FPGA Synthesis with Retiming and Pipelining for Clock Period
Minimization of Sequential Circuits

Jason Cong and Chang Wu
Department of Computer Science

University of California, Los Angeles, CA 90095

Abstract

In this paper, we present a new algorithm, named TurboSYN,
for FPGA synthesis with retiming and pipelining to minimize
the clock period for sequential circuits. For a target clock
period, since pipelining can eliminate all critical 1/O paths,
but not critical loops, we concentrate on FPGA synthesis to
eliminate the critical loops. We combine the combinational
functional decomposition technique with retiming to perform
the sequential functional decomposition, and incorporate it
in the label computation of TurboMap [11] to eliminate all
critical loops. The results show a significant improvement
over the state-of-the-art FPGA mapping and resynthesis al-
gorithms (1.7~2 times reduction on the clock period). More-
over, we develop a novel approach for positive loop detection
which leads to over 10 ~ 50 times speedup of the algorithm.
As a result, TurboSYN can optimize sequential circuits of
over 10* gates and 10 flipflops in reasonable time.

1 Introduction

The FPGA synthesis and technology mapping is to produce a
functionally equivalent circuit for a given circuit using spec-
ified programmable logic blocks (PLBs). In this paper, we
consider lookup table (LUT) based FPGAs. A lookup table
with K inputs and one output, denoted K-LUT, can im-
plement any combinational function of up to K inputs. It
is the most widely used PLB in current FPGAs [1, 18, 27].
There have been many research results on K-LUT mapping
and synthesis for combinational circuits. A comprehensive
survey can be found in [7]. In particular, FlowMap [6] pro-
duces depth-optimal mapping solutions without resynthesis
while FlowSYN [5] and BoolMap-D [15] can produce map-
ping solutions with even smaller depth using resynthesis tech-
niques by exploiting Boolean optimization. For sequential
circuits, however, these approaches assume that the posi-
tions of flipflops (FFs) are fixed so that the entire circuit can
be partitioned into a number of combinational subcircuits,

. Design Automation Conference ® .
Copyright © 1997 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permis-
sions@acm.org.

0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

and each combinational subcircuit is mapped independently.
However, delay-optimal mapping solutions to all combina-
tional subcircuits may not lead to a cycle-optimal mapping
solution for the sequential circuit, since they do not consider
retiming which allows FFs to be moved without changing the
circuit behavior [16],

Several heuristics have been proposed for technology map-
ping of sequential circuits with consideration of retiming [20,
24, 25]. Recently, a significant advancement was made by
Pan and Liu [19]. They proposed a novel algorithm, named
SeqMapll, to find mapping solutions with the minimum clock
periods under retiming for sequential circuits. Although their
algorithm runs in polynomial time, the time complexity is
too high to be used directly in practical designs. The recent
work of TurboMap by Cong and Wu [11] leads to a signif-
icant speedup of the SeqMapll algorithm. It reduces the
runtime of SeqMapll by 2 x 10* times on average and can
optimize circuits of 10* gates efficiently with optimal clock
periods. Although the results of these algorithms are better
than those of FlowMap [6] based approach, they are not as
good as those of FlowSYN [5] based approach in general, be-
cause FlowSYN exploits Boolean optimization. It is natural
to expect better results by considering resynthesis, retiming
and pipelining at the same time for sequential circuits.

For general logic synthesis with retiming, Malik et. al. [17]
proposed an approach of peripheral retiming with resynthe-
sis and, Dey et. al. [3] proposed a logic resynthesis approach
based on global path delays for retiming. However, periph-
eral retiming applies to only pipelined circuits which are a
special class of sequential circuits. For the approach in [3], it
is difficult to choose global path delays without exact infor-
mation of whether it can be realized with resynthesis. Note
that both approaches depend somewhat on the circuit struc-
ture or the initial positions of the FFs.

