
Simultaneous Circuit Partitioning/Clustering with Retiming for Performance
Optimization

Jason Cong and Honching Li and Chang Wu
Department of Computer Science

University of California, Los Angeles, CA 90095
{ cong, honching, changwu}@cs.ucla.edu

Abstract

Partitioning and clustering are crucial steps in circuit layout
for handling large scale designs enabled by the deep submi-
cron technologies. Retiming is an important sequential logic
optimization technique for reducing the clock period by op-
timally repositioning flipflops [7]. In our exploration of a
logical and physical co-design flow, we developed a highly
efficient algorithm on combining retiming with circuit par-
titioning or clustering for clock period minimization. Com-
pared with the recent-result by Pan et al. [lo] on quasi-
optimal clustering with retiming, our algorithm is able to
reduce both runtime and memory requirement by one order
of magnitude without losing quality. Our results show that
our algorithm can be over lOOOX faster for large designs.

1 Introduction

Retiming is a very important sequential logic optimization
technique to minimize the clock period by optimally reposi-
tioning flipflops (FFs) [7]. However, it is usually performed
at the logic design level and suffers from the lack of estima-
tion of the interconnect delay, which becomes more and more
important for large deep submicron designs. Circuit clus-
tering and partitioning are two very important techniques
for large scale system design and provide the first order of
information about local and global interconnects. However,
traditionally, retiming and partitioning or clustering are usu-
ally separated. Most existing clustering algorithms consider
only combinational circuits [6, 12, 91. For sequential circuits,
they need to cut of f all the flipflops and process each com-
binational subcircuit independently, which may only lead
to inferior results. On the other hand, most partitioning
algorithms minimize only the cut size between different par-
titions without considering the performance issue 14, 11, 51.
Recent work by Liu et al. [8] proposed to combine retiming
and logic replication for bi-partitioning for clock period min-
imization. However, for general k-way partitioning, iterative
application of such bi-partitioning often lead to sub-optimal
solutions.

Recently, Pan et al. [IO] proposed a polynomial time
quasi-optimal clustering with retiming algorithm which guar-
antees to produce a clustering solution with delay of no more
than D over the minimum delay, where D is the maximum
interconnect delay between clusters. For circuit with n gates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
0 1999 ACM 1-58 1 13-092-9/99/0oO6..$5 .OO

and m edges, the time complexity is U(B.n.m.log2n), where
B = U (n 2 D) . Although B can be very small in practice
with careful implementation of the algorithm, the overall
complexity is still very high for large designs. (Our test indi-
cates that it takes more than 20 hours without generating a
result for a circuit with 9817 nodes on a Sun Enterprise 4000
with 1.5GB memory.) Moreover, the algorithm needs an n
by n matrix to store all-pair longest paths before comput-
ing an optimal clustering, which requires prohibitively large
amount of memory for designs with over 100,000 gates.

In this paper, we consider a generic framework for both
clustering and k-way partitioning with simultaneous retim-
ing for performance optimization. We consider the general
delay model and partition a sequential circuit into separate
blocks under the area bound constraint. For clustering, the
area bound A of each cluster is a given constant. For k-way
partitioning, we set A M We propose a highly efficient
and scalable quasi-optimal algorithm for sequential circuits
with retiming to minimize the clock period. Our algorithm
works in U (B . A . n . Zogn) time, where B is a very small
number (4 to 25) in practice. Furthermore, our algorithm
does not need to pre-compute and store the huge all-pair
longest-path matrix, and reduces the space complexity from
O (n 2 + m) to O (A . n + m) which is the limiting factor for
large designs.. Although our algorithm is mainly for clus-
tering, it can be applied for k-way partitioning as well.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem formulation and preliminaries.
Section 3 presents a review of the algorithm in [lo]. Our
algorithm is presented in Section 4. The experimental re-
sults are presented in Section 5. Discussions and conclusions
are given in Section 6. Due to page limit all proofs of the
theorems are omitted and can be found in [2].

2 Problem Formulation and Preliminaries

The clustering problem is to decompose a given circuit into
a number of clusters such that their sizes are bounded by a
given number A. For performance optimization, we study
the following problem.

Problem 1 For a sequential circuit, construct a clustered
circuit with the minimum clock period under retiming with
possible node replication. The area of each cluster i s bounded
by a given number A .

As in [9, 12, 101, the general delay model is used in this
paper, which assumes that each gate v has a delay of d ,
and each interconnect between clusters has a delay of D ,

'This may not guarantee exact k partitions after clustering. Post-
processing of merging small clusters may be needed.

