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Abstract

For sequential circuits with given initial states, new equiv-
alent initial states must be computed for retiming, which
unfortunately is NP-hard. In this paper we propose a novel
polynomial time algorithm for optimal FPGA mapping with
forward retiming to minimize the clock period with guaran-
teed initial state computation. It enables a new methodol-
ogy of separating forward retiming from backward retiming
to avoid time-consuming iterations between retiming and
initial state computation. Our algorithm compares very fa-
vorably with both of the conventional approaches of sep-
arate mapping followed by retiming [1, 8] and the recent
approaches of combined mapping with retiming [12, 2]. It
is also applicable to circuits with partial initial state assign-
ment.

1 Introduction

Retiming is a well known technique to reduce the clock pe-
riod by repositioning flipflops (FFs) in sequential circuits
originally proposed by Leiserson and Saxe [8]. Many stud-
ies have been done on combining retiming with logic opti-
mization, circuit partitioning and technology mapping, e.g.,
[11, 16, 10]. For lookup-table (LUT) based FPGA designs,
a significant advancement was made by Pan and Liu [12] on
simultaneous optimal technology mapping with retiming for
clock period minimization. For designs with initial states,
however, equivalent initial states need to be computed for
retiming, which unfortunately is NP-hard [14].
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Figure 1: Retiming and initial state computation. FEach
small rectangle represents a FF.

A general retiming procedure usually involves two kinds
of FF movements. Forward retiming moves FFs from the in-
puts of some gates to their outputs, while backward retiming
moves FFs in the opposite direction. As shown in Figure 1,

the equivalent initial state of forward retiming can be com-
puted easily using circuit simulation. The initial state for
backward retiming, however, needs to solve a satisfiability
problem which is in general NP-complete.

Several heuristics for initial state computation based on
ATPG (automatic test pattern generation) techniques [17,
4, 9] or STG (state transition graph) traversal [15] have been
proposed in recent years. However, none of them guarantees
to find an equivalent initial state for a given retiming. For
example, L. Stok, et. al. [4] proposed to try to exclude back-
ward retiming by minimizing the maximum retiming value.
If backward retiming is still needed for a target clock period,
ATPG based justification was proposed to compute equiv-
alent initial states with possible iterations of retiming and
initial state computation. However, ATPG itself is also NP-
complete [5, 6]. We also observe that minimizing the max-
imum retiming value as formulated in [4] does not always
lead to a simpler initial state computation problem. Our
experience shows that unless a complete forward retiming
solution can be found, the effort of initial state computation
depends on the number of nodes with backward retiming, in-
stead of the maximum retiming value. Alternatively, Touati
and Brayton [15] proposed an initial state computation algo-
rithm based on STG traversal. Their algorithm can compute
equivalent initial states under the condition that there exists
an input sequence for the original initial state going back to
itself in the STG of the original circuit [15]. However, unless
provided externally, to determine the existence and compute
such an input sequence needs to search the STG which may
have an exponential number of nodes. Although represent-
ing the reset logic explicitly can avoid the STG traversal [15],
the extra cost of the reset logic separated from FF's after re-
timing can be high. Furthermore, such kind of reset logic
may restrict possible retiming of the original circuit, thus
reduce the potential of retiming optimization.

In order to avoid the high complexity of initial state com-
putation for general retiming, we propose to perform LUT-
based FPGA mapping with forward retiming. Owur main
contribution is the development of the first polynomial time
optimal algorithm for FPGA mapping with forward retim-
ing, which has immediate benefit of guaranteed equivalent
initial state computation in linear time. With this algo-
rithm, we can try to push FFs back to Pls as much as pos-
sible to enlarge the solution space of mapping with forward
retiming, thus achieve better results. One important ad-
vantage of our approach is that during the preprocessing of
backward retiming we only need to focus on the initial state
computation without considering the effect on the clock pe-
riod. As a result we can still achieve effective retiming for
circuit optimization without time-consuming iterations be-
tween retiming and initial state computation, avoiding the
slow STG traversal procedure or any extra reset logic in ex-
isting approaches [9, 17, 14, 15]. Our algorithm compares



very favorably with both of the conventional approaches of
separate mapping with retiming [1, 8] and the recent ap-
proaches of combined mapping with retiming [12, 2]. It is
also applicable to circuits with partial initial state assign-
ment.