In this paper, we present a new algorithm for FPGA syn-
thesis with retiming and pipelining to minimize the clock pe-
riods for sequential circuits. For a path in an LUT circuit, the
path’s delay-to-register (DR) ratio is the ratio of the number
of LUTSs on it over the number of FFs on it. An I/O path is
a path from a primary input (PI) to a primary output (PO).
A loop is a path starting and ending at the same LUT. The
clock period of an LUT circuit under retiming is bounded by
both the maximum loops’ DR ratio and the maximum I/O
paths’ DR ratio. Pipeline is a kind of FF insertion to reduce
the clock period without changing the circuit input-output
behavior. It can be done by inserting the same number of
FFs on the fanout edges of every Pl and retiming for the
minimum clock period. If both retiming and pipelining are
allowed, the clock period, however, is only limited by the
maximum DR ratio of all loops [22], since the maximum DR

ratio of /O paths can be reduced by pipelining. This implies
that it is more important to generate a mapping solution for
loop’s DR ratio minimization rather than I/O path’s DR ra-
tio minimization. Furthermore, the synthesis algorithm can
have much more freedom to reduce the maximum loops’ DR
ratio without restriction on the maximum I/O paths’ DR ra-
tio. Therefore, we concentrate on minimizing the maximum
DR ratio of loops instead of the clock period. Since most
of the existing commercial FPGAs are register-rich, retiming
and pipelining are particularly attractive in FPGA designs.

Our algorithm, names TurboSYN, is the first algorithm
which combines the combinational synthesis technique for
FPGAs with technology mapping, retiming, and pipelining
in one phase for performance optimization. It applies to gen-
eral synchronous sequential circuits and does not depend on
the initial positions of the FFs. The results show that Tur-
boSYN presents substantial improvement over the state-of-
the-art FPGA synthesis algorithms. We believe this new
approach is applicable to the general logic synthesis with re-
timing as well by applying different resynthesis techniques.

The rest of the paper is organized as follows. Section 2
is the problem formulation and overview of the TurboSYN
algorithm. Section 3 is the label computation for MDR ratio
minimization, which is the most important part of the algo-
rithm. In Section 4, we propose a novel speedup technique
followed by a summary of the algorithm. Sections 5 and 6
are the experimental results on a set of MCNC and ISCAS
benchmarks and conclusions.

2 Problem Formulation and Overview of the
TurboSYN Algorithm

In this paper, sequential circuits are represented by retiming
graphs. The retiming graph G(V, E, W) of a sequential cir-
cuit is a directed graph, where V is the set of nodes, £ is the
set of edges and W is the set of weights of edges [16]. Each
node in V represents a gate or a PI/PO in the original cir-
cuit. Each edge e(u,v) in E represents a directed connection
from node u to node v. The weight w(e) of an edge e is the
number of FFs on the connection represented by the edge.
The path weight w(p) of a path p is the sum of the weights
of all edges on the path. A loop is a path that starts from
and ends at the same node. In an LUT network and under
the unit-delay mode, the delay d(u) is 1 for every internal
node u, and 0 for every PI or PO. The path delay d(p) of a
path p is the sum of the delays of all nodes on the path. The
delay-to-register ratio of a loop I, denoted DR(1), is [%]
The mazimum delay-to-register ratio of all loops is called the
MDR ratio of the circuit. For a target clock period ¢, a loop
lis critical, if DR(l) > ¢. Pipelining is one way to insert
FFs followed by retiming to reduce the clock period. With
both retiming and pipelining, the clock period of a circuit
is bounded only by the MDR ratio of the circuit, based on
the theories in [16, 22]. Therefore, to find a mapping so-
lution with the minimum clock period under retiming and
pipelining, we propose to solve the following problem:

Problem 1 For a sequential circuit, find a functionally equiv-
alent LUT circuit with the minimum MDR ratio.

The decision formulation is:

Problem 2 For a sequential circuit and target clock period
¢, decide if there exists a functionally equivalent LUT circuit
with the MDR ratio of no more than ¢.

As in [6, 11, 19], this paper assumes that the initial cir-
cuits are K-bounded. (When a circuit is not K-bounded, we
can use gate decomposition algorithms, such as balanced tree
decomposition [2], DMIG [4] or DOGMA [9], to decompose
the gates with more than K fanins.) To solve Problem 1, our
algorithm, named TurboSYN, works in three steps:

(1) label computation (to be explained later) with se-
quential functional decomposition to search for a mapping
solution with the minimum MDR ratio,

(2) mapping generation and area reduction,

(3) pipelining and retiming to get the final solution.

In this paper, we concentrate on the first step of label
computation for solving Problem 2 which is the most criti-
cal step among the three steps, since the label computation
determines the minimum possible MDR ratio after Steps 2
and 3. We combine the label computation of TurboMap [11]
with OBDD based functional decomposition, which has been
shown to be very effective for the FPGA mapping prob-
lem [5, 14], to search for a mapping solution with the min-
imum MDR ratio. To further speed up the algorithm, we
propose an efficient positive loop detection algorithm which
can speed up the label computation by over 10 ~ 50 times.
For Steps 2 and 3, we propose a label relaxation method and
low-cost K-cut computation for area minimization and use
the methods similar to those in [6, 11, 16, 19].

o i o

(a) circuit with one positive loop

(b) synthesis to eliminate positive loop

I is a flipflop in the original circuit, |:| is a flipflop inserted by pipelining

Figure 1: Resynthesis to eliminate critical loops for 3-LUT
and the target MDR ratio 1.

