
Minimum-Area Sequential Budgeting for FPGA 

Chao-Yang Yeh and Malgorzata Marek-Sadowska 

Department of Electrical and Computer Engineering, 

University of California, Santa Barbara, CA 93106, USA 

Abstract 
The constraint-based approach to timing-driven placement 
requires delay budgeting to define the delay upper bounds for nets. 
While most of the previous delay-budgeting works have been 
focused on optimizing combinational circuits, the work in [SI 
introduces sequential budgeting, which combines budgeting and 
retiming to op t i eze  sequential circuits better. However, the 
formulation in [9] does not consider flip-flop (FF) minimization, 
which is important in practical applications. Here, we propose a 
new sequential budgeting algorithm. C-SBGT, that not only 
controls the FF count, but also can he solved more efficiently 
compared to [9]. Our formulation has fewer constraints than [9] 
and the procedure to realize retiming is also simpler. Our 
experiments show that our new min-area sequential budgeting 
algorithm produces a good trade-off between the area and 
budgeting optimization goals, as well as improving the timing 
of previous sequential budgeting method by 12%. 

1. INrRODUCTION 
Placement, an important step in VLSl design, affects greatly 
the speed and area of circuits. Timing-driven placement is a 
technique to improve a circuit's speed. Several approaches for 
timing-driven placement have been proposed, one of which 
involves net budgeting [5][2][9]. For an expected clock period 
defined by a user, budgeting. converts the path timing 
constraints into timing (or length) upper bounds for nets. 
Those upper bounds are then used to guide placement and 
routing. The net-lengths or delay upper bounds constitute 
delay budger. 

Retiming is a procedure of relocating flip-flops (FFs) across 
the combinational blocks. It can be used to maximize the 
speed, or to minimize the chip area by reducing the total count 
of FFs or latches. Retiming was first proposed by Leiserson & 
Saxe [3]. It can be viewed as a procedure of assigning integer 
values to combinational blocks in a circuit. We can move FFs 
according to the values assigned to those blocks. The 
assignment of integer values implies that the smallest 
granularity of FF which can move is a single FF. Continuous 
version of retiming (C-retiming) has been described in 161. As 
with conventional retiming [3], c-retiming also assigns values 
to the combinational blocks. The values can, however. be real 
numbers as opposed to integers in conventional retiming. To 
put it differently, c-retiming introduces fracrionol FFs. The c- 
retiming algorithm is very fast compared to 131, because the 
effort required to generate constraints is much less and the 
number of constraints is greatly reduced. However, for the 
min-area optimization goal, c-retiming can not guarantee that 
the total FF number is the minimum. 

Permission to make digital or hard copies of all or pan of this work for 
personal or clas~room use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full  ita at ion on thc first page. To copy 
otherwise, to republish, lo post on servers or to redistribute lo lists, 
requires prior specific permission and/or a fee. 
ICCAD'O3, November 11-13,2003, San Jose, Califomia, USA. 
copyright 2003 ACM 1 . ~ 8 1  I~-~~Z-I/O~/OOII ... $s.on. 