The rest of the paper is organized as follows. Section 2
is the problem formulation and definitions and an overview
of our algorithm. Owur algorithm is presented in Section 3.
The experimental results are presented in Section 4 and the
conclusions and our future work in Section 5. Due to the
page limit, the details of the algorithm and the proofs of the
theorems are left out. They are available in [3].

2 Problem Formulation and Definitions

Given a sequential circuit, the technology mapping prob-
lem for K-LUT based FPGAs is to construct an equiva-
lent circuit consisting of K-LUTs and flipflops (FFs), such
that both of the circuits generate the same output sequence
for any input sequence, starting from their individual ini-
tial states, respectively. We propose to study the following
problem in this paper.

Problem 1 Given a sequential circuit with initial state so,
find an equivalent LUT circuit with initial state s and its
clock period is minimum under forward retiming.

As in [12, 2], instead of solving the optimization Prob-
lem 1 directly, we shall solve its decision version and use
binary search to get the minimum clock period.

Problem 2 Given a sequential circuit with initial state so
and target clock period @, find an equivalent LUT circuit
with initial state s{ and the clock period of no more than ®
under forward retiming.

In this paper, sequential circuits are represented as re-
timing graphs. The retiming graph G(V, E, W) of a sequen-
tial circuit i1s a directed graph, where V is the set of nodes,
E is the set of edges and W is the set of edge weights [8].
Each node in V represents a gate, a primary input (PI) or
a primary output (PO) in the original circuit. Each edge
e(u,v) in E represents a directed connection from node u
to node v. The weight w(e) of an edge e is the number of
FFs on the connection represented by the edge. The path
weight w(p) of a path p is the sum of all edge weights on the
path. Under the unit-delay mode', delay d(v) = 1 for every
internal node v, or 0 for every PI or PO. Path delay d(p) of
a path p is the sum of all node delays on the path.

For a target clock period ®, we define the edge length
length(e) to be d(v) — @ - w(e) for an edge e(u, v). The path
length length(p) is EeEp length(e). In an LUT network M,
a node’s {-value is defined to be I3 (v) = maz{length(p)}
for all paths p from Pls to ». It can be proved that,

Theorem 1 Given an LUT network M and a target clock
period ®, the clock period of M under forward retiming s
no more than ® if and only if the l-values Iy (v) < @, for
every LUT ve M.

Let M be one solution of mapping with forward retiming,
thereafter called FRT mapping solution. In M, the output
of an LUT rooted at v is generally r(v)(> 0) cycles ahead

1 We use the unit-delay mode and assume synchronous sequential
circuits with single-phase clock and edge-triggered flipflops in this
work.
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Figure 2: Simple vs. non-simple mapping solutions. Each
dotted block represents a 3-LUT.

the output of v in the original circuit due to forward retim-
ing. A mapping solution with r(v) < 0 for every LUT root
v is called a simple mapping solution [12]. One important
property of simple mapping solution is that the path weight
of any path from PlIs to a node is the same as that in the
original circuit. Thus, we only need to focus on reducing
the path delay for path length and clock period minimiza-
tion. It was shown in [12] that, there always exists a simple
mapping solution whose clock period will be the minimum
after a second step of general retiming. However, there may
not exist any simple FRT mapping solutions with the min-
imum clock period after optimal forward retiming. For the
example shown in Figure 2(a) with K = 3, it is not difficult
to verify that there does not exist a simple FRT mapping
solution with & = 2 under forward retiming, while there
does exist a non-simple FRT mapping solution with ¢ = 2
as shown in Figure 2(c). As a result, the minimum [-values
among all possible FRT mapping solutions are much more
difficult to compute, because the path weight from Pls to a
node will also be changed which makes the monotone prop-
erty of l-values shown in [2] no longer holds. To overcome
these difficulties we separate the [-value into two values such
that the first one has the monotone property defined in [2]
and the second one can be computed according to the first
one.