460

mailto:changwu}@cs.ucla.edu

the local interconnect delay within each cluster is 0.' The
size of each gate v is a, . We ignore the setup and hold times
and the size of flipflops (FFs) as previous works on retiming
[7, lo]. We assume that both D and d , are integer^.^ The
computation of minimum clock period is achieved by solving
a sequence of the decision problem formulated below:

Problem 2 For a sequential circuit with a given target clock
period 4 and given area bound on each cluster, decide if
there exists a clustered circuit with retiming and possible
logic replication with a clock period of no more than 4 under
the general delay model.

We use G(V, E , W) or G to denote the retiming graph [7]
of a sequential circuit, where V is the set of nodes represent-
ing gates in the circuit, E is the set of edges representing
the connections between gates, W is the set of edge weights.
The number of nodes in G is denoted n and the number
of edges is denoted m. Edge e(u , v) denotes the connection
from gate U to gate v and w (e) denotes the number of FFs
on the connection. For an
edge e(u , v) and a given clock period 4, the edge length, de-
noted length(e), is defined to be -$. w (e) + d , . The path
length, denoted length(p) of a path p , is xeEp length(e). In-
tuitively, the length of a path represents the node delay on
the path less the delay which can be reduced with retiming.
More specifically, in a clustered circuit C , the delay of an
edge e(u , v), denoted d c (e) , is 0 if U and v are in the same
cluster, and D if they are in different clusters. The length
of an edge e in C, denoted l engthc(e) , is length(e) + d c (e) .
The path length of a path p in C , denoted l engthc(p) , is xeEp l engthc(e) . The 1-value l c (v) of a node v in C is the
maximum path length from primary inputs (PIS) to v in C.
Based on the retiming theory, it was shown in [IO] that:

Theorem 1 In a clustered circuit C of a sequential circuit
with a target clock period 4, if there is a primary output
(PO) whose 1-value is greater than 4 , the clustered circuit
C cannot be retimed to 4 or less. If, on the other hand,
the 1-values of all POs are less than or equal to 4, C can be
retimed to a clock period less than 4 + D .

The delay of a node v is d , .

Basically, the clock period computed with I-values will
differ with the minimum clock period no more than D. Un-
der a target clock period 4, for every node v in the origi-
nal circuit, let node label, denoted lop t (v) , be the minimum
lc(v) among all clustered circuits C. Based on Theorem 1,
to check if there exists a feasible solution for a given 4, one
can compute node labels and check if lopt(PO) 5 4 holds for
every PO. Let 4m,n be the minimum clock period computed
by labeling, 4 be the achieved clock period by labeling, and
4' be the real minimum clock period among all clustered
circuits. We have that:

Corollary 1 5 4* 5 6 < 4min + D.

Therefore, computing with label computation, we
can guarantee to find a clustered circuit with clock period 4
less than &in + D 5 4* + D.

3

In this section we review the labeling algorithm in [lo] for
checking the feasibility for a target clock period. In [lo], the
authors propose to solve a simple clustering problem for a
target clock period. A clustered circuit C is simple if

1) Each cluster has only one output, which is called the
root of the cluster;

2) For each node, there is a t most one cluster in C rooted
at the node;

3) If the cluster rooted at U is connected to the cluster
rooted at v, the cluster rooted at v must not contain a copy
of U .

Note that, although in general each cluster can have mul-
tiple outputs, the simple clustering problem considers clus-
ters with only one output. It was shown in [lo] that there
exists a simple clustered circuit whose clock period after
retiming is the minimum clock period among all clustered
circuits with retiming. The second and third criterion are
mainly for restricting unnecessary node duplications which
cannot help to reduce the clock period.

The major step in checking the feasibility of a target
clock period is the label computation. It starts with lower
bounds I(v) on Iopt(v) and repeatedly increases their values
until they all converge to lopt(v). The initial lower bounds
are zero for PIS and -CO for the other nodes. Based on the
current set of [(U), a tighter lower bound lnew(v) is computed
in each step as follows.

Let A (u , U) be the maximum path length from U to v in
the original circuit. Based on the current set of lower-bounds
1(u), the height of a cluster C, rooted at v is defined to be
h (C ,) = m a z { l (u) + A (u , U) + D I Vu i s an input to C,}. A
cluster C, is legal if I C, 15 A . The new lower bound of v is

= v legal c, rooted at v

It was computed with binary search of values in the set of
{ l (u) + A (u , v) + D I V v E V}.