To illustrate our approach, let us consider the example
shown in Figure 1(a) for a target MDR ratio of 1. The min-
imum delay of path u — v — w is at least 2 even with resyn-
thesis since the total number of inputs to nodes u,v and w
is 4. Thus, the DR({) of loop {(u — v — w — u) is at least
2, which is larger than the target MDR ratio of 1. Now we
replace the edge (w,u) with (w,w) through resynthesis as
shown in Figure 1(b). As a result, the DR({) is reduced to
1 and, so is the clock period after two level of pipeline inser-
tion. Note that it is hard, if not impossible, for the existing
FPGA mapping and resynthesis algorithms to get a mapping
solution with a clock period of 1 for this example.

3 Label Computation with Resynthesis for
MDR Ratio Minimization

The deterministic Problem 2 is to decide whether there ex-
ists a mapping solution with the MDR ratio of no more than
the target ¢. With binary search one can compute the min-
imum MDR ratio of all possible mapping solutions to solve
Problem 1. In this section, we present a novel iterative label
computation method to meet a given MDR ratio ¢. First, we
review the label computation of TurboMap [11] and explain
how it can be expanded for solving Problem 2. Then, we in-
troduce a sequential functional decomposition technique and

combine it with the label computation of TurboMap [11] to
form the label computation of our TurboSYN algorithm.

3.1 Definitions

For a mapping solution with a target clock period ¢, the
length of an edge e(u, v), denoted length(e), is defined to be
—¢ - w(e) + d(v), where w(e) is the edge weight and d(v) is
the delay of node v. The path length of a path p, denoted
length(p), is the sum of lengths of all edges on the path. Ob-
viously, the delay-to-register ratio DR(I) of a loop [is larger
than ¢, if and only if length(l) > 0. A loop with positive
length is called a positive loop.

Given a mapping solution M of a circuit, the l-value of
each node v, denoted {p(v), is the maximum length of all
the paths from Pls to v in M. If there is one positive loop in
M, lp(v) = 400 for every node v on the loop. Clearly, we
have the following result:

Theorem 1 For a mapping solution M, the MDR ratio is
¢ or less if and only if the l-value lar(v) is finite for every
node v.

The label of each node v, denoted {°*(v), is the minimum
{p(v) of v among all possible mapping solutions M. Based
on Theorem 1, Problem 2 can be solved by computing all
node labels and checking whether all of them are finite.

3.2 Label Computation and Review of Tur-
boMap

Pan and Liu [19, 21] proposed an iterative labeling process
in SeqMapll to compute the node labels in O(K°n®) time
and O(K?n?) space for a circuit with n gates'. A recent im-
provement was proposed by Cong and Wu [11], which leads
to significant reduction in runtime (over 10* times) and space
requirement (over 800 times). Our label computation algo-
rithm is based on that of [11].

One important concept is the expanded circuit for a node
v, denoted &y, proposed by Pan and Liu [19] to represent all
possible LUTs rooted at v under retiming and node repli-
cation. The expanded circuit &, is a directed acyclic graph
rooted at v. It has the property that all paths from any given
node u¥ € &, to the root v° pass the same number (w) of
FFs, where " is a replication of node u in the original cir-
cuit. Node u" is a leaf if it has no fanins in £,. A cut (X, X)
is a partition of &,, such that all leaves are in X and the
root is in X. The node cut-set V (X, X) is the set of nodes
in X which have connections to nodes in X. A cut is called
a K-cutif | V(X,X) |< K.