81 3 

Most of the previous works on delay budgeting have been 
focused on optimizing combinational circuits [5][2]. For. 
sequential circuits, it i s  usually assumed that FFs are at fixed 
positions, and they are treated like primary inputs (PIS) and 
outputs (POs). Sequential budgeting was first proposed in [9], 
where the authors combine budgeting with retiming and 
demonstrate that results can be improved compared to a case 
with fixed FFs. They solve the optimization problem first and 
then realize retiming by moving FFs iteratively. However in 
[9], they were unable to control the FF population during 
retiming. In practice, in FPGA and ASIC designs, reducing the 
number of FFs usually also improves the circuit speed and 
reduces the power consumption. In ASICs, reducing the 
number of FFs also reduces the chip area. Speed, area. and 
power are very important from a practical standpoint. In this 
paper, we propose a new formulation of the min-area 
sequential budgeting. We apply the idea of c-retiming and 
combine it with sequential budgeting for FF reduction. This is 
one of the main contributions of our paper. Our new sequential 
budgeting formulation is more efficient than that proposed in 
previous work 191, because we reduce the number of 
constraints. The new procedure of realizing retiming is  also 
simpler than that proposed in [91. We no longer relocate FFs 
iteratively, but determine their positions directly. The retiming 
procedure also considers interconnect delays and allows for 
interconnect pipelining to further improve budgeting. In this 
paper we assume linear dependency between interconnect 
delay and its length. 
We demonstrate the effectiveness of our algorithm in an FPGA 
placement flow which uses a budgeting-aware placer. The 
results show that our new min-area sequential budgeting 
formulation produces a good trade-off between the area and 
budgeting optimization. We improve the circuit speeds by 12% 
compared to the previous sequential budgeting method [9]. 
This paper is organized as follows. In section 2 we explain the 
previous sequential budgeting algorithm. In section 3 we give 
a brief summary of c-retiming. Then, we show an interesting 
relationship between the simplified sequential budgeting 
formulation and c-retiming. At the same time, \i.e propose the 
min-area sequential budgeting. In section 4,  we explain the 
weighting function we use in sequential budgeting and in our 
experiments. Section 5 shows the experimental results. 
Conclusions are given in section 6. 

2. PREVIOUS WORK ON SEQUENTIAL 
BUDGETING 

In [9]. we have extended the conventional delay budgeting into 
sequential budgeting by incorporating retiming. Our approach 
allows us to optimize the entire circuit instead of optimizing 



each combinational block individually. Incorporating retiming, 
the budgeting formulation has a larger solution space to 
explore and has more chances to obtain desired results. That 
formulation, T-SBGT, has two kinds of constraints. The first 
are the clock period constraints, which ensure that timing is 
satisfied; the second are budgeting constraints, which set the 
limits for budgeting optimizstion. 
For the original circuit. we first create a constraint graph G. 
The edges in the graph represent the circuit source-sink, 
relations, and the nodes correspond to gates. In the 
formulation, x i  represents the latest fan-in arrival time at a 
node i; 0, is a delay of a node i; and e . .  is an edge from the 
node i to j .  E is a set of all the edges i n  %. We also create a set 
PS of those PUFF-PO/FF pairs which are connected by a 
combinational path. If there is a combinational path from a 
primary input (PI) or FF i to a primary output (PO) or FF j, we 
include P . .  into PS. Ti, is a delay of the edge e,,. max(P, .) 
represents the maximum combinational path delay between t i e  
nodes i and j .  L . . is the budget lower bound on the edge e .  . . 
A user can assign the lower bound based on the results o r a  
placement run, or  based on delay predictions. Lmax(Pij) 
denotes the longest path delay from i to j using L,  . as the net 
delays, rather than T,, . Below we state this formufation: 

Timing-aware Sequential Budgeting Formulation (T-SBGT) 
191: Given the clock period P ,  a concave function C, and a 
timing constraint graph C(V,E) :  

J J  

I /  

maximize: 

subject to: 

x i -x j<P(Di+max(Pi , ) ) ,  V p j j €  P S i f  i e  FP (EQ2) 

x ; -x j< - (~ i+ma , r (P i j ) ) ,  V p i j e  P S i f  is FF (EQ3) 
i . - x . < P ( D . + L  . ) . V e . . e E i f i ~ F F  (EQ4) 

x i -  x,.<-(D, + L J J  . .) , V e  l J  . . E  E if i e FF (EQ 5 )  

Lmax(Pjj) < max(Pi,), VP;;E PS (EQ 6) 

X,<P. k c P O ; x k =  O , k € P I  (EQ 7) 

