
Reducing the Power Consumption of FPGAs through Retiming

Robert Fischer
Institute for

Computer Engineering
Universität der Bundeswehr

Munich, Germany
robert.fischer@

informatik.unibw-muenchen.de

Klaus Buchenrieder
Institute for

Computer Engineering
Universität der Bundeswehr

Munich, Germany
klaus.buchenrieder@

informatik.unibw-muenchen.de

Ulrich Nageldinger
Infineon Technologies AG

Munich, Germany
ulrich.nageldinger@

infineon.com

Abstract

High power dissipation is one of the major disadvan-
tages of FPGAs. A main part of the power consumed is
caused by glitches. This paper analyzes the effect of re-
timing to reduce the power dissipation of a Xilinx Virtex-
II FPGA. The authors introduce a method to insert stag-
ing registers into large designs, that are constructed from
a high abstraction level language algorithmic description.
Results obtained by measurements suggest a high potential
for power savings through retiming.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are impor-
tant devices in modern signal processing applications. Us-
ing FPGAs, large amounts of data can be processed in par-
allel, yielding high performance. With hardware description
languages on the system level, like C-based languages, re-
configurable devices are easy and fast to program.

Compared to ASIC implementations, FPGA realizations
consume a great amount of power. For this reason, ASIC so-
lutions are often preferred over FPGA realizations despite
the advantage in cost.

Reconfigurable devices are increasingly used for battery
powered applications like mobile phones or mobile sensors,
therefore, the reduction of power dissipation is becoming a
major issue.

The second reason to focus on low power consumption is
heat production by FPGAs, especially when the devices are
driven at frequencies of 500MHz and above. At this speed
individual chips can consume more than 40W of power,
what requires active cooling. To counteract the production
of this heat it is necessary to reduce the power consump-
tion of the device.

The method described in this contribution is an attempt
to reduce the dynamic power consumption of FPGAs. Sec-
tion 2 of this contribution provides technical background in-
formation. Section 3 explains the method and effects of re-
timing, describes the experimental setup and provides re-
sults obtained by measurements. Section 4 shows a method
of easily introducing new staging registers into a design. In
the last section conclusions and a proposal for future work
is given.

2. Technical background

In this Section, a short introduction into the power con-
sumption of FPGAs is given and glitches are briefly ex-
plained.

2.1. Power consumption of FPGAs

Total power consumption of a FPGA can be split into two
parts: Static power consumption and dynamic power con-
sumption. Static power consumption is caused by the leak-
age current of elementary devices and is not affected by the
custom logic circuit implemented with the FPGA. It sorely
depends on the voltage the device is operating on and the
temperature of the device and not on the custom design im-
plemented on it. Normally manufactures provide a typical
value in the data sheet of the device.

Even though static power consumption is becoming in-
creasingly significant, the dynamic power still domi-
nates, even in a 0.13µm technology [11]. In FPGAs, like
in any other CMOS circuit, it is caused by two phenom-
ena:
1.) While switching a signal line through two transis-
tors from the high-state to low-state or the other way
around, brief short-circuits can occur because of slight de-
lays in the switching of the transistors (See [10]).
2.) Charging and discharging of load capacitors, due

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

to switching action. For n load capacitors, the aver-
age power consumption [1], Pavg is:

Pavg =
1
2

m∑

n=1

Cn · fn · V 2 (1)

Cn is the capacitance of net n with the average toggle rate
(switching activity) fn, and V is the supply voltage.

In FPGA realizations the second effect is most signifi-
cant. High capacitive loads result from long wires intercon-
necting configurable logic blocks (CLBs). For the Xilinx
Virtex-II FPGA family the interconnect attributes roughly
60% of the total power consumed [8].

2.2. Glitches

In ASIC realizations glitches cause about 20% of the to-
tal power dissipation, but can even be as high as 70% of the
total power consumed [9].

Figure 1. Unequal delays in the input signals
are causing glitches

Glitches are caused, when two signals are run through
paths of different length, leading to unmatched delays. This
effect results in erroneous pulses or transitions at gated out-
puts, as shown in Figure 1. When gates are directly chained
in series, these transitions can build up to multiple and dy-
namic hazards. Figure 2 shows such a build up of glitches.
These transitions increase the switching activity fn and
therefore increase power consumption, as Equation (1) sug-
gests.