To compute the node labels, the TurboMap algorithm [11]
assigns a set of lower-bounds of node labels and iteratively
update them until all of them converge to the node labels.
The initial lower-bounds for internal nodes and POs are —oc.
The labels of PIs is 0. To update the lower-bound for node v,
we examine the lower-bounds {(«) of all fanin nodes u of v and
compute L(v) = maz{l(uv)—¢-w(e) | Ve(u,v) € G}. The new

lower-bound l,ew(v) for node v is computed as follows [11]:

L(v
Inew(v) = { ﬁgvgﬂ

1Originally, the label computation in SeqMapll was stated as
O(Kg’n4 log(Kn2)). Later on, however, the authors revised the com-
plexity to O(K3n5) due to the difficulty to prove the convergency
of label computation in O(n) iterations [21]. Instead, they proved a
bound of O(n?). The O(log(Kn?)) speedup is due to the result in [11].

if IK-cut with A(X, X) < L(v)

otherwise,

where the height h(X, Y) of a K-cut (X,Y) on &, is defined
to be maz{l(u) — ¢ -w+1 | Yu* € V(X,X)}. To decide
whether e (v) = L(v), the max-flow computation is per-
formed on a partial flow network to check if there exists a
K-cut on the expanded circuit &, with height < £(v) [11].
If such a K-cut exists, lnew(v) is set to be L(v). Otherwise,
lnew(v) is set to be ,C('U) + 1. The procedure of updating
the lower-bound of every node label once is called one iter-
ation of label computation. The iterative label computation
is repeated until there is no more improvement of the lower-
bounds (in this case, the current lower-bounds are the node
labels), or stopped after performing n? iterations (in this
case, there is no solution for the target MDR ratio) [19, 11].

It was showed that the above label computation guar-
antees to find the optimal solutions if no resynthesis is al-
lowed [11]. With resynthesis, however, the node label {°7*(v)
can be further reduced as a much larger solution space is ex-
plored. In the following subsection, we show how to achieve
lnew(v) = L(v) with sequential functional decomposition even
if a K-cut with the height of £(v) cannot be found on the
expanded circuits.

wy w2 w3, Wy
Uy~ U™ Uz Uy

J) = Fluy?, ug?, ug®, uy)

Figure 2: Sequential logic function for a cut on the expanded
circuit. D(u;) is the maximum delay from u}"* to v in the

resynthesized cone X;.

3.3 Sequential Functional Decomposition

As stated in the previous subsection, if there is no K-cut
of height < L(v) for a node v, lhew(v) will be set to be
(L£(v) 4 1) if no resynthesis is considered. In this work, how-
ever, we introduce an OBDD based functional decomposi-
tion for sequential circuits, and use it to try to maintain
lnew(v) = L(v). Based on the property of expanded cir-
cuits £, that every path to the root »° from a given node
u" passes w FFs [19], every cut (X,Y) on &, corresponds
to a sequential function f(V(X,X)) = f(u'*, uy?,.., ulm),
as shown in Figure 2, where u”" are the nodes in the node
cut-set V(X,X). Clearly, we can push all the FFs within

the cone X to the fanout edges of nodes in the cut-size with
retiming to make X purely combinational. Therefore, all the
combinational logic synthesis technique can be used on such
sequential functions f(V(X, X)) of cones X on &, directly.
Let D%, (ui) denote the maximum delay among all paths

from u;’* to the root ©° in the resynthesized cone X,. Then,
the new lower-bound of the node label, denoted I:(v), is

max{l(u;) — ¢ - wi + DYS(u,') |V u)t € V(X, Y)} Thus,
l.(v) < L(v) implies that D;S(ui) < L(v) — Uus) + ¢ - wi
for every node u}”* € V(X,X). In order to satisfy those

conditions, we resynthesize cone X (or equivalently, func-
tion f(V(X,X))) using the OBDD based functional decom-
position technique, since it shows to be very effective for
FPGA mapping problem [5, 14]. Similar to the FlowSYN

LabelUpdateSYN{(v, @)
£(v) — max{l(u) — ¢ - w(e) | Ve(u,0)}
decide the existence of a K-cut with (X, X) < L(v)
if exists such a K-cut in &,, return L(v)
else for h from 0 and increased one by one
compute a min-cut in &, of height < L(v) — h
if cut-size > Cmax, return £L(v) +1
else decompose the corresponding function f(v)

if (I.(v) < L(v)), return £(v)

GO =1 O UL = W N

Figure 3: Label update with resynthesis. Cmax is a given
constant to bound the cut-sizes, which is set to be 15 in

TurboSYN.

algorithm [5], we sort the inputs u;“¢ of f(V(X,X)) in in-
creasing order of (I(ui) — ¢ - w;). Then, we choose the first
K inputs as the bound set B and the rest as the free set
F to decompose the sequential function f(V(X,X)) into
FV(X, X)) = f(B,F) = g(d(B), F), where @(B) is a set
of encoding functions depending on B and, | @(B) |< K.
We iteratively decompose g(&(B),) until it is a K-bounded
function. The decompositions forms a resynthesized cone X..
If the constraint Dys(u,') < E('U) — l(uz) + ¢ - w; 1s satisfied
for every input u;”*, lpew(v) is set to be £(v). Otherwise, we
perform the above resynthesis on another partition (X',F)
with larger F, or set lnew('u) = E('U) + 1 when we reach the
stopping condition shown in Figure 3 line 6.

