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ABSTRACT 
Delay budgeting is a process of determining upper bounds for 
net delays to guide timing-driven placement. The existing 
approaches deal de facto only with combinational circuits. 
However, incorporating retiming into delay budgeting 
introduces more freedom to optimize sequential circuits. In 
this paper, we propose an approach for budgeting sequential 
circuits. We propose a new algorithm, T-SBGT, which uses an 
LP formulation to solve the budgeting problem in sequential 
circuits and guarantees that the clock period constraints are 
met. We then utilize the skew-retiming equivalence relation 
[9] and retime the circuit. We demonstrate usefulness of our 
approach in the context of FPGA placement flow. An effective 
algorithm to minimize Flip-Flops (FFs) number after 
placement using ‘the net slack is also proposed. The results 
show the placement flow improves timing by 9%, and reduces 
budget violations by 16% compared to the traditional flow. 
The post-placement FF reduction algorithm decreases the FF 
count by 19% on average. 
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1. INTRODUCTION 
Placement has always been a critical step in IC design. It 
affects greatly the circuit’s area and performance. In order to 
achieve higher speed, several approaches have been proposed 
for timing-driven placement. One of them involves net 
budgeting [7][5]. With a user defined expected clock period, 
through budgeting, path timing constraints are translated into 
length, or timing upper bounds for nets. Those upper bounds 
are then used to guide placement and routing. The net-lengths 
or delay upper bounds constitute a delay budget. The first net 
budgeting approach for placement application was the zero- 
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slack algorithm (ZSA) [7]. It is a greedy algorithm of 
assigning budgets to nets on long paths. ZSA ensures that the 
net budget is maximal, i.e. no more budget can be assigned to 
any of the nets without violating the path constraints. In [5], 
the authors propose to assign budget ensuring the “maximum 
flexibility” in placement. Their approach is able to adjust 
timing budget based on the initial information, for example, 
based on the results from a failed placement. 
Retiming, proposed by Leiserson and Saxe in [6 ] ,  is a 
procedure of relocating FFs across combinational blocks to 
speed up the circuit. Clock skew-equivalence retiming [9] is a 
different way of looking at the retiming problem. The idea is to 
compute first the clock skew for each FF  to minimize the clock 
period, and then to move the FFs using the skew-retiming 
equivalence relation. 
The existing delay budgeting approaches work only for 
combinational circuits. In case of sequential circuits, their 
combinational blocks are budgeted individually. FFs are 
treated as primary inputs and outputs. In this paper, we 
introduce budgeting problem for sequential circuits and solve 
it by combining combinational budgeting technique with 
retiming. By doing so we have a larger solution space and we 
will have more chances to obtain a better result. We refer to 
the new formulation as T-SBGT. We solve the sequential 
budgeting in two steps. Step (1): In budgeting, we allow a free 
introduction of clock skew to every FF. To this end, we have 
modified the budgeting constraints so that they include FFs. In 
our formulation we include the clock period constraints to 
guarantee correct timing. After performing the clock period 
optimization, we obtain clock skew assignment for each FF. 
Step (2): We move FFs according to the skew-retiming 
equivalence relation [ 113. We consider interconnect delay in 
this retiming procedure. We assume a linear interconnect delay 
model. The final retimed circuit satisfies the clock period 
constraints and optimizes budgeting. 
We demonstrate the effectiveness of our algorithm in an FPGA 
placement flow. In our experiments, we assume that the FPGA 
has an island architecture, and each table look-up (TLB) block 
is associated with one FF. For placement, we first decouple 
FFs and TLBs and let the simulated annealing-based placer 
find the best positions for FFs on interconnect. After 
placement, an effective algorithm reduces the FF  count using 
net slack without sacrificing timing. At the same time we pair 
FFs and TLBs. 
This paper is organized as follows: In section 2, we define the 
terminology. In section 3, we introduce previous work and 
provide the background. We explain the traditional 
combinational budgeting (CDB) in section 3.1. In section 3.2, 
we discuss the skew-based retiming (SCO). In section 4, we 
show how CDB and SCO are combined and form the timing- 
aware sequential budgeting formulation (T-SBGT). CDB 
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provides the budgeting constraints in T-SBGT, and SCO 
provides the clock period constraints. In section 4.1, we extend 
CDB by including FFs into the constraints and obtain the 
sequential budgeting formulation (S-CDB). In section 4.2, we 
transform the skew variables in SCO into arrival time variables 
and combine SCO with S-CDB constraints. In section 4.3, we 
show the complete combined T-SBGT formulation. In 
section 5 ,  we show the flow of our algorithm with FPGA 
placement. In section 6, we present experimental results. In 
section 7, we conclude this work. 