In (EQI) ,  ( x . - x i - D , )  and ( x j - x , + P D i )  represent the 
budgets for e; . . The concave function C, is used to guide the 
allocation of delay budgets. (EQ2) and (EQ3) are the clock 
period constraints. The path constraints in (EQ2) and (EQ3) 
say that the budget assigned to a path from a PI or FF, i, to an 
FF o r  PO, j .  cannot be bigger than the delay of i and the longest 
path delay from i to j .  (EQ4) and (EQ5) are the budgeting 
constraints. (EQ7) states the constraints for primary inputs and 
primary outputs. We call them peripheral constraints. (EQ4) 
and (EQ5) are the budgeling constraints. Since we do not 
constrain the values of Li j  and allow those lower bounds to he 
bigger than the original edge delays. we need (EQ6) to make 
sure the longest path of edge-budget lower bounds is still 
smaller than the real longest path delay. Otherwise, the timing 
constraints in (EQ2) and (EQ3) would be violated. 
The algorithm in [9] has two steps. (1) Optimize the budgeting 
formulation (T-SBGT) and obtain the input arrival times for 
the FFs. Transform the input arrival times of FFs to clock 
skews. (2) Use the skew-retiming equivalence relation [71 to 
realize the clock skew assigned to FFs. 

I J -  I I J  I I  

J 

We simplify thc T-SBGT formulation by removing (EQZ), 
(EQ3) and (EQ6). This does not mean that we do not take edge 
delay or  path timing constraints into account. Instead, by 
assigning the budget lower bound L . . to T . . , we make sure 
that the budget for this edge is bigger than its delay, Besides, 
we can enforce the path. timing constraints implicitly by 
assigning appropriate values lo Li . . In  brief, we use Lij to 
replace path timing constraints in (dQ2) and (EQ3). 
Now we need only constraints (EQ4), (EQ5) and (EQ7). We 
can further simplify constraints by not representing FFs as 
nodes in the graph. We can represent FFs using a weight w ( e )  
for each edge e .  Originally i f  there are k FFs linked in a chain, 
there will  be k edges in the graph, but now there will be only 
one edge with weight w(e) equal to k.  We use D to represent 
the delay for an FF. We call the simplified k n u l a t i o n  S- 
SBGT and state it below: 
Simplified Sequential Budgeting formulation (S-SBGT):  

l J  i/ 

Maximize: 

C e ( u , v ) E E C c l ~ e ) . ( P - D r r ) + x , - x U - D , l  (EQ8) 
subject to: 

x ~ - x " ~ ~ e ) . ( P - D ~ ~ ) - D " - L ~ " , V e ( u ,  Y ) E  E (EQ9) 

, (EQ IO) 
This simplified formulation still does not consider min-area 
budgeting. But, after introducing c-retiming, we will show an 
interesting relationship between S-SBGT and c-retiming. 
Then, we will explain how we consider the area minimization 
in the new formulation. 

3. MIN-AREA SEQUENTIAL BUDGETING 
In this section we will explain c-retiming and transform it into 
a new form, the arrival-time-based c-retiming (ACRet). We 
will show that ACRet and S-SBGT have similar constraints, 
and we can combine their objectives to obtain the min-area 
sequential budgeting formulation. W e  will also show that the 
new formulation can consider interconnect pipelining. In  order 
to distinguish the Leiserson & Saxe's [3] retiming formulation 
from the c-retiming, we call the classical formulation in [31 d- 
retiming. There are two kinds of constraints in d-retiming. The 
first are the legitimacy constraints, which guarantee that after 
retiming the number of FFs on every edge is non-negative. The 
second kind are the clock period constraints. which guarantee 
that there exist more than one FF on every path with delay 
larger than the clock period. D-retiming assigns only integers 
to combinational blocks and so may he viewed as discrete 
retiming. 