Based on the above discussions, the label update algo-
rithm in TurboSYN works in three steps. First, we compute
L(v) based on the lower-bounds of node labels. Then, we
decide the existence of a K-cut in &, with the height < £(v)
using the flow-based K-cut computation of [11]. If such a K-
cut is found, lpew(v) is set to be £(v). Otherwise, we compute
a sequence of min-cuts (Xj, X_h) with the height of (L(v)—h)
for h starting 0 and increasing one by one. For each sequen-
tial function f(V(Xn, Xr)) = f(ul, w22, .., u®™), we try to
decompose it into a set of K-bounded subfunctions such that
l.(v) < L(v). If such a decomposition can be found, lnew(v)
is set to be L(v). Otherwise, lnew(v) is set to be L(v) + 1
at the end of the resynthesis sequence. The pseudo code
is shown in Figure 3. With such resynthesis, we observed
that in many cases lnew(v) can assume value E('U) instead of
L(v)+1. As a result, we may be able to keep each {°?*(v) to
be a finite number for a given MDR ratio, which means all
the critical loops can be eliminated.

4 Algorithm Speedup and Summary

Although the label computation stated in the previous sec-
tion can get mapping solutions with smaller MDR ratios, the
runtime, however, can be very long due to the complexity of
the functional decomposition and the iterative nature of the
label computation. Since the computation time is propor-
tional to the number of label computing iterations, in this
section we present a novel technique to reduce the iteration
number to speed up the algorithm.

To get the minimum MDR ratio, there will be two cases
for label computation:

1) the case that there exists a mapping solution for a
target MDR ratio and,

2) the case that there does not exist any mapping solution
for a target MDR ratio.

Our experimental results show that, though the iteration
number is far less than n in the first case, it goes to n? in

the second case due to the lack of a better stopping criterion
other than the very conservative upper-bound of n® in [21].
Clearly the reduction of the iteration number for the second
case is critical to the speedup of the algorithm.

To reduce the iteration number for the second case, we
propose a novel positive loop detection technique, called PLD.
Our PLD technique is based on the idea of predecessor graphs
which are similar to those used in the shortest path the-
ory [13]. The set of predecessors w[v] of node v is defined
to be w[v] = {u | Ve(u,v) € G,l(u) —¢ -w(e)+1> l(v)} if
l(v) > oo, or otherwise, w[v] = @, for the current lower-
bounds I(u) of labels. The predecessor graph is defined to
be G (Vx, Er), where Vi = {v | v € V and =[v] # 0} and
Er = {e(u,v) | e(u,v) € E and v € w[v]}. A node v is
1solated from node u in G if there does not exist any path
from u to v in G.

Based on the topological order of SCCs (strongly con-
nected components) for the label computation proposed in [11],
we have the following important theorem:

Theorem 2 For a sequential circuit G(V, E,W) and one
SCC with n nodes, there exists a positive loop in this SCC
in all possible mapping solutions, if and only if after 6n iter-
ations of label computation, all nodes of the SCC is isolated
from the Pls in the predecessor graph Gr.

Due to the page limitation, the proof is left out in [12].
According to this result, our PLD procedure for each SCC
works as follows after every labeling iteration: 1) construct-
ing Gr, 2) checking whether this SCC is totally isolated from
the Pls in G,. This procedure guarantees to determine ex-
actly the existence of positive loops (if there is any) within
6n iterations for a SCC of n nodes. It is a significant im-
provement over the upper-bound of n? iterations proposed
in [21]. We incorporated this approach into both the Tur-
boMap [11] and our TurboSYN algorithms to compute the
minimum MDR ratio and obtained 10~ 50 times speedup in
runtime.

Since the functional decomposition is very time consum-
ing, we use a heuristic to analyze the resynthesizability of
nodes such that if resynthesis fails to maintain lnew(v) to be
L(v) for nodes v a consecutive times, we mark those nodes
as non-resynthesizable and prohibit further resynthesis for
them. As a result, our algorithm can compute mapping solu-
tions with the minimal MDR ratio for circuits with over 10*
gates and 10% FFs in reasonable time.

