
ABSTRACT
We address the problem of minimizing dynamic power
consumption for single-phase synchronous digital designs, under
timing constraints, using an unification of basic retiming and
supply voltage scaling. We assume that the number of supply
voltages and their values are known for each computation element.
Our main objective is then to change the location of registers using
basic retiming while maximizing the number of computation
elements off critical paths that can operate under a low available
supply voltage, and can lead to a maximum dynamic power saving.
We address the problem at the system-level. We formulate the
problem as a Mixed Integer Linear Program (MILP). The exact
optimal solution for the problem is then guaranteed. We also devise
an algorithm to compute bounds on the values assigned by basic
retiming to each computational element. Besides helping to find the
optimal solution to the problem, these bounds also allow to reduce
the run-time for finding this solution. The proposed approach can
produce converter-free designs and can also minimize short-circuit
power consumption. Experimental results have shown that
dynamic power consumption can be reduced by factors that range
from 2.78% to 37.24% for single-phase designs with minimal clock
period. For these experimental results, the run-time for solving the
MILP is under 2min.

Categories and Subjects Descriptors
B. Hardware, B.0 General.

General Terms
Design, Performance.

Keywords: CMOS, Power Consumption, Performance,
Retiming, Supply Voltage Scaling, Digital Design.

1. INTRODUCTION
The average power consumption in CMOS circuits is

constituted by dynamic power, short-circuit power, leakage power,

and static power [8]. Dynamic power, denoted , is the
dominant component of power dissipation in CMOS circuits. It is a
quadratic function of the supply voltage, denoted  [8]: 

,  (1)
where  is the switching activity factor,  is the loading
capacitance, and  is the clock frequency.

The short-circuit power is approximately proportional to
 [8], where  is the threshold voltage.

Due to the quadratic term in Equation (1), the dynamic power
may be significantly reduced by scaling down the supply voltage.
When  is assumed to be fixed, short-circuit power is reduced
ever faster, but it is usually small compared to the dynamic power.
In the rest of this paper, we focus on dynamic power only.

Minimizing dynamic power consumption by scaling down the
supply voltage of computation elements off critical paths has been
addressed in the case of combinational designs. For this kind of
designs, interested reader is referred to [1][3][8][9][10][13][14] for
a literature review. Designs with multiple supply voltages are
reported in [11][12].

In this paper, we address the problem of minimizing dynamic
power consumption, under timing constraints, for synchronous
sequential designs, by scaling down the supply voltage of
computation elements off critical paths. Since critical paths are
related to the position of registers in the designs, our aim is not just
to scale down the supply voltage of computation elements off
critical paths, but also to simultaneously move registers from their
positions in order to maximize the number of computation elements
off critical paths that can lead to a minimum dynamic power
consumption. The process of moving registers from their positions
in a sequential design is called basic retiming [4]. In the sequel, we
refer to that problem as the MDP problem.

The MDP problem is NP-hard in general, since it is already NP-
hard in the case of combinational designs [3].

Minimizing dynamic power for synchronous sequential designs
is addressed. In [7], heuristics to minimize the switching activity
are presented. The approach in [7] is based on the fact that registers
have to be positioned on the output of computational elements of
high switching activity, since the output of a register switches only
at the arrival of the clock signal compared to a computational
element that may switch many times during the clock period. 

In [6], fixed-phase retiming is proposed. The edge-triggered
circuit is first transformed to a two-phase level-clocked circuit, by
replacing each edge-triggered flip-flop by two latches. Next, the
latches of one phase are kept fixed, while the latches belonging to
the other phase are moved onto wires with high switching activity
and loading capacitance.
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To the best of our knowledge, no approach is reported yet for
addressing the MDP problem. In this paper, we focus on solving the
problem at the system level. The computational elements in the
design can be, for instance, adders and multipliers. We assume that
the number of supply voltages and their values are known for each
computation element. We formulate the problem as a Mixed Integer
Linear Programming (MILP) problem. This formulation is flexible.
For instance, we can incorporate constraints into the set of
constraints of this MILP in order to produce converter-free designs.
We show that there is an infinite number of basic retimings that lead
to the same minimum value of the objective function in the MILP.
To find one of these basic retimings, one needs to find bounds on
the values assigned by basic retiming to each computational
element, but without affecting the minimal value of the objective
function of the MILP. We devise an algorithm to find this kind of
bounds, which allow to also reduce the run-time to solve this MILP.
Experimental results have shown a significant reduction of
dynamic power consumption using this proposed approach. Also,
they have shown that this MILP can be solved with a short run-time. 