For each target value L for lnew(v) in binary search,
it was proposed in [lo] to construct a (minimum volume)
cluster C",L and check if its size is larger than A , where
C,,L = { U I U v and l (u) + A (u , v) + D > L } . Clearly,
lnew(v) 5 L if I C,,L 15 A . Otherwise, lnew(v) > L. C,,L
can be computed in O(n + m) time if A (u , v) is known for
every U . Since there are a t most n candidates, lneW(u) can
be computed in O((n+m)logn) time if the A (u , v) for every
U is known. Let one labeling iteration be the process that
each node's label is updated once; B be the number of la-
beling iterations needed to compute all node labels for each
target clock period 4. The labeling time for a given clock
period 4 is thus O(Bn(n + m)logn) . For a given 4, A (u , v)
can be pre-computed and kept in an n by n matrix. The
computation time for all A (u , v) is O(n210gn + nm) [3]. Bi-
nary searching from 1 to nD, the minimum clock period can
then be computed in O (B n (n + m)log2n) time with space
requirement of O(n' +m), where B = O(n2D) . Clearly, the
time complexity is high for large designs with over 100,000
gates. Most of all, the quadratic order of space requirement
is impractical for large applications.

Review of the Previous Work

min { h(CV 1 1. (1)

'Local interconnect delay can be estimated and the average num-

31n case D and d, are real numbers, we can scale them based on
ber can be lumped into the node delay d, for simplicity. 4 Optimal Label Computation

the required precision on clock period estimation. For example, the
typical values of D and d, in current technologies is d, = Sops N
IOOps, D = 200 N 500ps (for global interconnect of length 5 N 20
mm) after proper buffer insertion and wire sizing. We can scale them

In this section, we propose a highly efficient and scalable la-

tering with retiming for period minimization* Our
bel computation algorithm to compute quasi-optimal clus-

to be d, = ~ l and D = 2 N 10. algorithm can be used for both clustering (A is fixed) and

46 1

Label(G(V,E, W, d, A)
1 set initial lower-bounds of all nodes

sort all nodes based on depth-first search (DFS) from
PIS to POS

for i from 1 to B 2
3 set converge = TRUE
4 for each node v in the DFS order
5 Ik,,(v) = LabelUpdate(v,d, A)

7
8 if I (u) > for a PO w, return(FALSE)
9

6 if (lkew(v) > l (~))
set converge = FALSE and I(v) = Ikew(v)

if (converne == TRUE). returnlTRUE)
10 retu;n(FALsE)

Figure 1: Label computation for a target clock period 4 and
area bound A on each cluster.

k-way partitioning (A M 2). I t goes through the following
steps:

1. Binary search to get the minimum clock period with
label computation,

2 . Form the clustered circuit based on node labels with
respect to the minimum clock period computed,

3. Retiming to achieve the best clock period.
Notice that, although we separate retiming with clus-

tering in different steps, our label computation in Step 1
guarantees that the clock period computed is bounded by
4' + D according to Corollary 1. In the next subsection, we
will present a much faster label computation procedure for
achieving the minimum clock period, which is our major con-
tribution to solving the clustering problem very efficiently.

4.1 Iterative label Computation for the Minimum Clock
Period

We binary search a range [Ib,up] to compute the minimum
clock period 4*, where lb and up are a lower-bound and
an upper-bound on the value of the minimum clock period
precomputed by existing algorithms. For each target clock
period 4, we compute the node labels with respect to 4 and
check if lopt(PO) 5 4. If lopt(v) 5 4 hold for all the POs U ,
we guarantee that 4' < q5 + D and start to check another
smaller target clock period. If, however, there exists one PO
v with lopt(v) > q5, we claim that 4* > q5 and increase the
target clock period for next round of checking.

To compute all node labels lopt(v) for a given 4, we assign
a lower-bound l (v) on the value of lopt(v) and iteratively
update them until they all converge to lopt(v), or if we can
determine that 4 is not a feasible value. Initially, l (v) = 0
for PIS v and l (v) = -cm for all the other nodes v. A pseudo
code of the label computation is shown in Figure 1, where
B = n (n - 1)D is an upper-bound on the number of labeling
iterations to guarantee that all l (v) will converge to lopt(v) .
In practice, by labeling nodes in the depth-first search order
from PIS to POs, our algorithm can always terminate in only
a few iterations (ranging from 4 to 20 for all the examples
we tested with 100 to 100,000 gates).