A number of LUT reduction techniques are considered
in TurboSYN [12]. First, we try to reduce the number of
nodes which need resynthesis by label relaxation, i.e., not
using the resynthesized results of some nodes and increasing
their labels if no positive loops will occur. Second, efficient
low-cost K-cut computation (similar to the min-cost K-cut
computation in [8], but much more efficient) is performed to
maximize the sharings of inputs of different LUTs, thus, to
reduce the number of LUTs. At last, mpack [4] and flow-
pack [6] is performed to further reduce the number of LUTs.
The flipflop minimization is left for retiming [16].

Our algorithm, named TurboSYN, can be summarized
as follows. First, it runs TurboMap [11] to get an upper-
bound UB of the minimum MDR ratio. Then, TurboSYN
uses binary search over all values in the range of 1 to UB to
get the minimum MDR ratio. For each target MDR ratio
¢, the iterative label computation with resynthesis and PLD
procedure are performed to test if there exists a mapping so-
lution with the MDR ratio < ¢. After the minimum MDR
ratio ¢min i1s computed, we perform the aforementioned area

TurboSYN FlowSYN-s TurboMap
CIRCUIT | GATE | FF [LUT [FF [¢ [CPU |[LUT] FF | @ | CPU |[LUT] FF | ¢ | CPU
bbara 28 10 13 23 1 0.9 19 10 4 0.1 13 7 3 0.1
dk16 162 5 49 6 3 156.7 44 5 3 0.4 103 14 14 3.4
dk17 42 5 6 3 1 0.1 10 5 2 0.1 6 3 1 0.1
kirkman 106 5 59 45 2 4.6 51 36 2 0.1 56 36 3 0.3
exl 140 5 133 41 4 27.2 110 5 5 0.4 93 44 7 0.8
sl 107 5 199 95 4 39.1 112 5 7 2.0 63 9 7 0.5
sse 74 4 88 36 3 8.0 65 4 5 0.2 50 13 6 0.2
keyb 134 5 198 72 4 28.2 80 5 7 0.9 79 14 9 0.9
styr 281 5 386 132 5 153.4 198 5 10 3.8 171 8 16 4.1
sand 327 17 441 87 8 236.0 261 17 15 12.3 178 33 15 4.8
planetl 348 6 224 78 6 166.4 312 6 14 1.8 222 26 18 9.5
scf 516 7 368 31 5 172.7 373 11 8 5.1 344 27 13 21.2
s9234.1 1299 135 677 404 3 286.2 550 141 5 10.6 500 217 4 54.4
s5378 1503 164 645 683 2 220.7 527 291 4 4.8 505 424 3 32.3
s15850.1 3801 515 | 2487 | 1546 4 | 3728.9 | 1526 557 7 55.1 | 1393 952 6 | 2679.4
s38417 9817 | 1464 | 6833 | 2870 5 | 2886.7 | 5350 | 1464 7 | 3905.0 | 3648 | 2420 6 613.4
geo-mean 206 84 | 3.3 56.6 168 20 5.6 2.2 143 39 6.4 4.2
ratio 1 1 1 1 0.81 | 0.24 | 1.72 0.04 | 0.69 | 0.46 | 1.96 0.07

Table 1: Comparison of TurboSYN with FlowSYN-s and TurboMap for 5-LUT. *geo-mean” lists the geometric mean of the
results by each approach. The runtime were recorded on a SUN ULTRA 1 with 192MB memory.

TurboSYN(G(V, E, W)

1 upper bound UB of the MDR ratio—TurboMap [11]
2 binary search of ¢ from 1 to UB

3 {(PI) — 0 and I(u) — —0

4 while (no positive loops by PLD checking)

5 converge«—1

6 for each node v € V

7 lnew(v) = LabelUpdateSYN(v, ¢)

8 if (lnew(v) > U(v)), converge— 0, (v) «— lpew(v)
9 if (converge), break with SUCCESS

10 mapping generation for ¢min and LUT reduction

11 (G) — max{I(PO) | for ¢min}

12 pipeline of [Z(G(;_M] levels if I(G) > ¢min

13 retiming for ¢m¢7:”z;nd FFs minimization

Figure 4: Pseudo code of the TurboSYN algorithm.

reduction process and generate the mapping solution M. Fi-
nally, pipelining is performed by adding [W] FFs on
every fanout edge of each Pl if I(G) = max{{(PO)} > dmin
and followed by retiming. The pseudo code of the TurboSYN

algorithm is shown in Figure 4.