Definition 1 Given a mapping solution M and a target
clock period ®, the number of FFs moved forward across
LUT v, denoted ry(v), is called the forward retiming
value of v in M2 The s-value I3;(v) = Ly (v) — ® - rar(v)
represents the l-value in the corresponding simple mapping
solution of M after pushing back the rar(v) FFs to the inputs
of v, where lpr(v) is the l-value of v in M.

According to Theorem 1 we have that,

Corollary 1 A mapping solution M has a clock period of
no more than a given ® under forward retiming, if and only

if s (v) + @ - rar(v) < @ for all the LUT roots v in M.

Definition 2 Gliven a circuit and a target clock period &,
of there exists a FRT mapping solution with clock period of
no more than ® under forward retiming (called a feasible
solution ), the s-label L°(v) is defined to be the minimum
137(v) among all feasible FRT mapping solutions and, the
r-label R(v) is defined to be the minimum rar(v) among all
feasible FRT mapping solutions with l3;(v) = L°(v). The
node label pair is defined to be a 2-tuple (L*(v), R(v)).

We shall show that L°(v) has the important monotone
property in § 3.2. According to Corollary 1, we can solve
the decision Problem 2 by computing the node label pairs
and checking if L°(v) + @ - R(v) < @ holds for every node.

2In [8], the retiming value R(v) < 0 corresponds to forward retim-
ing at node v. We define rps(v) > 0 for FRT mapping.



After getting the minimum clock period ®,,;, and the cor-
responding label pairs, we construct a mapping solution and
perform a separate forward retiming step to achieve Doin.’
Minimizing R(v) means that we want to push forward as
few FFs as possible for each node v to leave the maximum
freedom to the subsequent forward retiming step, because
those FFs pushed forward can no longer be pushed back.
On the other side, R(v) cannot be too small because we also
want to construct larger LUTs to minimize L°(v) by pushing
forward some FFs. Our algorithm can simultaneously min-
imize both L°(v) and R(v) to compute optimal solutions.

3 TurboMap-frt Algorithm

Our algorithm, named TurboMap-frt, computes optimal map-
ping with forward retiming solutions for synchronous se-
quential circuits with given initial states to minimize the
clock period. It performs binary search on the clock period
from 1 to |V |.* For a given clock period, a procedure named
FRTcheck is used to decide whether there exists a feasible so-
lution through label computation. An overview of the label
computation procedure can be described as follows. First,
we assign an initial lower-bound on the value of each node
label pair. Then we iteratively update those lower-bounds
until all of them converge to the values of node label pairs if
there exists a feasible solution, or stop if we conclude there
is no feasible solution. Expanded circuits are used to repre-
sent all possible LUTSs under node duplication and forward
retiming for label pair update.

Before presenting the details of our algorithm, we review
the definition of K-cuts here. In a directed graph with one
sink and one source, a cut (X, X) is a partition of the nodes
in the graph such that the sink is in X and the source is in
X. The node cut-set V (X, X) is the set of nodes in X that
are connected directly to nodes in X. If | V(X,X) |< K,
(X, Y) is called a K -feasible cut, or K -cutin short, and X
is called a K-feasible cone. A cut is a min-cut, if |V(X,X)|

is minimum among all the cuts in the graph.