2. DEFINITIONS 
For a given circuit, we construct a directed graph G( V, E), with 
a set of vertices Vand a set of edges E. The vertices correspond 
to combinational modules, FFs, PIS and POs. The edges 
represent source-sink relations of nets. PIS are primary inputs 
and POs are primary outputs. An edge e j j  is created between 
the vertices i and j if in the circuit they are connected by a net 
and i drives j. We assume that gates have constant delays and 
we formulate budgeting problem in terms of interconnect 
delays. For each vertex i ,  we introduce two symbols: xi and 
Di which are the latest input arrival time and module's delay, 
respectively. PIS input arrival times are 0. For each node type 
PI, FF and PO, we introduce an additional variable si which 
represents the clock skew assigned to that node. For PIS and 
POs, their s-values are set to 0. The edge delay r ii represents 
the delay from the fanout of i to the fanin of j .  L i j  is the lower 
bound on delay of edge ej, .  It is used in budgeting 
formulation. We also create a set PS. If there is a 
combinational path from a PI or FF i to a PO or FF j ,  then we 
include p i ,  into PS. The delay budget of the edge e j ,  is 
denoted as Bj,. max(Pjj) and m i a ( P j j )  denote the longest 
and shortest path delays from i to j ,  respectively. Lmax(Pj .) 
denotes the longest path delay from i to j using the Li, as the 
net delays rather than r i,. P is the clock period. 

3. BACKGROUND 
In this section, we first briefly introduce the traditional delay 
budgeting problem formulation (CDB). Then, we introduce the 
skew-based clock optimization formulation (SCO). They will 
be later extended and combined into the T-SBGT formulation. 

3.1 Budgeting Formulation 
Here, we summarize the budgeting formulation given in [ 5 ] .  
First, for a given circuit, we construct an edge-weighted, 
directed graph G(V,E) as described in section 2. IiJ denotes a 
delay slack of the edge eji and is equal to (x , -x j -Di) .  
C. .(I i,) is the cost for each edge in the objective function. In 
[{ithe authors have tried several different objective functions 
and compared the results. We can set the objective function 
according to the needs of a heuristic. For example, we can: (a) 
allocate slacks to all nets evenly. (b) assign slacks based on the 
current or estimated net lengths. The general delay budgeting 
problem is formulated as follows: 

Convex Delay Budgeting Problem (CDB):  Given a convex 
function ?ji( Z j i : ,  and a timing constraint graph G(V,E): - ~~ 

minimize: 
subject to: J 

C,, , E .Cij( 'ii) 

This formulation constitutes a convex programming (CP) 
problem. The arrival time of PIS are 0. In [ 5 ] ,  the authors 
converted this CDB problem into a linear programming 
problem and used graph-based simplex algorithm to solve it. 
Later on we will transform CDB into its sequential version, S- 
CDB, and include FFs in the formulation. 

3.2 Clock skew-equivalence retiming 
formulation 

Clock skew-equivalence retiming has been proposed in [4]. 
There, the clock skew problem for minimizing the clock period 
is found by solving the following LP. 