5 Experimental Results

The TurboSYN algorithm has been implemented in C lan-
guage on Sun SPARC workstations and incorporated into the
SIS package [23] and the RASP System [10]. The test set con-
sists of 12 MCNC FSM benchmarks and 4 ISCAS’89 bench-
marks. SIS sequential synthesis commands and dmig [4] are
performed to generate the initial circuits which are shown
in the first three columns in Table 1. Columns GATE and
FF list the number of gates and FFs in each circuit, respec-
tively. Our experiment was performed on a SUN ULTRA 1
workstation with 192MB memory. K is set to be 5.

In Table 1, we compared TurboSYN with TurboMap [11]
and FlowSYN-s. FlowSYN-s is based on the FlowSYN al-
gorithm [5]. It first partitions the sequential circuits into a
set of combinational subcircuits by cutting at all FFs, then

maps every subcircuits independently with the FlowSYN al-
gorithm, and finally, merges the mapped LUT circuits with
the original FFs. The PLD technique has been used in both
TurboSYN and TurboMap. Pipelining and retiming have
been performed as postprocessing steps for all the three ap-
proaches. In Table 1, Columns LUT and FF list the numbers
of LUTs and FFs after retiming and pipelining, respectively,
in the final mapping solutions. Columns ¢ list the minimum
clock periods (or MDR ratios) under retiming and pipelin-
ing. Columns CPU list the CPU time for all the three algo-
rithms. Note that we did not list the postprocessing time of
mpack [4], flowpack [6], pipelining and retiming for the three
approaches, because it is usually small compared to the la-
bel computation time, and the postprocessings are not our
contribution. The results show that TurboSYN can reduce
the clock period by 1.72 and 1.96 times as compared with
FlowSYN-s and TurboMap, respectively. But TurboSYN
uses 19% more LUTs and 76% more FFs as compared with
FlowSYN-s, and 31% more LUTs and 54% more FFs as com-
pared with TurboMap. In most of the cases, the CPU time
of TurboSYN is less than 5 minutes, except for the last two
biggest examples. For s38417 and s15850.1, TurboSYN uses
45 minutes to 1 hour of CPU time due to the big sizes of the
circuits.

6 Conclusions and Future Work

We present a new algorithm TurboSYN for FPGA synthesis
with retiming and pipelining to minimize the clock period.
Instead of minimizing the clock period directly, we propose
to minimize the MDR ratio and use pipeline to eliminate all
critical I/O paths. We propose a novel positive loop detec-
tion technique to enhance the label computation of both the
TurboMap [11] and TurboSYN algorithms. The results show
significant improvement over existing FPGA mapping and
resynthesis algorithms (1.7 to 2 times reduction on the clock
periods).

TurboSYN loses on area as compared to TurboMap and
FlowSYN-s due to shortcomings of the single-output func-
tional decomposition. Since no sharings of inputs between
different LUTs are considered, the more functional decompo-

sitions we perform to reduce the MDR ratio, the more LUTs
we may generate. Though the single-output functional de-
composition is powerful enough for MDR ratio minimization,
the multi-output functional decomposition [26] will be use-
ful for area minimization. However, multi-output functional
decomposition is more difficult and takes much longer time.
We are going to incorporate new logic synthesis methods into
our TurboSYN algorithm for area minimization.

7 Acknowledgements

The authors would like to thank Professors Peichan Pan and
C. L. Liu for providing preprints of their work and SeqMapll
program for the comparative study, Dr. Eugene Ding for
providing the FlowSYN program. This work is partially sup-
ported by National Science Foundation Young Investigator
Award MIP9357582 and grants from Xilinx, Lucent Tech-
nologies and Xerox PARC under the California MICRO pro-
gram and the NYI matching program.

REFERENCES

[1] Altera. Flex 8000 and Flex 10000 Programmable Logic
Device Family Data Sheets. 1995.

[2] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli,
and A. R. Wang. Mis: A multiple-level logic optimiza-
tion system. IEFEE Tans. on Computer-Aided Desing,
6(6):1062-1081, 1987.

[3] S. T. Chakradhar, S. Dey, M. Potkonjak, and S. G.
Rothweiler. Sequential Circuit Delay Optimization Us-
ing Global Path Delays. In 30th ACM/IEEE Design
Automation Conference, pages 408—489, 1993.

[4] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Tra-
jmar. DAG-Map: Graph-based FPGA Technology Map-
ping for Delay Optimization. In IEFE Design and Test
of Computers, pages 7T-20, 1992.