In the remainder of this subsection, we present our effi-
cient label update procedure LabelUpdate(v, 4, A) for every
node v with target clock period q5 and given area bound A .

4.1.1 Monotone Property for label Update in Reduced
Candidate Set

To compute lnew(v) defined in Eqn. 1 for a node based on the
current set of lower bounds 1(u), the method in [lo] performs
binary search among all O(n) candidates in { I(u) + A (u , v) +
D I V v E V } . In our algorithm, however, we compute a
tighter lower bound lkew(v) by binary searching only D + 1
candidates, which speeds up the algorithm by a factor of
O(1ogn). More precisely, let

L (v) = max { l (u) + length(e(u, w))}.
Ve(u,W)EE

We compute a tighter lower-bound lkew(v) by searching only
the D + 1 integer values in the range of [L(v) , L(v) + D] as:

(2)

where each C, is a legal cluster rooted at v with area bounded
by A. The correctness of our approach is based on the mono-
tone property of node labels.

We say a set of { l (v) } with respect to a given 4 is mono-
tone if for any edge e (u , v) , l (u) + length(e) < Z(v), where
length(e) = - 4 . w (e) + d, . I t represents the monotonically
increasing nature of node labels from PIS to POs.

Theorem 2 (Monotone Property) If CI sequential circuit
has a clustered circuit with the clock period of no more than
Q given 4 under retiming, the node labels lopt(v) with respect
to 4 are monotone. That is, lop t (u) + length(u, v) < lopt(v)
for every edge e (u , v) in the retiming grnph of the circuit.

Theorem 3 If Q sequential circuit has Q clustered circuit
with the clock period of no more than Q given 4 under retim-
ing, the inequalities l (~) < lhe,(v) < lopt(v) hold after any
sequence of label updates, which lkew(v) is computed accord-
ing to Eqn. 2.

Intuitively, the node labels monotonically increase for
nodes from PIS to POs; and the lower-bounds we computed
will also monotonically increase and converge to the node
labels.

l;,,(v) = min{h(C,) I L (v) I h (C ,) L L(v) + D } ,

4.1.2 longest Path Computation in linear Time

For a node v to check if there exists a valid cluster C,J with
size of no more than A for a target value L , the authors of
[lo] propose to precompute and store all-pair longest pathes
A (u , v) in an n by n matrix. This is very inefficient for
large designs. First, to precompute the all-pair longest path,
one needs O(n'1ogn + n m) time with O (n 2 + m) space [3].
Second, for each label update candidate value L , it needs
O (n + m) time to search every node U which has a path
to U. In particular, the O(n2 + m) space requirement is a
serious limitation which prevents the algorithm to scale to
large designs (with over 100,000 gates). In the following
we shall show that we can check the feasibility of each L
in at most O(h' . A . D) time with O (A) space, where K
is maximum number of fanins of each node. In case A is
large, we shall propose two speedup techniques in the next
subsection.

Based on the monotone property of node labels, we pro-
pose to construct C,,L and compute A (u , v) simultaneously.
Our computation is so efficient that we can afford to com-
pute A (u , v) many times without precomputation and large
storage space.

Since length(e(u, w)) = - 4 . w (e) + d , can be either neg-
ative or positive, in general, to compute all the A (u , v) with

462

respect to a given one needs to perform the well-known
Bellman-Ford algorithm which takes O(m . n) time for a
graph with n nodes and m edges [3]. However, we are able
to reduce the time complexity to O (A . l o g D) by making use
of the monotone property of node labels. This is our ma-
jor contribution to the performance-driven clustering with
retiming problem, as it reduces one order of magnitude of
both runtime and space requirement of the previous work
in [l o] for A to be a constant.

Our method is similar to but even faster than Dijkstra’s
shortest path algorithm, which applies to special graphs
with only positive edge length [3]. Even for this kind of
special graphs, Dijkstra’s algorithm needs O(n . logn + rn)
time [3].