Skew-based Clock Optimization Formulation (SCO): Given a 
circuit with node and edge delays, the set PS and clock period 
P. 

minimize: P 
subject to: 

s, - (Di + min(Pij))  + Tbold< s i ,  V p i j  E PS (EQ 3) 
si+ Ts,,,+(Dj+max(Pjj))<s,+P, V p i i €  PS (EQ4) 

Tbold. Tsetup are the hold and setup times of FFs. The 
formula (EQ 4) states the long path constraints and (EQ 3) 
states the short path constraints. In [9], the authors use a 
formulation as stated above to do retiming. The procedure 
contains two steps: 
Step 1: Solve the optimization and find skews assigned to FFs. 
Step 2: Using the skew-retiming equivalence, move FFs to 
bring skews to 0 as much as possible. Moving FF across gates 
has a similar effect as introducing clock skew. If an FF has a 
positive (negative) skew, it is retimed backward (forward). 
There are two significant points about the SCO formulation 
which makes it particularly useful for our purpose: 
(a) We are going to assign clock skew to FFs when solving the 
sequential budgeting problem. The formulation of SCO also is 
based on skews. So, the constraints of both formulations can be 
combined. Additionally, we can include clock period 
constraints in sequential budgeting. But, modules other than 
FFs cannot be assigned skews, so we have to transform skew 
variables into the latest arrival time variables. 
(b) Based on the skew-retiming equivalence relation, the 
assigned skews can be resolved by moving FFs. 

4. TIMING-AWARE SEQUENTIAL 
DELAY BUDGETING 

To allow the CDB formulation truly optimize sequential 
circuits, we introduce clock skew on FFs. We call this new 
formulation S-CDB. Using just S-CDB to optimize budgeting 
may affect the clock period requirement of a circuit, so we 
combine SCO with it. The combined formulation is called T- 
SBGT. 

First, we describe, how we transform the CDB into the S-CDB. 
Next, we transform the skew variables in SCO into the latest 
arrival times. After having the new SCO constraints and the S- 
CDB, we combine them together into the T-SBGT. After 
optimization, FFs are assigned skews. The assigned clock 
skews can then be reduced by moving FFs using the skew- 
retiming equivalence relation. 
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4.1 Transforming budgeting formulation 
from combinational into sequential 

Since the original CDB formulation applies only to 
combinational circuits, here we transform it such that it can 
handle sequential circuits. 
First, based on the constraints J j ,  = x, - xi - D j  and I j ,  2 0 , 
the constraint (EQ 1) is transformed into: 

x j + D i I x j ,  Vej ,E E (EQ 5) 
(EQ 5 )  states that the latest arrival time a t j  must be bigger than 
the arrival time at a fanin i plus the delay of i. Suppose that 
originally if a clock arrives at time 0 to an FF  i, i will have a 
correct value at its output at time Di . If the latest fanin arrival 
time to i is xi which is less than P, we can adjust i's clock 
skew to xi - P. Now xi - P is a negative value. FF i will have 
a correct output at the time x j  - P+ 0,. The allowed delay of 
combinational paths originating from i can be extended by 
1 x i - 4 .  If xi is bigger than P, we can delay the clock signal 
by xj - P. So the combinational paths originating at i have to 
be shortened by x i -P .  Based on this analysis, for an edge 
ej , ,  if i is an FF, the timing of this edge has to satisfy 
(x i  - P) + D j  5 xi. We can transform (EQ 5) into the following 
constraints: 

(EQ6) (x j -P)-x , I -Di ,  Vej ,E E i f  i e  FF 
xi-x,5-Dj,  V e j j E  E if i g  FF (EQ 7) 

In our formulation we also set budget lower bounds L j j  s ,on all 
edges. Those bounds can be obtained from the initial 
placement or can be predicted. We use them to guide the next 
placement run, hopefully, towards better results. Now the 
latest arrival time at j must be bigger than the arrival time at 
the fanin of i plus the delay of i and L j , .  Finally, we obtain the 
S-CDB formulation. In S-CDB, we use edge budgets as 
parameters in the cost function. We also include the edge 
timing constraints in the formulation. Note that unlike CDB, S- 
CDB considers FFs and budget lower bounds on the edges. 