xk< P ,  ke PO; xk = 0 ,  kc PI 

3.1 C-retiming 
C-retiming was proposed by Pan [61. The idea is to allow 
fractional FFs during retiming, changing retiming from a 
discrete to a continuous process. This formulation is  suitable 
for sequential circuit synthesis with retiming, and the 
algorithm is very fast compared to d-retiming. C-retiming is 
performed in two steps. ( I )  Do retiming optimization using 
fractional FFs. (2) Transform the c-retimed circuit into a 
discretely retimed circuit. A drawback of the c-retiming is that 
it does not guarantee that the final result is of the same quality 
as that determined from the d-retiming. 
The constraint graph used in  c-retiming is similar to the graph 
G used in sequential budgeting. Edges represent the circuit's 

814 



source-sink relations. Nodes represent gates and combinational 
blocks. We no longer represent FFs as nodes. Instead, a 
variable w(e) is assigned to each edge representing the number 
of FFs on i t .  AS i n  T-SBGT, D, represents delay of a node v, 
and P denotes the expected clock period. 

Suppose s ( u )  denotes the amount of fractional FFs retimed 
from the fanout of a gate U to its fanin. 
Ivs(e) = * ( e ) +  s( v ) -  s ( u )  equals the number of fractional 
FFs on the edge e(a ,vJ  after c-retiming. C-retiming minimizes 
the count of fractional FFs subject to a given clock period P 
using the following linear programming formulation: 

Confiiiuous-refillling formulalion (C-reliming): 

minimize: 

E,.,, , ' )E  E ":(e) = Cdl* V ) t  E d e ) + S ( + S ( U )  (EQ 11) 

subject to: 

D 
.C(U)- - (Y)- -< i ( te) - (~) ,  e(u,vlc E (EQ 12) 

s ( j )  = 0 , V j c  PI;  s ( k ) < l  , V k c  PO; (EQ13) 

(EQ12) states that the amount of fractional FFs assigned to an 
edge multiplied by P minus the sink gate delay is  the delay 
budget allocated to this edge. The purpose of (EQ12) is to 
enforce non-negative edge weight after c-retiming. These are 
the legitimizing constraints. Assume that the delay from a node 
I' to v is  Q,,. Let Z be a path from U to v in the circuit, then 
w , ( 8 2 ( Q v J f l  . where ~ ~ ( 2 7  = CCE Z ~ 5 ( e ) .  If Qo,2P, 

then u;,(z) 2 1 . So (EQ12) also ensures that the clock period 
. constraints i n  c-retiming are satisfied. To verify that the 

assigned clock period P is feasible, after solving the problem, 
we need Lo make sure (EQ13) is satisfied. 

The number of constraints in c-retiming is equal to the number 
of edges in the timing graph. Those constraints can be derived 
by enumerating edges in the graph. This process is much 
simpler than that in d-retiming. where to generate clock period 
constraints we have to list all paths with delays larger than the 
clock period. Even with the pruning method as shown in [4], c-  
retiming is still more likely to be simpler. 

3.2 Relationship between S-SBGT and C- 
retiming 

W e  can transform C-retiming formulation to an arrival-time- 
based c-retiming formulation (ACRet) using the variable 
transformation function xu = P. $ ( U ) .  In this new 
formulation, we also take interconnect delay and FF delay into 
account and represent them using L;  . and Dff.  We rewrite the 
c-retiming formulation using arrivai-time-based variables in 
the following. 
Arrival-lime-based c-retiming formulufion (ACRetJ: 

xu- x v i  d e ) .  (P- O f f )  - 0,- T u v ,  Ve(u, v )  E E 
x k i P  , V k c  PO; xk = 0, Vke PI; 

(EQ 16) 

(EQ 17) 

Comparing the constraints of S-SBGT with ACRet, we can see 
that they are the same, except we assign L i j  as Tu" in (EQ16). 
These variables represent latest fan-in arrival times. But, the 
objective functions are different. In Section 3.3, we will 
combine the objective functions of both formulations and share 
their constraints. 
The lag function for ACRet is expressed by (EQIS): 