For a given node v and target lower-bound L on v’s
node label, we simultaneously compute A (u , v) and con-
struct C,,L and check if its size is no more than A. The
detailed procedure is as follows: We start from the root v
and grow C,,L progressively towards PIS. At the begin-
ning, C,,L = 0. To compute A(u,v) , we assign a lower-
bound & (u , v) on A (u , v) which is -co for each U , and 0
for v. In each step, we pick up one node U with the max-
imum i (~) + & (U , w) from nodes outside the current Cu,~.
If Z (U) + 6 l (u , v) + D 5 L for the node U and the size of
the current C,,J is no more than A, we claim that L is a
feasible value, i.e., lLew(v) 5 L. If, however, 1 (~) + 6 1 (u , v) +
D > L , we put U in C,,L and check if I C,,L I> A. In
case I C,,J I> A , we claim L is an infeasible value, i.e.,
lAew(v) > L. In case I C,,L 15 A, we update &(w) as fol-
lowing for all the fanins w of U and continue the process
by picking up another outside node U’ with the maximum
!(U’) + S ~ (U ’ , U). For every fanin w of U outside the current
CUj, we update &(w, v) to be & (U , U) + Zength(e(w, U)) if
&(w, w) < & (U , v)+length(e(w, U)) . Otherwise keep 61(w,v)
to be unchanged.

The remaining problem is how to select an outside node
U with the maximum Z (U) + ~ ~ (U , v) to grow C,,L in each step.
Since our interest is on deciding if I (u) + & (a , v) + D 5 L
or not, we only consider those nodes U with Z (U) + 61(u,v)
in the range of [L - D , L]. The reason in doing in this way
is that nodes with I (u) + & (u , v) < L - D will not be in
C,,,L and need not to be considered; nodes with the value
larger than L can be treated the same as those with the
value of L based on the monotone property. This enables a
linear time bucket sort for outside nodes U . Clearly, D + 1
buckets are enough. To select one node U with the maximum
I(u)+Si(u, v) from the buckets needs only O(ZogD) time. To
update &(tu, v) for the fanins w of U takes O (K) time, where
K is the maximum fanin number of each node in the circuit.
As we only need to pick A nodes to construct C,J, the total
computation time for checking one L is O(K . A . logD).

One major difference between our algorithm with the
Dijkstra’s algorithm is how to pick up a node U to grow
C,J. Dijkstra’s algorithm picks up one with the maximum
6i(u, v) which guarantees to be A(u, U) in case all edge length
are n e g a t i ~ e . ~ Our algorithm, however, picks up a node U

with the maximum Z (U) + 61(u, v) in the range of [L - D , L].
Within this range, we can easily pick a node U with the
maximum l (u) + 6 1 (~ , U) with simple and fast bucket sort.
The correctness of our approach is based on the following
theorem.

Theorem 4 If the current set of [(U) satisfies the rnono-
tone property, i.e., l (v) 2 [(U) +length(e(u, v)) f o r any edge

4Notice that we compute the longest path, instead of the shortest
path here.

e(u, U), & (U , v) computed by our algorithm equals to A(u, v).

During our labeling process, however, the current set of
{ l (u) } may not always satisfy the monotone property, thus,
the & (U , v) we computed may be less than A(u, U). However,
in this case, our label computation process will not termi-
nate because there must exist one edge e (u , v) such that
I (u) + length(e(u, U)) > I(v). No matter whether we com-
pute the correct A (u , v) or not, the following inequalities
still holds: lkew(v) 2 L(v) 2 Z (U) + length(e(u,v)) > Z(v).
As a result, our labeling process will continue until the cur-
rent set of { Z (U) } satisfies the monotone property and then,
we guarantee to compute the correct A(u, v). Consequently,
we guarantee to compute the correct node labels when our
label computation terminates.

4.1.3 Further Speedup of the Label Computation

For constant A , our algorithm runs in linear time. However,
when A = O(n) , for example, in the case of k-way partition-
ing with A M :, the algorithm still runs in quadratic order,
which is impractical for large designs with over one million
gates. In the following, we propose two methods to quickly
predict if I C”,L I< A without really constructing C,,L to
speed up the label update procedure.

For each node v, we keep track of the size of C,,l(,) con-
structed in the previous step and save the value as area(Cu)
for each v. Initially, area(C,) = a,, which means that each
v itself is a cluster. For a node v and a target L , let a (direct)
fanin U be critical if l (a) + length(e(u, U)) + D > L , which
means U E C,J. We compute an upper-bound U (v , L) on
I Cu,L I as U (v , L) = C{area(C ,) I V critical f a n i n U of U}.
Obviously, if U (v , L) 5 A, I C,,L 15 U (v , L) 5 A and we
can conclude that L is a feasible value, i.e., Zkew(v) 5 L .
If, however, U (v , L) > A, we explicitly construct C,,L and
check if its size is no larger than A . After getting l i ew(v) ,
we assign area(C,) to be U (v , L) in case U (v , L) 5 A, or
I Cu,l;ew(y) I in case U (v , L) > A. For larger A, the proba-
bility that U (v , L) 5 A is higher, thus, the runtime can be
reduced without really constructing C,,L in many cases.