Sequential Circuit Convex Delay Budgeting Problem (S-  
CDB):  Given a convex function Cj,, and a timing constraint 
graph G(V,E): 

minimize: 
r 7 

(EQ 8) 
CIJ(x,  - xI  - 0,) i f ( i  g FF) 

C,,(xJ-xl+P-Dl) i f ( i E  FF) 

subject to: 

( x i - P ) - x , 5 - ( D j + L j , ) .  Vei,E E if i E  FF 
x j - x j S - ( D j + L j , ) ,  Q e j j E  E i f  i e  FF 

(EQ9) 

(EQ 10) 
x k l  P ,  k~ PO; xk = 0 ,  k E  PI 

P denotes the expected clock period of the circuit. For PO the 
arrival time must to be smaller than P. For PI the arrival time is 
set to 0. (x . -  xi - D j )  is the slack of e .  . if i is not an FF. 
( x . - x x j -  Dl!+P) is the slack if i is an kk. Cj . controls the 
wLighting for each edge. (EQ9)  and (EQ f0) are delay 
constraints. This formulation allows us to optimize budgeting 
in sequential circuit. 

4.2 Transforming the skew-based clock 
optimization (SCO) formulation 

To apply the SCO constraints in the S-CDB, we have to change 
the clock skew variables in the SCO to the latest arrival times 

of some signals. Following the discussion from the previous 
subsection, we set the clock skew si of an FF i as the latest 
fanin arrival time xi - P.  Since PIS have skew 0, for PI j, the 
skew s. is replaced by x,. x, of every FF  will be also 
assigned 0. Based on this and assuming that the short path 
constraints are always satisfied, and setting T,,,, to 0 to 
simplify the formulation, we obtain (EQ 11) and ( E d  12) from 
(EQ 4). 

xi - x, I P-(Dj + max(Pj,)) , V p i j  E PS if i E FF (EQ 11) 

xj-x , I - (Dj+max(Pj , ) ) ,  V p j , e  P S i f  i g  FF (EQ 12) 

4.3 Adding the clock period constraints to the 
sequential budgeting formulation 

After introducing the FFs in the CDB and transforming the 
skews into arrival times in SCO, we are ready to combine both 
constraints. The S-CDB constraints optimize budgeting and the 
new SCO formulation guarantees that the circuit meets clock 
period constraints. The new formulation is as follows: 
Timing-aware Sequential Budgeting Formulation (T-SBGT): 
Given the clock period P, a convex function Cj, and a timing 
constraint graph G(V,E): 

minimize: 

! Cj,(x,-xi-Dj) i f ( i p  FF) 

Cj , (x i -  xi + P-Dj) i f (  i E FF) E [  E 

subject to: 

xi-x , IP-(Dj+max(Pjj)) ,  V p j j ~  PS if i E  FF (EQ 13) 

xj-x,I-(Dj+max(Pi,)) ,  V p i j s  P S i f  i p  FF (EQ14) 

x j -x .<P-(Dj+Li , ) ,  Ve i ,e  E i f  i e  FF (EQ15) 

xj-x ,<-(Dj+Lj , ) ,  V e j i E  E i f  i g  FF (EQ16) 
J -  

Lmax(Pj,) I max(Pj,), V p j ,  E PS (EQ 17) 
xkI P ,  k E  PO; xk = 0 ,  k E  PI 

(EQ 13) and (EQ 14) are the clock period constraints from 
(EQ l l ) ,  (EQ 12); (EQ 15), (EQ 16) are the budgeting 
constraints from S-CDB. This LP structure is very simple and 
we can use graph-based simplex algorithm described in [5] to 
solve it. The retiming constraints guarantee that the circuit 
meets clock period constraints for a given P. It is necessary to 
add (EQ 17). This is so because we do not constraint the range 
of Li, and allow it to be bigger than the original edge delay. 
We need to make sure that the longest path composed of edge 
budget lower bounds is smaller than the real longest path 
delay. Otherwise, the timing constraints (EQ 13) and (EQ 14) 
will be violated. 