3.1 LUT Formation

To compute an optimal solution we need to be able to search
all possible LUTs for every node under node duplication
and forward retiming. Pan and Liu [12] proposed to search
all possible LUTs rooted at a node on expanded circuits
of the node. An expanded circuit £, for a node v is a di-
rected acyclic graph (DAG) rooted at v° and constructed
from the original circuit with node duplication as shown in
Figures 3b — 3e. One important property of &, is that for
any node, denoted u", every path from «“ to the root v°
passes exactly w FFs. Pan and Liu [12] showed that to ez-
amine all K-LUTs for a node v, it sufficed to examine all
the K-LUTs that can be derived from the K-cuts in a large
enough ezpanded circuit EE™ of v due to the one-to-one cor-
respondence between K-cuts and K-LUTs.”

However, the one-to-one correspondence between K-cuts
on EE™ and K-LUTs rooted at » under forward retiming no

3Notice that an optimal forward retiming after mapping can be
computed easily based on [8] by adding linear constraints R(v) < 0
for every node v. In fact, we can compute a forward retiming directly
from the node label pairs as shown in § 3.3.

*Much smaller upper-bound can be computed by performing
depth-optimal mapping (FlowMap [1]) on combinational subcircuits
following by forward retiming.

51t was shown that the expanded circuit had no more than O(Kn2)
nodes and O(K2n2) edges for a circuit with n gates [12].
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Figure 3: Expanded circuits for LUT representation.

longer holds. As shown in Figure 3(d), to cluster the nodes
in the dotted box to form an LUT we have to move the FF
backward from the fanout of ' to the fanins of b', because
the path 1) —a® — ¢° does not have any FF to push forward.
Thus, such a cluster is not a valid LUT formation for FRT
mapping. For FRT mapping, we construct a smaller ex-
panded circuit for every node based on its mazimum forward
retiming value so that there is a one-to-one correspondence
between K-LUTs to K-cuts on the expanded circuits.

Definition 3 The maximum forward retiming value
frt(v) of a node v in a retiming graph is the mazimum num-
ber of FFs which can be moved forward from the (transitive)
fanins of v to the output of v.

Lemma 1 frt(v) = min{w(p) |V p: Pl ~ v}.

Since the edge weight w(e) > 0, the set {frt(v)} of all
the nodes in a circuit can be computed in O(|V [*) time by
Dijkstra’s shortest path algorithm.

Now we define a set of expanded circuits of a node v for
FRT mapping. The expanded circuit F, for a given upper-
bound 1 of forward retiming value of node v is a sub-DAG
of £F™ (defined in [12]) with root »° such that, «* is an
internal node of F, if and only if 4" is an internal node of
EE™ and w < 4, and w¥ is a leaf of F! if and only if u®
is either a leaf of £X™ or a fanin of an internal node of F:
and w > 1. Notice that if two leaves u1™* and u2™? have
an edge in EX" ) the edge will not appear in F! because a
leaf cannot have any inputs. For example, the shaded area
of Figure 4(b) represents F?! for the circuit in Figure 4(a),
where the heavy shaded nodes are leaves of F..

(@ (b) (c)

Figure 4: LUT formation for FRT mapping based on the
expanded circuits.

When 1 is set to frt(v), we have that:



Theorem 2 Every K -feasible cut (X, X) on FI) corre-
sponds to a K-LUT rooted at v under node duplication and
forward retiming, where all the leaves are in X and the root

is in X. On the other hand, any K-LUT in a FRT mapping

solution corresponds to a K -feasible cut on ]:J”(v).

To further demonstrate our approach, let us look at the
circuit shown in Figure 4(a). Notice that its only difference
with the circuit in Figure 3(a) is one extra FF on edge (i1, )
which makes frt(c) = 1. Now the 3-cut shown in Figure 4(b)
can form a 3-LUT as shown in Figure 4(c).