I o v i s  a PI or  PL 

Note that now ACRet considers edge delays and allows for 
interconnect pipelining. After retiming, for each gate U. we 
will transform xu again and obtain the new fanin arrival time, 
G(uJ, such that 0 < f l u )  < P. For each gate in the retimed 
circuit, we compute the new fanin arrival time using the 
function f l u )  = l x u - ( r ( u ) . f l l .  N o t e t h a t r ( u J i s o n e m i n u s  
the ceiling of ( x , ) / P  , so we guarantee that 0 < c( U) 4 P for 
every gate U .  G(uJ represents the expected fanin arrival time 
for all nodes UE V after retiming. After retiming we have 
40) and r (uJ for each gate U, and d e )  + r( v)  - r(u)  is the 
number of FFs on each edge e(u,v). Now we can assign FFs to 
locations such that the fanin arrival times C(uJ assigned for all 
gates U E  V are satisfied, and we can implement interconnect 
pipelining. 

3.3 Optimizing the budgeting After solving the above optimization problem, in the second 
step of the c-retiming, we have a value s ( v j  for each gate v .  We 
calculate r f v l ,  the Inn i n  d-retiminr using (E014) .  I t  revresents Having shown the relation between ACRet and S-SBGT . .  I 

the 
Expression in (EQ14) guides the movement o f  FFs. 

of F F ~  moved from i f s  fanout to it; f an in ,  formulations, we can now combine the area and budgeting 
objectives. The objective of area minimization is stated in 
(EQ15) and the objective for budgeting is expressed by (EQ8). 
The combined objective function now is expressed by (EQ19). 

maximize: 
(EQ 14) 0 Y i s  a PI or  Po i.( v) = { r s ( v ) l - l  otherwise 

Note that although the puthors of [6] prove that their 
formulation can find the minimum clock period, using c- 
retiming for min-area retiming purpose is just a heuristic. They 
cannot establish a formal relation between c-retiming and the 
Leiserson&Saxe's [3] min-area formulation. Although i t  is a 
heuristic. the procedure is very fast. In  some applications. c-  
retiming is satisfactory when i t  is relatively unimportant 
whether we have the minimum F F  number (e.g. i n  FPGA 

(Delay budgeting g o a l ) q . ( M i n - a r e a  goal)  (EQ 19) 

0 i s  the area-weight. I f  p is larger, the optimization tries 
harder to reduce the FF count. The formulation using (EQ19) 
as the objective function and having constraints as in ACRet, 
will be called the continuous sequential budgeting formulation, 
C-SBGT. Note that in our implementation for C-SBGT, we 
also consider maximum-fanout FF sharing using the model in 
~31. 

physical synthesis). W e  select the concave function C, in (EQ8) using (EQ20): 

81 5 



CJe,,) = a; los(e,,,) (EQ 20) 

a, is a weight of the edge e .  ebgi means the budgeting for that 
edge. In the following section, we will explain how we 

sequential budgeting algorithm [9] and that the net Criticality 
weighting described in section 4 is effective. Experimental 
setups are explained in each subsection, 

. .  
route the circuits with larger channel width than required, so 
that the results will be controlled by placement. For timing 

determine those weights. The purpose of using logarithmic 
function is that we want to spread the budgets out evenly 
among all edges. If an edge is assigned a larger weight, the 
budget allocated to it should be larger. The formulation can be 
solved efficiently using piece-wise linear approximation as 
shown in 181. The dual of this formulation is a min-cost flow 
problem. 
One advantage of using the C-SBGT compared to T-SBGT 191, 
is that we can control the number of FFs. Also, the number of 
constraints in the new formulation is smaller, because we do 
not require path constraints (EQ2) and (EQ3). Additionally, we 
can realize the movement of FFs without iterations. In T- 
SBGT, we move FFs iteratively across the gates or 
interconnects 10 reduce the skew on each FF to be as close to 0 
as possible. Sometimes this procedure takes a large number of 
steps. In C-SBGT the new position of FFs can be readily 
computed from the x and G variables of the source and sink of 
each edge e ,  and from &(e) as it was shown in section 3.2. 