4.4 Designing the cost function 
We would like our budgeting cost function to assign smaller 
budgets to long nets. The idea is to constraint longer nets and 
give shorter nets more flexibility. The net length can be 
predicted, can be known from an initial placement run, or can 
be assigned by a user. We  use the product of T i .  and the 
budget of e j ,  as the cost function for S-CDB ( E 6  8). The 
terms D j  and P are constants in (EQ 8) and do not affect the 
optimization. Since the parameter ri, is constant, the cost 
function assigned to each edge can be transformed to weights 
for each node. Instead of enumerating all the edges, the weight 
of a node can be obtained by a summation of fanin edge 
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weights minus the summation of fanout edge delay, as stated 
below. r 7 

(EQ 18) 

r 

T j j . ( x , - x j - D j )  i f ( i P  FF) 

Tij.(xj-xi+P-Dj) i f ( i E  FF) 
P,]  E E 

4.5 Retiming implementation 
After solving the T-SBGT formulation, in step 2 of the flow, 
we do retiming to move FFs and realize the clock skew 
assigned to each FF. Unlike previous algorithms which 
perform retiming only in the logic level, or  use lumped wire 
delays [SI, the retiming algorithm that we implemented 
considers the interconnect delay. So, even when an FF with 
non-zero skew cannot be retimed, because of other constraints, 
for example the skew is not big enough to retime across blocks, 
it can be still retimed across the interconnect. This is important 
because interconnect delays are becoming dominating factors 
of circuit performance 131. 

4.6 An example 
We illustrate the T-SBGT procedure using an example and 
show that it can optimize the budgeting in sequential circuit 
without violating the clock period constraint. In this example, 
for simplicity, we set L . .  equal to Ti,. We also use 
optimization goal (EQ 19) in CDB, so that we can explain the 
cost easier. 

I J  

Figure 1. Combinational budgeting skew 

In Figure 1, numbers on the edges are delay values. Node 05 
has delay of 0 units and all other nodes have delay of 1 unit. 
We set the clock period to 7 units. The original budgeting 
formulation cannot move FFs. If we run CDB, we obtain the 
arrival time assignments as those marked below each node. 
The braced number for FF is the time clock comes and FF has a 
correct value. According to the optimization function (EQ 19), 
the cost of en F6 is 2 x I .  Delay of this edge is 2 and 7 is the 
difference between the fanin arrival times of 11 and F6. 
Similarly, the cost of eR, 83 is 1 x 2 .  The total cost of this 
netlist is 3 3 .  

11 F6 

(-3.5) ,\n 

Figure 2. S-BGT skew 

Figure2 shows the arrival time assigned after we apply T- 
SBGT algorithm. The arrival time for both FFs are 3.5, so their 
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skews are -3.5. The edge delays do not change, but their 
budgets have been changed. Now the cost for e,, F6 becomes 
2 x 3 .5  and the cost for eF6 B! becomes 1 x 3.5. The total cost 
of this netlist is 27.5, which is the minimum. The budgets for 
shorter nets have increased and the budgets for long nets have 
decreased. 

12" 
Figure 3. The budget assignment after moving FF 

Figure 3 shows the result after moving F6 and F7 according to 
their skews, and merging them into a new flip-flop F8. The 
new edge delays are shown above each edge. The budgeting 
cost is 29 for this circuit. The cost after moving FFs is close to 
that before moving. It is still smaller than that obtained by 
CDB. 