Compared to ASICs, in FPGAs power consumption is
dominated by capacitive loads on interconnects, so that the
impact of glitches on the total power dissipation is domi-
nant.

Glitches are normally prevented by balancing the delays
in custom designs. But developing FPGA designs on a high
level of abstraction with C-based hardware description lan-
guages (HDL), becomes more and more popular. With lan-
guages like Handel-C it is not possible to access certain
functions like multiplications or divisions directly on the
gate level. Therefore, it is not directly possible to ensure,
that the delays of all the gates are balanced and glitches are
prevented.

Figure 2. More gates in series can cause a
build-up of glitches

3. The effect of retiming on power

Retiming is an optimization method in VLSI design for
sequential logic circuits, based on the ”Retiming Lemma”,
which was first formulated 1981 by Leiserson and Saxe[5].
This method was created to improve performance of syn-
chronous circuits without changing its behavior. The lemma
stated, that under ”appropriate initializations” retiming does
not change the functionality of the circuit.

During retiming, flip-flops are redistributed along a sig-
nal path, so that the circuit can be driven at a higher clock
rate. It balances flip-flop stages in the circuit to minimize
the logic delay without introducing new flip-flop stages.

As an example, consider the circuit in Figure 3. Prior to
retiming the logic delay is twice the delay compared to the
circuit after retiming, yielding a circuit, that can be driven
with the doubled frequency.

Today many modern synthesis programs, like Simplic-
ity’s Simplify Pro or Celoxica’s DK Design Suite offer a re-
timing option, to improve the performance of a design with-
out much interaction from the designer.

3.1. Retiming for low power

As described earlier, glitches are the main cause of un-
necessary switching activity resulting in a high power drain.
Glitches can be prevented by synchronizing the input sig-
nals of a gate by insertion of flip-flops at gate inputs. By
this measure, even existing glitches in the input signals are
removed what prevents hazard build-up and decreases the
power consumption of the circuit realized with the FPGA.

The availability of flip-flops in modern FPGAs is not a
problem, since every LUT is followed by a flip-flop. In the
Xilinx series LUTs can be used as additional 16-Bit shift
registers, which are basically identical to a series of 16 flip-
flops.

The positive effect of retiming on glitches is state-of-
the-art in the ASIC arena [6] [3] [4], however, there are

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Figure 3. The redistribution of flip-flops
through retiming

nearly no experimental results, to achieve a lower power
consumption, for FPGAs. The approach described in [11]
uses Pipelining to reduce the occurrence of glitches and op-
timize the power consumption of FPGAs. The Authors il-
lustrate the baseline and provide results using Altera FP-
GAs. The measures provided in their work have been ob-
tained by manual introduction of new staging flip-flops into
a netlist file. This, of course, does not conserve the orig-
inal behavior of the circuit. As shown new flip-flop stages
introduced into the signal path require to resynchronize par-
allel signal flows.

3.2. Experimental setup

For the experiments conducted in our research, a Celox-
ica RC200 Board [7] with a Xilinx Virtex II (XC2V1000-
4FG456C) FPGA was used.

Comparative figures were obtained by measuring the
power directly at the board level. We ensured, that no other
parts of the board draw dynamic power and therefore could
interfere with the measurements by putting all of the other
parts into sleep mode. Permanent power drains, like the
touch-screen display were disconnected from the power
source.

The test bench was written in Handel-C and compiled
with the Design Kit 3 of Celoxica to an EDIF-file. This soft-
ware allows retiming on this high level of abstraction, which

is preferred, because there optimization through retiming
can be most effective. Subsequent placement and routing
was done with the Xilinx ISE 6.3 software.

The following test suite was deployed:

add: The program adds a counter value to the 16-bit values
of a vector with K elements parallel

mult: The program multiplies a counter value with the 16-
bit values of a vector with K elements parallel (the
fixed multiplier units of the Xilinx Virtex II were not
used, instead the multipliers were laid out normally on
FPGA)

shift: Performs parallel shift operations on 32-bit words of
a 64*64 Matrix

dist: Calculates the distance between two points (also no
fixed multipliers were used)

mand: Performs Mandelbrot calculations for a 10000 x
10000 matrix (also the fixed multipliers were not used)

Each program was compiled once with retiming disabled
and then with retiming enabled. Although the retimed pro-
grams can be driven at a higher frequency, the clock rate be-
fore and after retiming was not altered.