2. PRELIMINARIES
2.1- Cyclic Graph Model

A synchronous sequential design is modeled (as in [4]) as a
directed cyclic graph , where V is the set of
computational elements in the design, and E is the set of edges that
represent interconnections between vertices. Each vertex v   in V
has a non-negative integer execution delay . Each edge

, from node u to node v, in E is weighted with a register count
, representing the number of registers on the wire

between u and v.

2.2- Basic Retiming 
Let  be a synchronous sequential design.

Basic retiming (or retiming for short in the sequel)  [4] is defined
as a function , which transforms  to a functionally
equivalent synchronous sequential design .
The weight of each edge  in  is defined as follows:

.  (2)
Since the weight of each edge in  represents the number of

registers on that edge, then we must have:
.  (3)

Any retiming  that satisfies Equation (3) is called a valid retiming.
Equation (2) implies that for every two nodes u and v in V, the

change in the register count along any path  from node u to
node v depends only on its two endpoints:

,  (4)
where:

.  (5)

Let  be the set of cycles in . Since a cycle is a path that start
from and ends to the same node in the graph, then from Equation
(4), we have that: .  (6)

 Property 1 :  Any valid retiming  does not change the total
number of registers in any cycle. ❏

One application of retiming is to minimize the clock period of
synchronous sequential designs. 

A mathematical programming framework for retiming has been
proposed in [4]. For the purpose of this paper, we extract from that
framework the following three theorems (Theorems 1, 2, and 3),
which are also proved in [4].

Theorem 1 : Let  be a synchronous circuit, and
let P be a positive real number. Then the clock period of G is less
than or equal to P if and only if there exists a function

 such that  and such that
.     ❏

Theorem 2 :  Let  be a synchronous circuit,
and let P be a positive real number. Then there is a retiming r of G
such that the clock period of the resulting retimed graph is less than
or equal to P if and only if there exists an assignment of real value
s(v) and integer value r(v) to each node v in V such that the
following conditions are satisfied: (1) , (2)

, (3) , and (4)
.  ❏

Theorem 3 : Let  be a synchronous circuit, and
let P be a positive real number. Then there is a retiming r of G such
that the clock period of the resulting retimed graph is less than or
equal to P if and only if there exists an assignment of real value R(v)
and integer value r(v) to each node v in V such that the following
conditions are satisfied: (1) , (2)

, (3) ,
and (4) .   ❏

In the following, we give other results related to retiming, which
are not developed elsewhere. They will be used in Section 3.

Lemma 1 : Any retiming   can be transformed to a non-
negative retiming .       ❏

Proof: Let . The function 
defined as , , is a non-negative retiming.

  ❏
Theorem 4 : Let  be the set of the cycles in  that pass through
the node . For any valid retiming ,

 is a bound on , .  ❏

Proof of Theorem 4 is omitted due to space limit. It is in [2].
Remark: If G is not a strongly connected directed graph, then
Theorem 4 can be applied by adding a dummy node as done in [4].

3. PROBLEM FORMULATION, AND
OPTIMAL SOLUTION

We are given a synchronous sequential design
 that operates with a given supply voltage, which

is called here highest supply voltage. The design is assumed to
operate at a target clock period, P, that is given by the designer or
determined by applying a retiming for clock period minimization
on . We are also given multiple supply voltages. The number of
supply voltages and their values are assumed to be known and can
be not the same for all the computational elements. Our objective is
then to assign new supply voltages, from the set of the given supply
voltages, to the computational elements of  in order to minimize
the total dynamic power consumption. Each computational element
will have one and only one supply voltage. Since we want that 
keeps operating at the target clock period P, the computational
element on critical paths will be kept operating at their original
supply voltages, while the supply voltages of those off critical paths
are replaced by low supply voltages. 

Minimizing dynamic power consumption in synchronous
sequential designs by only changing the supply voltages of
computational element off critical paths is not enough. Retiming is
required to shift computational elements from the critical paths. 
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As a summary, our main problem in this paper is then to provide
a manner to simultaneously apply retiming and voltage scaling, to
have a functionally equivalent design that operates at the same
given clock period and consumes the minimum dynamic power. We
refer to this problem as the MDP problem. 