5. APPLICATION TO FPGA PLACEMENT 
Figure4 shows the new placement flow that we use in the 
experiment. We modified VPR and refer to the modified 
versions as VPR-FF and VPR-BGT. We have developed also a 
method of reducing the number of FFs after placement and 
maintaining the correct timing. These new algorithms will be 
explained in this section. In sub-section 5.3, we will explain 
the whole flow in more detail. 

duplication I 
V 

Run VPK-FF to estimate wire length I 

Figure 4. New and original placement flows 

5.1 Modified placer 
In many commercial FPGA architectures developed by Xilinx 
or Altera, the FFs and TLBs are paired and form the 
configurable logic blocks (CLBs), but can be accessed 
independently. However, in VPR, CLBs and TLBs can not be 
used independently. We modify VPR so that the FFs and TLBs 
do not have to be combined together. This provides us an 
advantage that the placer will decide the best locations for FFs 
on interconnect. This is important because interconnect delay 
accounts for more and more percentage in critical path delay 
[ 3 ] .  The new placement algorithm is called VPR-FF. 
To allow the placement algorithm to consider budgeting, we 
further modify the VPR-FF into the VPR-BGT. VPR-BGT has 
a new cost function. Originally the timing cost for each edge 
e .  . is T t I J .  T t i j  is computed by VPR as a product of net 
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delay from i to j and the net criticality. Now the timing cost is 
T t  .-.+ Bti,. B t i j  is the budgeting cost and is defined by 
(Ed'21): 

(EQ 21) 
1000 x (r j j  - Bj,)' ' 5  i f(ri ,  > Bi,) 

0 .003x(Ti , -Bi j )  e l s e  
B t . .  = 

There are two cases in (EQ 21). In the first case, we assign 
high costs for nets with delays larger than their budgets. In the 
second case, those with smaller delays get negative budgeting 
cost. The weights, 1000, in the first case is very big compared 
to the weight, 0.003, in the second case. If the weight 
difference is not big enough, the cost is dominated by the first 
case. 

5.2 FF reduction after placement 
Here we propose an algorithm for post-layout FF reduction. It 
uses net slacks to determine groups of FFs to be combined and 
reduced. 
After placement, we can compute timing slack for each net. 
Knowing the slacks of nets connected to each FF, we can find 
timing feasible region for their placement. Timing feasible 
region is defined as the region where this FF can be placed 
without violating timing. In our implementation, this area is 
approximated by a circle with a radius equal to the minimum 
slack of all nets connecting to it. The problem is to find FF 
groups which can be combined together without timing 
violation. First, we create a graph G(V,E). Its nodes V 
correspond to FFs. For every pair of FFs driven by the same 
module in the circuit, we create an edge between them if their 
feasible placement regions intersect. Those edges form the 
edge set E. Then we apply the minimum-clique-cover 
algorithm on G. Each clique represents an FF-group that can be 
reduced into one FF without timing violation. Since minimum- 
clique-cover algorithm is an NP-complete problem, we use a 
simple heuristic to find the cliques. We first find the maximum 
clique of the circuit and then replace all FFs in the clique by one 
FF. Then we find another maximum clique and continue the 
iterations. 

Figure 5. (a) movable area and (b) creation of clique 

For example in Figure 5(a), the circles around FFs F1, F2 and 
F3 represent their movable areas. Figure 5(b) shows the clique 
graph, with three nodes f l ,  f2 and f3 corresponding to F1, F2 
and F3 respectively. Since for F1 and F2, their feasible regions 
intersect and they are driven by the same node, an edge is 
created between them in the clique graph. The maximum 
clique found in G contains f l  and f2. F1 and F2 in the circuit 
will be replaced with one FF. After the reduction the total FF 
number in the circuit will be reduced from 3 to 2. 

5.3 New placement flow 
In this section we explain the placement flow of Figure 4 in 
greater detail. We apply FF duplication to the benchmark 
circuits before running the VPR-FF placement. We duplicate 

FFs with large number of fanout so we can utilize better the 
empty FF slots. Moderately duplicating FFs helps placement 
and routing. 