4. USING SEQUENTIAL BUDGETING TO 

We can also use the new sequential budgeting formulation to 
derive net criticality. Net criticality is used to further improve 
the speed of a circuit. We derive net criticality using C-SBGT 
and setting B to 0 in the objective function (EQ19). In this way 
we consider only the budgeting optimization. As explained 
before, our objective function tries to spread out the budgets 
evenly for all edges. Since the delay budgets represent the 
delay upper bounds for the edges, if a budget of one edge is 
larger, this edge should be less critical than others. We can use 
the budgeting result to derive the criticality of the edges. 
Suppose that max-budget represents the maximum delay 
budget assigned for all edges. We can use the criticality 
function given in (EQ21). 

DERIVE NET CRITICALITY 

21,0 ' 23,3 2066 14,9 ' 1483 ,7,3 1234 20,0 

(EQ21) 
In order to improve the timing result after placement, we 
assign smaller budeets for those nets with hieher criticalitv. 

crit(e)-l = budget( e) 
I .  5 x max-budge t 

. .  - 
calculations, we assume 0.13 um technology. In our 
implementation of C-SBGT. we also consider maximum- 
fanout FF sharing. We demonstrate two experimental results. 

W e u s e  Crjt(e)-' as the a, in (EQ20) for werghting, and o;r 
new C, is expressed in (EQ22). 

s298 I 21.3 1 25.5 I 86 I 21.6 I 43 1 23.0 1 56 1 21.2 

1 1.00 I 1.06 I 1.M) 1 0.88 1 0.92 I 0.91 I 0.84 I 0.99 

5.1 Trade-off between FF number and 
budgeting 

Me-area budgetlng trade& (tseng) 
650 

b 600 

1 550 

500 4 

450 
0 1 2  3 4 5 A - M  

aea-weizht 

Figure 1. Trade-off between budgeting and FF number 

Figure 1 shows trade-off between the FF count and budgeting 
on the benchmark circuit rseng.  We have run the min-area 
sequential budgeting algorithm (C-SBGT) with different B to 
observe its effect on  the FF count. Increasing the area-weight, 
p ,  in  (EQ19) should result in fewer FFs. When the 
area-weight is 0 we only optimize budgeting. A-M on the x- 
axis corresponds to the case when we only optimize the area. 
We observe that the FFs count reaches the minimum for the 
area-weight of 2. Then, the FF count is in the range of 
490-507. The reason that this graph is not a monotone 
decreasing function is  that in the second step of min-area 
budgeting, the algorithm transforming a continuously retimed 
circuit into a discretely retimed one does not guarantee 
optimality. However, the result in this figure demonstrates that 
the heuristic is reasonable. 

5.2 Comparing the min-area sequential 
budgeting with the original sequential 
budgeting [9] 

Tablc 1. Experimental results 

C,(e,,) = Crjt(e)-'. Iog(ebs,) (EQ 22) 

5. EXPERIMENTAL RESULT FOR MIN- 
AREA BUDGETING 

We perform our experiments for island architecture FPGAs, in 
which each table look-up (TLB) block is associated with one 
FF. We use a budgeting-aware placer with cost function 
penalizing edges whose delays are larger than their budgets. In 
our exoeriments. we use MCNC benchmark circuits 111. We 