3.2 Iterative Label Computation

For a target clock period ®, we compute all node label pairs
of a circuit to decide the existence of a feasible FRT mapping
solution. First, we assign an initial lower-bound (0,0) on
the value of label pair for every PI and (—oc,0) for the
other nodes. Then we iteratively update the lower-bounds
until they converge to the values of node label pairs. If,
however, the lower-bounds cannot converge to finite values
after |V |? iterations, we conclude that there is no feasible
FRT mapping solution for the given ®. The pseudo-code of
the FRT'check algorithm is shown in Figure 5.

FRTcheck(G(V,E, W), ®)
1 assign initial lower-bound (0,0) for each PI and
(—c0,0) for the other nodes
converge «— FALSE, i — 0
while (not converge and 7 < |V |?)
converge «— TRUE
for eachnode v € V
(150w (v), Tnew(v)) «—LabelUpdate(v, ®)
(1 () > 1 (2)
G = (o)
converge «— FALSE
0 t—1+1
1 return (converge? TRUE : FALSE)

o= 00000tk W N

Figure 5: Label computation for a target clock period ®.

The most important part of our algorithm is the update
of the lower-bound pair ({*(v), r(v)) for every node v (proce-
dure LabelUpdate, line 6 in Figure 5). For each node v, we
update {°(v) at first and then r(v) through the computation
of min-height-min-weight K-cuts on vart(v).

Definition 4 For a K-cut (X, X) in an expanded circuit of
node v, the cut-weight is w(X, X) = maz{w | Vu* € X}.

Definition 5 Given a set of lower-bounds (I°(v), r(v)), where
I°(v) < L°(v) and, r(v) < R(v) when I°(v) = L*(v), the

cut-height of a K -cut (X, X) in the expanded circuit Firw)
of node v is defined to be

B(X,X)=max{l®(u) —® - w+1|Yu” € V(X,X)}.

To compute a tighter lower-bound I;,.,,(v) for node v, we
compute £°(v) = maz{l*(u)—P-w(e) | Ve(u,v) € G} on the
original circuit G. Then we decide whether there exists a K-
cut on ]-"Ufrt(v) with height of no more than £°(v) based on
the max-flow K-cut computation on a partial flow network
presented in [2].° If there does not exist such a K-cut, we
set l;ew(v) = ﬁs('v)—l—l and rnew('v) = 0, because it can then
be proved that L°(v) > £L*(v).

6 We refer readers to [2] for the detail.

If, however, there does exist such a K-cut with height
of no more than £°(v), we then compute a K-cut with
the minimum cut-weight among those with height of no
more than £°(v) by binary search on the cut-weight from
0 to frt(v) as follows. (Recall that R(v) is the minimum
rar(v) among all the feasible FRT mapping solutions M with
l3s(v) = L*(v). To minimize w(X,Y) is to guarantee that
Tnew(V) = w(X,Y) < R(v) when {5 (v) = L%(v).)

For a given w € [0, frt(v)], to decide whether there is
a K-cut with height of no more than £°(v) and weight of
no more than w, we construct an expanded circuit F,’ and
decide whether there exists a K-cut on F,” with height of no
more than £5(v). If there does exist such a K-cut, clearly it
is a K-cut with height of no more than £°(v) and cut-weight
of no more than w.

Let (X, X) be such a K-cut with height of £°(v) and
weight of wynin computed above. If ,Cs(v) + D - wmin < P,
we update the new lower-bound to be (L£L*(v), Wmin). Oth-
erwise, we update the new lower-bound to be (£%(v)+1, 0).

It can be proved that ;. (v) < L*(v) and,

Tnew(v) < R(v) when 15, (v) = L*(v). In other words, the
updated pair is still a lower-bound on the value of the label
pair of v. This result is based on the monotone property
of L*(v). Given a sequential circuit G which has a feasible
FRT mapping solution for a target clock period @, a set of
L*(v) is monotoneif, L°(u) — @ - w(e) < L*(v) for any edge
e(u,v) € G.