3.3. Results

The results in Table 3.3 show, that there is a clear poten-
tial to save up to 10% of a boards total power dissipation.
In our experimental setup the power measured included the
unused on-board ram, a CPLD, several other hardware com-
ponents and the losses of the on-board voltage converters.
That means, that the savings in respect to the FPGA core
power consumption alone are even greater.

Results also show, that for some test programs, power
savings are minimal or close to zero. This is partly due to
the fact, that Celoxica’s retiming feature is targeted to im-
prove the speed of circuits and is not optimized for saving
power. Also some programs can not be optimized by this
method, if the circuit is already fully pipelined or the flip-
flop stages are already optimized. Celoxica’s retiming algo-
rithm has also some limitations [2], for example it can not
move flip-flops through block RAM stages or the fixed mul-
tiplier units of the Virtex II. Also all flip-flops can only be
moved in a circuit with the same clock source.

Especially for the shift program the benefits of retiming
are not measurable. This is not surprising, since a shift cir-
cuit is nothing more than a series of flip-flops, with no logic
or path delays in between them. This way it is already opti-
mized and no glitches can occur.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

PUT K R Current Power Power
in mA in W saving

add 64 204 2,45
64 X 195 2,34 4,41%

128 215 2,58
128 X 194 2,33 9,77%

mult 64 202 2,42
64 X 194 2,33 3,96%

256 217 2,60
256 X 195 2,34 10,14%

shift 200 2,40
X 200 2,40 0%

dist 221 2,65
X 211 2,53 4,5%

mand 206 2,47
X 206 2,47 0%

Table 1. Experimental results of power mea-
surements on the RC200 board for the differ-
ent programs under test (PUT) without and
with retiming(R)

4. Introduction of new staging registers on
system level

For some programs shown in Section 3, the power opti-
mizations did not yield optimal results, because there were
not enough flip-flops in the circuit, that can be used for re-
allocation by the retiming algorithm.

For better understanding consider the example in Figure
4, that contains only one flip-flop and therefore only one
register stage. Clearly, optimization would require at least
one more register stage, which could then be reallocated by
the retiming algorithm to minimize the logic delay of the
circuit.

Figure 4. Circuit, which cannot be optimized
well by retiming

More glitches can be prevented, if more register stages
are introduced into a sequential circuit, thereby pipelining

the design. This, of course, does not preserve the original
behavior of the circuit. If one register stage is added, the re-
sults of this circuit will be delayed by one clock cycle.

Adding flip-flops into the design is not a trivial task. Es-
pecially in highly parallelized designs, adding flip-flops at
the wrong places can lead to dysfunctional circuits.

If for example in Figure 4 a flip-flop is added between
Gate2 and Gate4, the inputs of Gate4 would be out of
synch. The result of Gate2 would always be one clock cy-
cle behind the one of Gate3, and thereby the result of the
whole circuit would come out wrong. To correct this, the re-
sult from Gate3 must also be delayed by one clock cycle,
by adding another flip-flop between Gate3 and Gate4. This
way a complete register stage is added and the result of the
whole circuit is correct again (simply delayed by one clock
cycle).

Another problem is, that on system level it is not always
possible to insert register stages between all gates on the
gate level, since some functions like multiplications or di-
visions are complex gate structures, which are not fully ac-
cessible on this abstraction level.

4.1. Pipelining by retiming

By shifting the inputs or the results of a circuit through
some flip-flops, new register stages can easily be added to
the design. For our example we add two more register stages
to the design, by shifting the the result at the end as shown
in Figure 5.

Figure 5. Circuit with added register stages

As a result, there are more register stages in the circuit,
that can be moved by the retiming algorithm, resulting in
a more pipelined circuit, where more glitches can be pre-
vented. Therefore the power consumption of the design is
lower, the timing behavior, however, different from the orig-
inal design. In the ideal case the whole circuit becomes fully
pipelined with flip-flops after every gate, as illustrated in
Figure 6.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Figure 6. Retimed circuit

The downside of this pipelining is, that the design now
takes two clock cycles longer to compute. The overall
throughput, however, remains the same.