81 6 



C-SBGT achieves better results than T-SECT. The column 
TSB lists the results using (T-SBGT) [9]. Since T-SBGT does 
not control the FF count, it is possible that its count increases a 
lot. We modified the procedure in [9] by post-processing the 
circuits to share FFs maximally at the fan-out edges of every 
node. By doing so, we reduce the FF count. The columns awO, 
a w l  and aw2 under the label Using Criticality show timing 
results and FF count after min-area budgeting for area-weight. 
p ,  set lo 0, 1 and 2 in (EQ19) and using the criticality 
computed as explained in section 4. To compute criticality we 
run the initial budgeting first with p set to 0. Then we run the 
second round budgeting with 0 equal to the value we want. 
The column a w l  under NC shows the result when we apply 
area-weight 1 and set the Criticality of every edge to the same 
value. 
The results show that the timing is best for area-weight 1 and 
Using Criticality. The timing of awl and aw2 are all better 
than those obtained from TSB. The improvement is 12% and 
9%. respectively. As the area-weight becomes larger, the FF 
number decreases,.showing that the min-area goal is effective. 
When aw is 1, the FF number decreases by 8% compared to 
awO. When aw is 2, the FF number decreases by 16%. The 
timing with net criticality is better than without it. The NC 
column shows that when we do  not use sequential net 
criticality and set aw to I ,  the timing improvement is only 1%. 
On the other hand, when using criticality (see column six) the 
improvement is 12%. 
Note that although we use delay budgeting. the resulting clock 
periods for placed circuits could still be different, because 
delay budgets only constrain the net-delay upper bounds. The 
real net delay could be smaller than the budget assigned. 
Besides, since we use a simpler timing model, after routing, 
the .placer will perform a more sophisticated timing 
calculation. This also leads to differences between the assigned 
budgeting-based clock period with the final clock period. Also 
note that the results for the benchmark rseng are different here 
from those i n  section 5.1. This is because we use a different 
placement. 

6. CONCLUSION 
In this paper, we have considered min-area budgeting using the 
concept of c-retiming. Our new formulation not only can 
optimize the budgeting, but also minimize the area. We 
analyze the relationship between the previously proposed 

timing-aware sequential budgeting [9] and c-retiming. We 
derive the Arrival-time-based c-retiming (A  CRet) considering 
net delay and FF delay. Our experimental results show that we 
can achieve a good trade-off between budgeting and area 
minimization, and we can also improve the previous sequential 
budgeting results by 12%. 

Acknowledgement. This work was supported by the 
California MICRO grant through Xilinx. The authors 
gratefully acknowledge Intel’s equipment grant. 

REFERENCE 
Vaughn Betz, 
www.eecg.toronto.ed~-~aughnlchallenge/challe~ge.html 

D. Knol. G. Tellez and M. Sarrafzadeh, “A Delay Budgeting 
Algorithm Ensuring Maximum Flexibility in Placement”, 
IEEE Transactions on Computer AidedDesign, vol 16, no 11, 
pp 1332-1341. 1997. 

C. E. Leiserson and I. B. Saxe, ”Optimizing Synchronous 
Systems“, In Jourmd ojVLS1 and Computer Systems, pp. 41- 
67, 1983. 

N. Maheshwari and S. S. Sapatnekar, “An improved 
algorithm for minimum-area retiming”, Design Automation 

R. Nair, C. L. Berman, P. S. Hauge, and E. I. Yoffa, 
“Generation of performance constraints for layout”, IEEE 
Trans. Computer AidedDesign, vol8,  pp 860-874, 1989. 

P.Pan, “Continuous Retiming: Algorithms and Applications”, 
lnremarional Con$ on Computer Design, 1997. 

S. S. Sapatnekar, R. E. Deokar, “Utilizing the Retiming-Skew 
Equivalence in a Practical Algorithm for Retiming Large 
Circuits”, IEEE Transactions on Computer Aided Design oj 
Inregrated CircuirsandSystems, voI 15, no IO, pp 1237-1248, 
Oct. 1996. 

A. Tabbara, B. Tabbara. R. K. Brayton, A. R. Newton, 
“Integration of retiming with architectural floor planning”, 
Inregration the VLSljoumal, 29, pp 25-43, 2000 
C:Y. Yeh and M. Marek-Sadowska, “Delay Budgeting in 
Sequential Circuit with Application On FPGA Placement”, 
Design Automarion Con$, 2003. 

ConJ!, 1997. 

81 7 