Theorem 3 (Monotone Property) Given a sequential
circuit G which has a feasible FRT mapping solution for
target clock period @, the set {L*(v) | v € G} is monotone.

Let one iteration denote the computation process where
the lower-bound ({*(v), r(v)) is updated once for every node
v (lines 5 ~ 9 in Figure 5). Based on the monotone property
we can prove that:

Lemma 2 Given a sequential circuit which has a feasible
FRT mapping solution for a target clock period ®, the in-
equality I°(v) < I; ., (v) < L*(v) holds all the time after any
number of iterations.

Lemma 3 Given a sequential circuit G which has a feasible
FRT mapping solution for a target clock period @,
Tnew(v) < R(v) when 1., (v) = L%(v).

As a result, we have the following theorem:

Theorem 4 For a sequential circuit which has a feasible
FRT mapping solution for a target clock period ®, starting
from the initial lower-bounds (0,0) for PIs and (—o0,0) for
the other nodes, the inequalities 1. 1°(v) < L*(v) and, 2.
r(v) < R(v) when I*(v) = L*(v) hold all the time after any

number of iterations of label update.

Based on the above label pair update procedure, we can
prove the optimality of FRTcheck algorithm as follows.

Lemma 4 If there is a feasible FRT mapping solution for a
target clock period ®, the 2-tuples (1°(v), r(v)) computed by
FRTcheck will converge to the node label pairs (L*(v), R(v))

for all nodes after no more than |V |* iterations.

Lemma 5 For a target clock period @, of FRTcheck returns
TRUE, there must exist a feasible FRT mapping solution.



Theorem 5 For a sequential circuit with n gates, the op-
timal FRT mapping solution with the minimum clock pe-
riod can be computed in the worst-case time complexity of

O(K*®n”log? n) and worst-case space requirement of O(K*n?).

Notice that the above result is based on the worst-case
scenario that the expanded circuits have O( K?n?) edges [12]
and we need go through »? iterations (lines 5~9 in Figure 5).
In practice, the expanded circuits have much fewer than K'n
edges using the efficient max-flow computation on partial
flow networks [2] and the number of iterations for each ®
is around 5 ~ 15 based on a computation order proposed
in [2]. Practically, the runtime of our algorithm is in the
order of K?n?log?n, the space requirement is in the order
of K'n. Our experiments show that the optimal solution for
$38417 with 9800 gates and 1500 FFs can be computed in
20 minutes on a Sun Ultra2 with 256 MB memory.

3.3 Mapping Generation

After computing ®@,,;, based on binary search and obtaining
the label pairs (LS(’U), R('U)) of all nodes v under ®,,;,, the
last step is to generate the mapping solution based on the
K-cuts computed during the label computation and perform
forward retiming with initial state computation.

First, we get all the LUT roots in the final mapping
solution based on the K-cuts computed during the label
computation. In the final mapping solution, all the POs
of the original circuit are LUT roots and, if v is an LUT
root, all the nodes in the node-cut set of the K-cut of v are
LUT roots. Those LUT roots can be computed as follows:
starting with a first-in-first-out (FIFO) queue with all the
POs, we repeatedly extract nodes from the head of the queue
until the queue is empty. For each node extracted from the
queue, we mark it as an LUT root and put all the nodes in
its node-cut set to the end of the queue.

Second, we create a new equivalent network by connect-
ing the K-feasible cones X, of the K-cuts (X, X,) of the
LUT roots v. Suppose each LUT has O(C) nodes for a
constant €'« n, where n is the number of nodes in the orig-
inal network, the constructed network has O(Cn) nodes.
We compute a forward retiming {R(v)} on the new net-

work, where R(v) = [gs&] —1 < 0 for LUT roots v and

R(u)=R(v)+w for u* €X, or R(u)=0 for u” EV(XU,YU)
in each LUT rooted at v. After retiming, all the FFs within
each X, will be moved forward outside the cone, because
w’(u” ~ UO)Z’LU—|—§R('U)—§R(U)=0 for all u* € X. So we can
collapse each X, into a K-LUT and the final circuit has a
clock period of no more than ®,,;, as follows.