Our second method on reducing the runtime is based on
the concept of stable and active nodes. A node v is stable if
we can conclude that $,,(U) = Iop*(v) and we do not need
to update the label of v any more. Otherwise, v is active.
The details of our method are as follows.

Initially, all nodes are active, except PIS which are stable.
For the current node v during the labeling process, if v is
active, we compute lAew(v) as usual by checking the values in
[C(v), L(v) + D]. Suppose C, , l~Cw(u) is a cluster constructed
for lLeW(v). We mark v as a stable node if all inputs to
the cluster are stable. Otherwise, we mark v as an active
node. If the current is stable, we will not update I (v) if
the monotone property satisfied on every fanin edge of w.
In other words, if l (v) 2 C(v) and v is stable, we keep Z(v)
unchanged.

To further explain the label update based on idea of ac-
tive/stable nodes, let us consider an extreme case of a loop-
less circuit. We label all the nodes in a topological order
from PIS to POs. Initially, all PIS are stable. The direct
fanouts of PIS will also be marked stable after we update
the labels for them, since their cluster inputs must all be
PIS which are stable. By mathematical induction, when we
reach a node v along the topologic order, all its predeces-
sors are marked stable. As a result v will also be marked
stable immediately after we update its label. After every
node label being updated once, all nodes will be marked

463

cluster formation is omitted due to page limit and can be
found in [2].

s’;able with I(v) = lopt(v), and the label computation can be
s:opped. For sequential circuits with feedback loops, a few
more iterations may be needed.

We can prove by mathematical induction that:

Theorem 5 Suppose initially only PIS are marked stable.
Let lLew(v) be an updated lower-bound on Iopt(v) just com-
puted. If all inputs to cluster Cu,l;ew(w) are stable, then
Zke,,(v) = Iopt(v), and v is also stable.

Notice however, our algorithm may compute a smaller
cluster c , , , ~ C C,,J in case the current set of { I (u)} does
not satisfy the monotone property, thus, Ikew(v) may still
be less than lopt(v) even if all inputs to c , , , ~ are stable. To
guarantee the optimality of our algorithm, if after one itera-
tion no l (v) has been changed, we perform another labeling
iteration as normal without the active/stable strategy, i.e.,
we reset all nodes except PIS to be active again and perform
another iteration of label update. If then, there are some
nodes v whose I(v) have been increased, we continue the la-
beling process by enabling the active/stable strategy again.
Otherwise, if there is no node whose l (v) has been increased,
we can safely conclude that l (v) = Iopt(v) for every node v
and the labeling process can be terminated. Our experimen-
tal results show that for A = 6, these two strategies can
reduce the number of label updates by a factor of 1 0 ~ 3 0 .

4.2 Swmmary of label Computation

For a given an area bound, our labeling algorithm binary
search the minimum clock period in a range from 1 to n D
or a much smaller range computed by existing algorithms.
For each target clock period, we compute all node labels and
check if the label of each PO is no more than the target. It
can be proved that the maximum number of labeling iter-
ations is bounded by B = n (n - 1)D. The total labeling
time for each target clock period is O (B . K . A . l o g 2 D) . The
runtime to get the minimum clock period is O (B . K . A .
log2 D . logn).

5 Duplication-free Cluster Formation

After getting the minimum clock period amin and the cor-
responding node labels, one can construct the clustered cir-
cuit easily for nodes from POs to PIS with a first-in-first-out
queue Q. Initially, we put all POs in Q. Each time we ex-
tract one node from Q and construct Cu,~opi(, ,) as presented
in the previous section. Then, we put all inputs of Cu,~opt(w)
in Q. This process is repeated until Q is empty. Finally
we can perform a separate retiming on the clustered circuit
based on the algorithms in [7, 101 to achieve a clock period
of no more than emin + D. This procedure can be done in
O (A . n + rn) time, because we only form a cluster for each
node once and the size of every cluster is bounded by A .