We formulate the MDP problem as an MILP. The optimal
solution to the problem is then obtained by solving this MILP.

Before presenting this MILP, let us first provide additional
notation and definitions. Based on the supply voltages used, we
assume that we have  different implementations for each
computational element v. If supply voltage , where

, is used, then the computational element v has an
execution delay  and consumes the dynamic power

. Assume that supply voltages are sorted from the highest to
the smallest. For each , and for each  such that ,
let us denote by  a binary variable, which is equal to 1 if supply
voltage  is used, and to 0 otherwise. 

The objective function to minimize in the MILP is the total
dynamic power consumption, which is equivalent to (7): 

.  (7)

By definition of the inputs of the problem, if one uses the highest
supply voltages only, then by Theorem 3, the following system of
inequalities, :

  (8)
 (9)

  (10)
 (11)

has a solution.
As proved in [4], any solution to the system of inequalities in

Theorem 2 can be transformed to a solution to the system of
inequalities in Theorem 3. This is possible by making the following
transformation: .  (12)

By making the following transformation:
,  (13)

 can be transformed to the equivalent system of inequalities, :
 (14)
 (15)

  (16)
 (17)

The system of inequalities  expresses a valid retiming of the
design  operating at the highest supply voltages and the target
clock period P. If instead of keeping the execution delays (i.e.,

’s) constant one makes them variables, it is then possible to
have a system, , of equalities and inequalities that expresses the
combination of retiming and supply voltage scaling to minimize
dynamic power consumption. Indeed, one can build that system as
follows:

 (18)

 (19)

 (20)

 (21)

 (22)

 (23)

The system  can then be used as set of constraints of the
MILP. 

Theorem 5 : a) The MILP formed by (7) and  has always a
solution. b) The design   obtained from the optimal solution to
this MILP has the clock period P. c) This MILP has an infinite
number of optimal solutions (because there is an infinite number of
retiming). ❏

Proof of Theorem 5 is omitted due to space limit. It is in [2]. 
To find one of the optimal solutions of the MILP constituted by

(7) and , we need to determine a lower and an upper bound on
each . Tight bounds on  may also help to prune the
solution space, and hence to speed up the process of finding this
optimal solution. 

From Theorem 4, we have that: 
,  (24)

which is equivalent to:
,  (25)

and
.  (26)

’ values can be determined by the algorithm in Figure 1.
From Lemma 1,  can be made non-negative. Let

, and , .
Equations (25) and (26) can then be transformed to:

,  (27)
and

.  (28)
From Equations (21), (27) and (28), one can deduce that:

.  (29)
                 

Input: . Output: bounds on ’s, .
Begin

1- Weight each edge  in  by .
2- Split each  to two nodes:     and   .
3- Connect all the input edges of  to .
4- Connect all the output edges of  to .
5- Add an edge of weight 0 between  and .
6- Compute the length of the shortest path from  to .
7-  is the length of the shortest path from  to . 
8- Return ‘s.

End
Figure 1 : Determining bounds on ’s.       

Let , . Using the developments
above, we can then obtain the final form of the MILP to optimally
solve the MDP problem as presented in Figure 2.           

 (30)
Subject to:

 (31)

 (32)

 (33)

 (34)

 (35)
 (36)

 (37)

 (38)

Figure 2 : Final form of the proposed MILP.       

nv
Vdd

k

1 k nv≤ ≤
d v( ) dv k,=

pv k,
v V∈ k 1 k nv≤ ≤

xv k,
k

Minimize pv k, xv k,⋅
k 1=

nv∑v V∈∑ 
 

S1
r v( ) R v( )– d v( ) P⁄–≤ v V∈∀,

R v( ) r v( )– 1≤ v V∈∀,
r u( ) r v( )– w eu v,( )≤ eu v, E∈∀,

R u( ) R v( )– w eu v,( ) d v( ) P⁄–≤ eu v, E∈∀,

P R v( )⋅ P r v( )⋅ s v( )+= v V∈∀,

g v( ) s v( ) d v( )–= v V∈∀,
S1 S2

r v( ) R v( )– 0≤ v V∈∀,
R v( ) r v( )– 1 d v( ) P⁄–≤ v V∈∀,
r u( ) r v( )– w eu v,( )≤ eu v, E∈∀,