Theorem 6 {R(v)} is a legal forward retiming to achieve
clock period ®min .

Since the retiming is a forward retiming, an equivalent
initial state can be computed in linear time with circuit sim-
ulation based on the approach in [15]. For a K-bounded cir-
cuit with n gates and O(K n) edges, the first step of getting
LUT roots can be done in O(Kn) time. The forward re-
timing on the constructed circuit can be done in O(CK?n?)
time since |R(v)|< O(K n) for each v and each K-input node
can be simulated in O(K) time [15].7 So the mapping gen-
eration with forward retiming and initial state computation

can be finished in O(C’K2n2) time.

"To be precise, a node can be simulated in O(l) time, where [ is
the number of variables to represent the function of the node, for
example, the number of literals on cover table representation or the
number of variables in the BDD representation.

4 Experimental Results

The TurboMap-frt algorithm has been implemented in
C language and incorporated into the SIS package [13]. Our
test set consists of 14 MCNC FSMs and 4 ISCAS’89 bench-
marks. The initial circuits are shown in Column Original
of Table 1, in which N means the number of nodes and F
means the number of FFs, respectively, in the circuits.

Our experiments were performed on a Sun Ultra2 with
256 MB memory. K was set to be 5. All the mapping results
of TurboMap-frt were computed and verified by verify_fsm
of SIS [13], except the 4 largest ones which were verified
by simulations with input sequences of 3008 random vec-
tors due to huge amount of memory (>1GB) needed by ver-
tfy_fsm for those cases. We compared TurboMap-frt with
FlowMap-frt and TurboMap [2]. FlowMap-frt is based on
the FlowMap algorithm [1]. It first map each combinational
subcircuit bounded by FFs independently with the FlowMap
algorithm. Then it merges the mapped LUT subcircuits
with the original FFs and performs a postprocessing of for-
ward retiming for clock period minimization. TurboMap [2]
computes optimal mapping with general retiming solutions
for synchronous sequential circuits. The initial states of Tur-
boMap solutions were computed with SIS [13] based on the
algorithm in [15]. The experimental results are shown in Ta-
ble 1, where Columns LUT and FF list the numbers of LUTs
and FFs, respectively, in the final mapping solutions by each
approach. Columns @ list the clock periods of the results.
Columns CPU list the CPU time. Those marked with * are
examples for which SIS failed to compute equivalent initial
states for TurboMap solutions. Column Best lists the best
valid solutions (with computed equivalent initial states) by
TurboMap and FlowMap-frt.

The results show that comparing with TurboMap-frt,
FlowMap-frt computed results with 20.2% larger clock pe-
riod. Though TurboMap [2] can compute results with 2.8%
smaller clock period, there are 10 out of 18 solutions by
TurboMap SIS concludes no equivalent initial states exist or
cannot find them due to huge memory requirement (>300MB)
and long runtime (>2hours). Even if the best valid solu-
tions by TurboMap or FlowMap-frt are used for comparison,
TurboMap-frt still outperforms the two algorithms by 8.6%
on the clock periods. On area part, TurboMap-frt used 8.4%
and 1.9% less LUTSs as compared with FlowMap-frt or Tur-
boMap, respectively. TurboMap-frt also reduced 6% FFs
vs. TurboMap. But TurboMap-frt used 33.8% more FFs as
compared with FlowMap-frt. In general we think simulta-
neous mapping with retiming leads to smaller clock period
but tends to use more FFs.