[5] J. Cong and Y. Ding. Beyond the Combinatorial Limit
in Depth Minimization for LUT-Based FPGA Designs.
In IFEFE International Conference on CAD, pages 110—
114, 1993.

[6] J. Cong and Y. Ding. FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs. [FEE Trans. on
Computer-Aided Design of Integrated Circuits And Sys-
tems, 13(1):1-12, 1994.

[7] J. Cong and Y. Ding. Combinational Logic Synthesis for
SRAM Based Field Programmable Gate Arrays. ACM
Transactions on Design Automation of Electronic Sys-
tems, 1(2):145-204, 1996.

[8] J. Cong and Y.-Y. Hwang. Simultaneous Depth and
Area Minimization in LUT-Based FPGA Mapping. In
ACM 3rd Int’l Symp. on Field Programmable Gate Ar-
rays, pages 68-74, 1995.

[9] J. Cong and Y.-Y. Hwang. Structural Gate Decompo-
sition for Depth-Optimal Technology Mapping in LUT-
based FPGA Design. In 33rd ACM/IEEE Design Au-
tomation Conference, pages 726-729, 1996.

[10] J. Cong, J. Peck, and Y. Ding. RASP: A General Logic
Synthesis System for SRAM-based FPGAs. In Proc.
ACM 4th Int’l Symp. on FPGA, pages 137-143, 1996.

[11] J. Cong and C. Wu. An Improved Algorithm for Per-
formance Optimal Technology Mapping with Retiming

in LUT-Based FPGA Design. In [EEE International
Conference on Computer Design, pages 572-578, 1996.

[12] J. Cong and C. Wu. FPGA Synthesis with Retiming and
Pipelining for Clock Period Minimization of Sequential
Circuits. UCLA-CSD 970011, Technique Report, March
1997.

[13] T. H. Cormen, C. H. Leiserson, and R. L. Rivest. Intro-
duction To Algorithms. The MIT Press, 1990.

[14] Y. Lai, K. R. Pan, and M. Pedram. FPGA Synthesis
using Function Decomposition. In International Confer-
ence on Computer Design, pages 30-35, 1994.

[15] C. Legl, B. Wurth, and K Eckl. A Boolean Approach
to Performance-Directed Technology Mapping for LUT-
Based FPGA Designs. In Proc. ACM/IEEE Design Au-
tomation Conference., pages 730-733, 1996.

[16] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6:5-35, 1991.

[17] S. Malik, K. J. Singh, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Performance Optimization
of Pipelined Logic Circuits Using Peripheral Retiming
and Resynthesis. IFEE Trans. on Computer-Aided De-
sign of Integrated Circuits And Systems, 12(5):568-578,
1993.

[18] AT&T Microelectronics. AT&T Field-Programmable
Gate Arrays Data Book. 1995.

[19] P. Pan and C. L. Liu. Optimal Clock Period FPGA
Technology Mapping for Sequential Circuits. In 33th
ACM/IEEE Design Automation Conference, pages 720
725, 1996.

[20] P. Pan and C. L. Liu. Technology Mapping of Sequen-
tial Circuits for LUT-based FPGAs for Performance.
In ACM/SIGDA International Symposium on FPGAs,
pages 5864, 1996.

[21] P. Pan and C. L. Liu. Optimal Clock Period FPGA
Technology Mapping for Sequential Circuits with Re-
timing. ACM Transactions on Design Automation of
Electronic Systems, to appear.

[22] M. C. Papaefthymiou. Understanding Retiming
Through Maximum Average-Delay Cycles. Mathemati-
cal Systems Theory, 27:65-84, 1994.

[23] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A System for Sequen-
teal Circuit Synthesis. Electronics Research Laboratory,

Memorandum No. UCB/ERL M92/41, 1992.

[24] H. Touati, N. Shenoy, and A. Sangiovanni-Vincentelli.
Retiming for Table-Lookup Field-Programmable Gate
Arrays. In FPGA’92, pages 89-94, 1992.

[25] U. Weinmann and W. Rosenstiel. Technology Mapping
For Sequential Circuits Based On Retiming Techniques.
In Proceedings of Furopean Design Automation Confer-
ence, pages 318-323, 1993.

[26] B. Wurth, K. Eckl, and K. Antreich. Functional
Multiple-Output Decomposition: Theory and an Im-
plicit Algorithm. In Proc. ACM/IEEE Design Automa-
tion Conference., pages 54-59, 1995.

[27] Xilinx. The Programmable Logic Data Book. 1994.