R u( ) R v( )– w eu v,( ) d u( ) P⁄–≤ eu v, E∈∀,

S2
G

d v( )
S3

xv k,k 1=

ni∑ 1, v V∈∀=

r v( ) R v( )– 0≤ v V∈∀,

R v( ) r v( )– 1 dv k, xv k,⋅
k 1=

nv∑ 
  P⁄–≤ v V∈∀,

r u( ) r v( )– w eu v,( )≤ eu v, E∈∀,

R u( ) R v( )– w eu v,( ) du k, xu k,⋅
k 1=

nu∑ 
  P⁄–≤ eu v, E∈∀,

xv k, 0 1,{ } and r v( ) Z, v V∈∀   and k 1 ... nv,  ,=∈∈

S3

S3
G

S3
r v( ) r v( )

 r v( ) Uv, v V∈∀≤

r v( ) Uv, v V∈∀≤

r– v( ) Uv, v V∈∀≤
Uv

r v( )
m Min U– v v V∈∀,{ }= r

+
v( ) r v( ) m–= v V∈∀

r
+

v( ) Uv m, v V∈∀–≤

 r
+

– v( ) Uv m, v V∈∀+≤

r
+

u( ) r
+

v( )– Min w eu v,( )  Uu Uv+( ),( )≤ eu v, E∈∀,

G V E d w, , ,( )= r v( ) v∀ V∈

eu v, G w eu v,( )
v V∈ ṽ v̂
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4. EXPERIMENTAL RESULTS
We assess the effectiveness and efficiency, in terms of reducing

dynamic power consumption and the run-time, of Figure 2. We use
a set of benchmarks proposed in the literature. As supply voltages,
we use the first x-supply voltages from the set

, where .
The difference between two successive supply voltages is fixed to
0.5V, since we also want to test the effectiveness of the proposed
approach in producing converter-free designs based on [10]. The
approach in [10] assumes that a level-converter between
computational element u and v can be omitted if (39) is satisfied:

,  (39)

where Vst is a given value, which is fixed here to 0.5V. We assume
that supply voltages are greater than , where Vth is the
threshold voltage. We use , which is a typical value
used in the literature. To determine the delay  and the power
consumed , for a given computational element v and supply
voltage , we proceed as follows. First, we use the expression

 

described in [9], where  is assumed to be known. Second,
’s are determined assuming that the fanout of v has the same

loading capacitance. From Equation (1), we then have:

. 

For each circuit, the clock period P is fixed to the minimal value
determined by applying a retiming on the circuit operating at the
highest supply voltages (i.e., 5V).

 All experiments were done using an UltraSparc 10 with 1GB
RAM. We use [5] to solve the MILPs. For each circuit, the MILP is
automatically generated by a module we coded in C++.

 Table 1 summarizes numerical results. The first column of the
table gives the name of the circuits used. The second column
presents the dynamic power consumed, denoted Ph, divided by

, if one uses only the highest supply voltages. Results in
the xth column, where  correspond to the use of

-supply voltages if one uses Figure 2 (results in bold), or
Figure 2 with (39) incorporated in its set of constraints (results
between [ and ]). The xth column gives the Relative Saving ratio
(RS), and the run-time in seconds to solve the MILP. We have that:

  , 
where  denotes the dynamic power consumed if one used the
first -supply voltages as defined above. 

As Table 1 exhibits, significant reductions of dynamic power
consumption are obtained using from 2 to 6 supply voltages. The RS
values range from 2.78% to 37.24%, and from 2.78% to 21.94%
when Inequality (39) is incorporated in the MILP. As Table 1
reports, the use of more than 6 supply voltages does not lead to any
dynamic power reduction. The run-time to solve the MILP is very
short, and is less than 2min when 2 to 6 supply voltages are used.
This short run-time is due in part to the bounds found by Figure 1.

5. CONCLUSIONS
We addressed the problem of minimizing the dynamic power

consumption for synchronous sequential designs operating with a
given clock period. The value of the clock period is preserved while
the supply voltage of some computational elements off critical
paths are re-assigned to low supply voltages in order to minimize
the dynamic power consumption. Maximizing the number of
computational elements that can re-operate under a low supply
voltage (to have the minimal dynamic power consumption) is done
by combining retiming and supply voltage scaling. 