5 Conclusions and Future Work

For sequential circuits with initial states, we presented a new
algorithm TurboMap-frt for FPGA mapping with forward
retiming and initial state computation to minimize the clock
period. Unlike previous retiming algorithms which compute
retiming at first and then try to compute equivalent initial
states, we compute optimal mapping with forward retiming
solutions with equivalent initial states in one step. Our algo-
rithm enables a new methodology of performing backward
retiming separately before forward retiming. Since we can
compute the optimal mapping with forward retiming solu-
tions, backward retiming can be used to push back all the
FFs to Pls as much as possible as long as the equivalent
initial states can be computed without taking into consider-
ation of the impact on the final clock period. This approach
is also applicable to sequential circuits with partial initial
state assignments by allowing FFs with unassigned initial
state to be moved backward or forward freely with other
FFs.

The experimental results show that TurboMap-frt is very
efficient and effective comparing with conventional design
flow of mapping each combinational subcircuits separately.



Original FlowMap-irt TurboMap Best TurboMap-frt
circuit N/F ¢ [JLUTJ] FF [ CPU & [LUT] FF [ CPU [ ® JLUT ]| FF [ CPU
bbara 28/10 4 13 10 0.2 12 7 0.4 3 3 12 12 0.2
bbtas 15/5 2 7 5 0.1 6 4 0.2 1 1 6 4 0.1
dk16 162/5 14 101 5 0.9 14 103 14 3.8 14 14 103 9 1.7
dk17 42/5 2 10 5 0.2 6 3 0.4 1 1 6 3 0.2
exl1 140/5 8 83 5 0.7 92 21 1.9 8 8 92 20 1.3
ex2 16/7 2 9 7 0.2 *1 4 3 0.2 2 1 4 3 0.1
keyb 134/5 10 75 5 0.6 10 79 5 1.6 10 10 81 5 1.0
kirkman 106/5 6 48 5 0.7 *D 57 24 1.2 6 5 57 14 0.8
planetl 348/6 19 213 6 2.0 | %19 201 18 12.5 19 19 199 37 5.0
sl 107/5 7 58 5 0.5 63 11 1.2 7 7 56 6 0.7
sand 327/17 16 176 17 1.8 | %15 178 30 10.6 16 15 176 12 4.3
scf 516/7 14 325 7 2.8 | %13 304 20 19.8 14 13 301 27 8.8
sse T4/4 7 42 4 0.4 45 10 0.9 6 6 44 8 0.5
styr 281/5 17 163 5 1.6 | %16 168 8 5.2 17 17 168 12 3.2
s5378 1503/164 4 421 204 7.9 *4 444 301 51.5 4 4 427 261 40.3
s9234.1 1299/135 6 462 161 8.5 *4 498 217 | >7200 6 5 441 203 58.8
s15850.1 | 3801/515 10 | 1240 504 30.3 *8 | 1161 732 | >7200 10 10 | 1166 621 205.6
538417 9817/1464 8 | 3526 | 1464 | 561.5 «6 | 3420 | 2264 | 1201.8 8 6 | 3301 | 2573 | 1210.6
geomean 7.0 100 15 1.4 5.6 94 24 7.4 6.3 || 5.8 92 23 2.8
% +20.2 | +8.4 | -33.8 | 476 | -2.8 | +1.9 | +6.0 | +167.0 | +8.6 1 1 1 1

Table 1: Comparison of TurboMap-frt with FlowMap-frt and TurboMap for 5-LUT. “geomean” lists the geometric means of
the results by each approach. The runtime was recorded on a Sun Ultra2 with 256 MB memory. Those marked with x are
circuits that SIS failed to compute initial states for TurboMap solutions. Column Original lists the original circuit size, where
N and F represent the numbers of nodes and FFs, respectively, in the original circuits.

It can also produce results very close to the optimal mapping
with general retiming solutions in terms of both area and
clock period.

In the future we plan to extend our work for library based
technology mapping with (forward) retiming for high per-
formance gate array and standard cell designs. A general
framework on retiming with multiple clock designs was pro-
posed recently by Legl, et. al. [7]. We plan to accommodate
our approach into this framework as well.
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