For k-way partitioning, however, the area overhead due
to node duplication can be large even with some postprocess-
ing of duplication removal. For example, the postprocessing
proposed in [lo] still results in 14% area overhead and 20%
increase on the clock period based our experimental results
with the program provided by the authors of [lo]. Their
postprocessing also takes very long time and is not applica-
ble for large designs. As a result, we propose a performance-
driven heuristic to construct duplication-free clusters. On
average, we can achieve results with the same clock period
as that by the approach in [lo] and much smaller area in
much shorter runtime. The details of our duplication-free

6 Experimental Results

Clusei

circuit
s208.1

s298
s344
s349
s382
s386

s420.1
s444
s510
s526
s820
s832

s838.1
s5378

s9234.1
s1196
s1423
s1488
s1494

~ 3 8 4 1 7
~38584.1

bigkey
clma

geo-sub

geo-mean

-
node

77
125
122
125
150
188
165
171
213
252
468
482
341

1494
1313
481
508
734
746

9817
13292
8607

30556
301

585

-

-

-

ig with A =

dL tL
11 0.2

6 1.0
13 5.6
14 4.2

7 1.3
11 3.3
13 1.0

8 1.5
14 8.8

8 7.1
14 29.5
14 38.0
16 5.7
12 157.2
20 305.7
21 4.6
52 59.0
15 56.0
15 63.8
- >20h
- >20h
- core
- ofm

13 8.7
+o% 3 7 x

- -

PRIME
bL tL
11 0.0

6 0.1
13 0.1
14 0.1

7 0.1
11 0.2
13 0.0

8 0.2
14 0.7

8 0.2
14 0.4
14 0.5
16 0.1
12 1.9
20 5.6
21 0.0
52 0.8
15 1.0
15 1.3
27 11.4
29 8.1

7 2.2
54 1036.5
13 0.2

1 1
15 0.5

Table 1: Comparison of our labeling algorithm with CLUS
[lo] for 16-way partitioning. Item “>20h” means CLUS has
been stopped after running 20 hours on a SUN Enterprise
4000 with 1.5GB memory without producing a result. Item
“core” mean CLUS core dumpped for the example. Item
“ofm” means CLUS run out of memeory on the SUN Enter-
prise 4000. “geo-sub” means the geometric mean of the first
19 examples. “geo-mean” means the geometric mean of all
the examples.

We have implemented our algorithm, named PRIME, in
the C programming language. The test set includes 23 IS-
CAS benchmarks and 5 large industrial designs provided by
an industrial sponsor. The experiments were run on a SUN
Ultra2 workstation with 512MB memory. For designs with
over 5000 gates the algorithm in [lo] was run on a SUN
Enterprise 4000 with 1.5GB memory.

driven k-way partitioning, we compared our algorithm with
the algorithm in [lo] with k = 16 and the area bound
A = 6. (We omit the results for clustering as our algo-
rithm can be even faster.) The node delay is assumed to
be 1 and the intercluster delay is 2 as in [lo]. The results
are shown in Table 1. Columns q 5 ~ list the minimum clock
period computed by labeling by the two algorithms, respec-
tively. Columns t~ list the CPU time of the label compu-
tation. The results show that both algorithm can compute
the same clock period, while PRIME algorithm is 37 times
faster on average for designs with less than a few thousand
gates. If we look at the last four large examples with over
5000 gates, the algorithm in [lo] run either out of memory
(over 1.5GB) or thousands times slower.

To show the effectiveness of our algorithm for performance-

464

Compa

circuit
s208.1

s298
s344
s349
s382
s386

s420.1
s444
s510
s526
s820
s832

s838.1
s5378

s9234.1
s1196
s1423
s1488
s1494

~ 3 8 4 1 7
~38584.1

bigkey
clma
big1
bjg2
blg3
bjg4
blg5

geo-mean

a
node

77
125
122
125
150
188
165
171
213
252
468
482
341

1494
1313
481
508
734
746

9817
13237

8607
30556
28009
52301
30227
31407

101979
1258

i-aditional 16-Way
LR Algorithm 111

4 cutsize
24 65
20
24
26
17
14
21
22
23
15
22
22
30
27
38
34
85
24
22
38
34
11
89
56

519
330
284
83

96
77
72
75

110
66
73

135
101
141
139
73

257
230
215
95

241
243
356
380
105
944

1569
3325
1432
581

3712
36.9 220

+39.6% -53%

‘artitioning
T5RmTm-

4 cutsize
14 58
8

17
18
11
12
17
10
17
13
17
17
20
16
22
27
55
20
19
34
29
10
64
30

491
296
165

85
77
73
83

119
89
97

160
144
189
201
125
456
460
226
188
316
334

1545
2431
1139
6087
7509

15068
8243
5580

73 24864
26.4 471

1 1

Table 2: Comparison with traditional methods for 16-way
partitioning. Columns “#I” list the clock period on parti-
tioning results. Columns “cutsize” list the k-1 cost between
partitions. “geo-mean” means the geometric mean of all the
examples.