To the best of our knowledge, this is the first time that
combining retiming and supply voltage scaling to minimize
dynamic power consumption is proposed as a problem to solve. We
formulated the problem as an MILP, which allows to determine the
exact optimal solution to the problem. We also devised an algorithm
to find bounds on the lags determined by retiming; this allows to
find an optimal solution to the MILP and reduce run-times to find it.

The proposed approach can significantly reduce the dynamic
power consumption. The run-times to solve the proposed MILP are
very short; this is due in part to the bounds found by Figure 1.

The proposed MILP can be used at the system level, and could
be used heuristically at lower levels of abstraction when
computational elements are for instance gates, and the design is of
a very large size. It is also flexible. For instance, the cost of level-
converters as well as the dynamic power due to registers can both
be added to the formulation to control them.
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5-Vdd
RS(%), T(s) [RS,T]

6-Vdd
RS(%), T(s)  [RS,T]

7-Vdd
RS(%), T(s)  [RS,T]

8-Vdd
RS(%), T(s)  [RS,T]

AllPoleLatticeFilter 414 4.83, 1 [4.83, 1] 6.03, 1 [6.03, 1] 6.03, 1 [6.03, 1] 6.03, 1 [6.03, 1] 6.03, 2 [6.03, 1] 6.03, 3 [6.03, 1] 6.03, 3 [6.03, 1]
BiquadraticFilter 343 7.48, 1 [7.48, 1] 14.97, 1 [11.97, 1] 17.66, 1 [13.77, 1] 18.86, 1 [13.77, 1] 18.86, 1 [13.77, 1] 18.86, 2 [13.77, 1] 18.86, 2 [13.77, 1]
SecondAvenhausFilter 412 7.28, 1 [7.28, 1] 13.34, 1 [12.13, 1] 16.26, 1 [12.86, 1] 17.23, 2 [12.86, 1] 17.23, 2 [12.86, 1] 17.23. 7 [12.86, 1] 17.23, 7 [12.86, 1]
FifthOrderWaveDigitalFilter 1281 7.49, 1 [7.49, 1] 11.55, 1 [10.30, 3] 12.95, 1 [10.53, 1] 14.44, 4 [10.53, 2] 15.06, 18 [10.53, 3] 15.53, 7 [10.53, 34] 15.53, 41 [10.53, 38]
ThirdAvenhausFilter 566 8.83, 1  [8.83, 1] 16.78, 1 [15.90, 1] 21.02, 1 [18.02, 1] 23.14, 10 [18.02, 1] 23.85, 16 [18.02, 1] 23.85, 115 [18.02, 1] 23.85, 118 [18.02, 1]
Diffirential Equation Solver 588 10.71, 1 [10.71, 1] 22.61, 1 [12.41, 1] 27.72, 2 [12.41, 1] 34.52, 3 [12.41, 1] 37.24, 3 [12.41, 1] 37.24, 9 [12.41, 1] 37.24, 11 [12.41, 1]
FourAvenhausFilter 720 9.72, 1  [9.72, 1] 18.75, 1 [18.05, 1] 23.75, 1 [21.38, 1] 26.52, 34 [21.94, 2] 27.63, 63 [21.94, 2] 27.63, 1037[21.94, 2] 27.63, 1417 [21.94, 2]
PolynomDivider 309 9.7, 1 [9.7, 1] 19.41, 1 [17.79, 1] 25.24, 1  [20.71, 1] 27.83, 3 [20.71, 1] 29.12, 2  [20.71, 1] 29.12, 10  [20.71, 1] 29.12, 11  [20.71, 1]
SecondOrderIIR 359 2.78, 1 [2.78, 1] 5.57, 1 [2.78, 1] 5.57, 1 [2.78, 1] 5.57, 1 [2.78, 1] 5.57, 1 [2.78, 1] 5.57, 1 [2.78, 1] 5.57, 1 [2.78, 1]
Correlator 283 8.48, 1 [8.48, 1] 15.54, 1 [13.78, 1] 18.02, 15 [13.78, 3] 19.43, 50 [13.78, 6] 19.78, 118 [13.78, 8] 19.78, 306 [13.78, 8] 19.78, 401 [13.78, 10]
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