME, in 
the C programming language. The test set includes 23 IS- 
CAS benchmarks and 5 large industrial designs provided by 
an industrial sponsor. The experiments were run on a SUN 
Ultra2 workstation with 512MB memory. For designs with 
over 5000 gates the algorithm in [lo] was run on a SUN 
Enterprise 4000 with 1.5GB memory. 

driven k-way partitioning, we compared our algorithm with 
the algorithm in [lo] with k = 16 and the area bound 
A = 6. (We omit the results for clustering as our algo- 
rithm can be even faster.) The node delay is assumed to 
be 1 and the intercluster delay is 2 as in [lo]. The results 
are shown in Table 1. Columns q 5 ~  list the minimum clock 
period computed by labeling by the two algorithms, respec- 
tively. Columns t~ list the CPU time of the label compu- 
tation. The results show that both algorithm can compute 
the same clock period, while PRIME algorithm is 37 times 
faster on average for designs with less than a few thousand 
gates. If we look at the last four large examples with over 
5000 gates, the algorithm in [lo] run either out of memory 
(over 1.5GB) or thousands times slower. 

To show the effectiveness of our algorithm for performance- 
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Compa 

circuit 
s208.1 

s298 
s344 
s349 
s382 
s386 

s420.1 
s444 
s510 
s526 
s820 
s832 

s838.1 
s5378 

s9234.1 
s1196 
s1423 
s1488 
s1494 

~ 3 8 4 1 7  
~38584.1 

bigkey 
clma 
big1 
bjg2 
blg3 
bjg4 
blg5 

geo-mean 

a 
node 

77 
125 
122 
125 
150 
188 
165 
171 
213 
252 
468 
482 
341 

1494 
1313 
481 
508 
734 
746 

9817 
13237 

8607 
30556 
28009 
52301 
30227 
31407 

101979 
1258 

i-aditional 16-Way 
LR Algorithm 111 

4 cutsize 
24 65 
20 
24 
26 
17 
14 
21 
22 
23 
15 
22 
22 
30 
27 
38 
34 
85 
24 
22 
38 
34 
11 
89 
56 

519 
330 
284 
83 

96 
77 
72 
75 

110 
66 
73 

135 
101 
141 
139 
73 

257 
230 
215 
95 

241 
243 
356 
380 
105 
944 

1569 
3325 
1432 
581 

3712 
36.9 220 

+39.6% -53% 

‘artitioning 
T5RmTm- 

4 cutsize 
14 58 
8 

17 
18 
11 
12 
17 
10 
17 
13 
17 
17 
20 
16 
22 
27 
55 
20 
19 
34 
29 
10 
64 
30 

491 
296 
165 

85 
77 
73 
83 

119 
89 
97 

160 
144 
189 
201 
125 
456 
460 
226 
188 
316 
334 

1545 
2431 
1139 
6087 
7509 

15068 
8243 
5580 

73 24864 
26.4 471 

1 1 

Table 2: Comparison with traditional methods for 16-way 
partitioning. Columns “#I” list the clock period on parti- 
tioning results. Columns “cutsize” list the k-1 cost between 
partitions. “geo-mean” means the geometric mean of all the 
examples. 

We also compared our results with those by traditional 
partitioning algorithm (LR [l]) which were developed for 
minimizing the cut size only. This is mainly to show how 
much we can improve on the clock period and cost we may 
need to pay on the cut size. The LR algorithm is a recently 
reported state-of-the-art bi-partitioning algorithm which pro- 
duces the best partitioning results among methods published 
in the literature on the commonly used MCNC benchmarks 
[l]. The comparison is shown in Table 2. The results by 
LR algorithm are listed in columns under “LR”. Our results 
with duplication-free cluster formation are listed in columns 
under “PRIME-DF”. Our test results show that the clock 
period by iterative LR algorithm is 39.6% longer with 53% 
less c ~ t s i z e . ~  One reason for PRIME to have a larger num- 
ber of cutting edges is due to the fact that PRIME-DF may 
generate results more than 16 partitions (17 or 18) in some 
cases, because it does not have direct control on the number 
of partitions to be generated as LR [l]. 

7 Discussions and Future Work 

In this paper, we present an efficient and effective performance- 
driven clustering and partitioning algorithm for sequential 
circuits with retiming. Comparing with algorithm in [lo], 
our algorithm is one order of magnitude faster if the area 

constraint A is a given constant. Our test results also show 
that for the case with A = O(n), our algorithm can still 
be thousands times faster for large designs with over 5000 
gates due to our highly efficient label computation algo- 
rithm. Comparing with traditional partitioning algorithm 
designed for cut size minimization, our algorithm can achieve 
much reduction on the clock period, however, at  the cost of 
larger cut size and slightly more partitions. In the future, we 
plan to consider the cut size reduction for our performance- 
driven clustering and partitioning algorithm. 
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