We also compared our results with those by traditional
partitioning algorithm (LR [l]) which were developed for
minimizing the cut size only. This is mainly to show how
much we can improve on the clock period and cost we may
need to pay on the cut size. The LR algorithm is a recently
reported state-of-the-art bi-partitioning algorithm which pro-
duces the best partitioning results among methods published
in the literature on the commonly used MCNC benchmarks
[l]. The comparison is shown in Table 2. The results by
LR algorithm are listed in columns under “LR”. Our results
with duplication-free cluster formation are listed in columns
under “PRIME-DF”. Our test results show that the clock
period by iterative LR algorithm is 39.6% longer with 53%
less c ~ t s i z e . ~ One reason for PRIME to have a larger num-
ber of cutting edges is due to the fact that PRIME-DF may
generate results more than 16 partitions (17 or 18) in some
cases, because it does not have direct control on the number
of partitions to be generated as LR [l].

7 Discussions and Future Work

In this paper, we present an efficient and effective performance-
driven clustering and partitioning algorithm for sequential
circuits with retiming. Comparing with algorithm in [lo],
our algorithm is one order of magnitude faster if the area

constraint A is a given constant. Our test results also show
that for the case with A = O(n), our algorithm can still
be thousands times faster for large designs with over 5000
gates due to our highly efficient label computation algo-
rithm. Comparing with traditional partitioning algorithm
designed for cut size minimization, our algorithm can achieve
much reduction on the clock period, however, at the cost of
larger cut size and slightly more partitions. In the future, we
plan to consider the cut size reduction for our performance-
driven clustering and partitioning algorithm.

8 Acknowledgements

Special thanks are given to Dr. Peichen Pan and Mr. A. K.
Karandikar for providing the their program for comparison.
This work is partially supported by National Science Foun-
dation Young Investigator Award MIP9357582 and grants
from Actel, Fujitsu Laboratories at America and Quickturn
Design Systems under the California MICRO program.

References

[l] J. Cong, H. Li, S. Lim, T. Shibuya, and D. Xu. Large
Scale Circuit Partitioning With Loose/Stable Net Re-
moval And Signal Flow Based Clustering. In IEEE In-
ternational Conference on CAD, pages 441-446, 1997.

[a] J. Cong, H. Li, and C. Wu. Simultaneous Circuit
Partitioning/CZustering with Retiming for Performance
Optimization. UCLA-CSD 990019, Technique Report,
March 1999.

[3] T. H. Cormen, C. H. Leiserson, and R. L. Rivest. In-
troduction to Algorithms, chapter 25. The MIT Press,
1990.

[4] C. Fiduccia and R. Matheyses. A Linear-Time Heuris-
tic for Improving Network Partitions. In ACM/IEEE
Design Automation Conference, pages 175-181, 1982.

[5] L. Hagen and A. B. Kahng. New Spectral Methods for
Ratio Cut Partitioning and Clustering. IEEE Trans.
on Computer-Aided Design of Integrated Circuits And
Sys terns, 11 (9): 1074-1085, 1992.

[6] E. L. Lawler, K. N. Levitt, and J. Turner. Module Clus-
tering to Minimize Delay in Digital Networks. IEEE
Trans. on Computers, 18:47-57, 1969.

[7] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6:5-35, 1991.

[8] L. Liu, M. Kuo, C. K. Cheng, and T. C. Hu.
Performance-Driven Partitioning using a Replication
Graph Approach. In Prod. 32th ACM/IEEE Design
Automation Conference, pages 206-210, 1995.

[9] R. Murge, R. K. Brayton, and A. Sangiovanni-
Vincentelh. On Clustering for Minimum Delay/Area.
In IEEE International Conference on CAD, pages 6-9,
1991.

Optimal
Clock Period Clustering for Sequential Circuits with
Retiming. IEEE Trans. on Computer-Aided Design of
Integrated Circuits And Systems, 17(6):489-498, 1998.

[ll] Y. C. Wei and C. K. Cheng. Towards Efficient Hierar-
chical Designs by Ratio Cut Partitioning. In IEEE In-
ternational Conference on CAD, pages 298-301, 1989.

[12] H. Yang and D. F. Wong. Circuit Clustering for De-
lay Minimization under Area and Pin Constraints. In
EDaTC, pages 65-70, 1995.

[lo] P. Pan, A. K. Karandikar, and C. L. Liu.

5For a net spanning k partitions, its cutsize is k - 1 111,

465