In our case, the initial wire length estimation is obtained by 
running a fast mode VPR-FF placement. Since T-SBGT 
considers clock period constraints, it can also be used as a 
retiming algorithm. We compare it with retiming using the 
SCO formulation. In this'step, for both T-SBGT and SCO 
algorithms, we set the clock period, P, to the clock period 
achieved by the fast placement run. We set L j ,  equal to Y i d  in 
T-SBGT. After running the T-SBGT and the original retiming 
algorithm, we obtain the retimed netlists. We set the skew of 
each FF to zero and run the combinational budgeting algorithm 
again using the cost function (EQ 20) and generate a budget 
file. With the retimed netlist and the budget file, we run the 
VPR-BGT placement algorithm. After VPR-BGT placement, 
we also compute the budget violation ratio by dividing the 
number of net budget violations by the total number of nets. 
Fewer budgeting violations mean that it is easier for the 
placement to meet timing goal and the budgeting is better [5] .  
We also apply the FF reduction algorithm at the end of both 
flows for post-placement optimization. 

6. EXPERIMENTAL RESULTS 
We use MCNC benchmark for our experiments. We route the 
circuits with larger channel widths than required, so the results 
are controlled by placement. We use 0.13um technology 
parameters to calculate the timing result. Table 1 shows the 
result. In the table, T-SBGT denotes the placement flow using 
T-SBGT for retiming and orig refers to the flow with the 
original retiming algorithm. The column labeled #TLB lists the 
number of TLB in the circuit. #FF denotes the initial number 
of FFs in the circuit. To take advantage of the empty FF slots 
in the circuit, we first duplicate FFs with high degree fanouts. 
In the fourth column, m a x f o  is the upper bound on the number 
of fanouts an FF can have after duplication. The fifth column, 
#FF-d, gives the number of FFs after duplication. In some 
circuits, like s298 and clma, the FF number increases a lot, 
because many FFs in these circuits have huge fanouts. We 
adjust the number of maximum-fanout allowed ( m a x f o ) ,  so 
that #FF will not be too big compared to #TLB. During the 
skew-equivalence retiming, FF number may increase 
considerably. We add constraints in the LP to limit the skew of 
all FF: P .  k 2  x, 2 P .  ( 2  - k) , V( i E FF) and k< 2 .  We adjust 
k by running the program several times so that the number of 
FFs generated after retiming will not exceed 80% of the total 
number of TLBs. 

As shown in the sixth and seventh columns, after retiming, T- 
SBGT needs 5.05 times fewer FFs than the original flow. The 
difference is especially big for s298 and clma, which as 
mentioned earlier, have large average FF fanouts. We think the 
reason for the reduction is because the original retiming 
formulation only finds a feasible solution for the clock period 
and only the FFs on the critical path or critical loop are 
balanced. Those FFs not on the critical paths could have many 
unnecessary retiming moves, so the FF number could increase 
a lot. On the other hand, T-SBGT tries to balance FFs on all the 
paths and loops to optimize budgeting. It also allows FFs move 
to large delay paths to optimize budgeting. For the results, it 
seems that spreading FFs on all paths evenly is better for 
reducing FF number than placing them arbitrarily, even though 
timing is satisfied. 
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The new flow improves timing by about 9% compared to the 
original flow. The violation is also reduced by 16% compared 
to the original flow. 
The last two columns show the FF reduction after running the 
clique-covering algorithm. We note that the number of FF 
reduced is about proportional to the number of FFs increase 
during the retiming step. The results show that the FF 
reduction algorithm is quite effective and can be used as a 
post-placement refinement procedure. On the average, the FF 
reduction is 19% compared to the original number of FFs. 

7. CONCLUSIONS 
In this work, we present a new budgeting algorithm which 
targets sequential circuits. This algorithm solves sequential 
circuits better because it allows retiming to further optimize 
budgeting. Besides optimizing budgeting, the formulation of 
the algorithm also includes clock period constraints, so that we 
guarantee timing satisfaction. Another post-layout 
optimization algorithm is also proposed to reduce FF numbers 
using slacks and preserving timing requirements. We apply our 
new algorithms in an FPGA placement flow. 
The results show the placement flow improves timing by 9%, 
and reduces budget violations by 16% compared to the 
traditional flow. The post-placement FF reduction algorithm 
decreases the FF count by 19% on average. 
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