4.2. Experimental Setup

The setup for the measurement remained the same as for
the retiming measurements.

For these experiments the dist program was modified, so
that the inputs could be shifted through a given number RS
of register stages. The program was always compiled with
the retiming option set.

4.3. Results

As comparison for the ”Power saving” percentages in ta-
ble 4.3 the power consumption of the design without retim-
ing was taken.

PUT RS Current Power Power
in mA in W saving

dist 0 211 2,53 4,5%
1 208 2,50 5,9%
4 190 2,28 14,0%
7 198 2,38 10,4%

Table 2. Experimental results of power mea-
surements on the RC200 board for the differ-
ent programs under test (PUT) with different
numbers of added register stages (RS)

Results in Table 4.3 show, that for increasing number of
inserted register stages the power consumption of the cir-
cuit decreases up to a point where the design is saturated
and fully pipelined. After that point the power consumption
begins to increase again.

5. Conclusions and future work

Even though Celoxica’s retiming algorithm is not opti-
mized for saving power, measurements in Section 3 show,
that retiming can be used to lower the power consumption of
FPGA realizations. If more power reduction is needed, the
design can easily be pipelined with the method described in
Section 4.

For power critical designs retiming has provided good
results despite a high compilation time of up to one hour on
a Pentium 4 with 3.2GHz for large designs.

Current work focusses on exact power measurements of
FPGA circuits. For this an improved test board is currently
under design. This board will allow to directly probe the
FPGA power pins.

In our work we found, that FPGA designers need better
tools to estimate the power consumption of their circuit on a
high abstraction level. As a consequence, we develop a new
suite of test programs, different algorithms and constructs
in Handel-C, to obtain new models for power estimation at
an early stage of a system design cycle.

References

[1] J. H. Anderson and F. N. Najm. Power estimation techniques
for FPGAs. In IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, volume 12, pages 1015–1027, Oct.
2004.

[2] Celoxica. The application of retiming to the synthesis of C
based languages using the Celoxica DK Design Suite - white
paper. Mar. 2004. http://www.celoxica.com/.

[3] N. Chabini, I. Chabini, E. M. Aboulhamid, and Y. Savaria.
Unification of basic retiming and supply voltage scaling to
minimize dynamic power consumption for synchronous dig-
ital designs. In GLSVLSI ’03: Proceedings of the 13th ACM
Great Lakes Symposium on VLSI, pages 221–224. ACM
Press, 2003.

[4] Y.-L. Hsu and S.-J. Wang. Retiming-based logic synthesis
for low-power. In ISLPED ’02: Proceedings of the 2002 In-
ternational Symposium on Low Power Electronics and De-
sign, pages 275–278. ACM Press, 2002.

[5] C. E. Leiserson and J. B. Saxe. Optimizing synchronous sys-
tems. In 22nd Annual Symposium on Foundations of Com-
puter Science, pages 23–36. IEEE, New York, NY, USA,
1981.

[6] J. Monteiro, S. Devadas, and A. Ghosh. Retiming sequen-
tial circuits for low power. In Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided
Design, pages 398–402. IEEE Computer Society Press,
1993.

[7] C. M. Pepler). RC200/203 Hardware and PSL Reference
Manual. Oct. 2004. http://www.celoxica.com/.

[8] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power
consumption in Virtex-II FPGA family. In Proceedings of the
2002 ACM/SIGDA tenth International Symposium on Field

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Programmable Gate Arrays, pages 157–164. ACM Press,
2002.

[9] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On av-
erage power dissipation and random pattern testability of
CMOS combinational logic networks. In Proceedings of
the 1992 IEEE/ACM International Conference on Computer-
Aided Design, pages 402–407. IEEE Computer Society
Press, 1992.

[10] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI
design: A systems perspective. Addison-Wesley Longman
Publishing Co., Inc., 1985.

[11] S. J. Wilton, S.-S. Ang, and W. Luk. The impact of pipelin-
ing on energy per operation in field programmable gate ar-
rays. In Field-Progammable Logic and Applications, LNCS
3203, pages 719–728. Springer-Verlag, 2004.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

