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Abstract

Switching activity is the primary cause of power dissi-
pation in CMOS combinational and sequential circuits.
We give a method of estimating power in pipelined se-
quential CMOS circuits that accurately models the cor-
relation between the vectors applied to the combina-
tional logic of the circuit.

We explore the implications of the observation that
the switching activity at flip-flop outputs in a syn-
chronous sequential circuit can be significantly less than
the activity at the flip-flop inputs. We present a re-
timing method that targets the power dissipation of a
sequential circuit.

1 Introduction

For many consumer electronic applications low aver-
age power dissipation is desirable and for certain spe-
cial applications low power dissipation is of critical im-
portance. For applications such as personal communi-
cation systems like hand-held mobile telephones, low-
power dissipation may be the tightest constraint in the
design. More generally, with the increasing scale of in-
tegration, we believe that power dissipation will assume
greater importance, especially in multi-chip modules
where heat dissipation 1s one of the biggest problems.

The average power dissipation of a circuit, like its
area or speed, may be significantly improved by chang-
ing the architecture or the technology of the circuit [1].
But once these architectural or technological improve-
ments have been made, it is the switching of the logic
that will ultimately determine its power dissipation.

Methods for the power estimation of logic-level com-
binational [7] and sequential [3] circuits have been pre-
sented previously. In this paper, we augment the meth-
ods of [3] to obtain a more accurate estimation method
that is applicable to pipelined sequential circuits. We
assume that the reader is fariliar with the techniques
described in [3].

Traditionally, logic synthesis has been applied to im-
prove the area or speed of a circuit. In [8], a new cost
function for combinational logic synthesis targeting low
power was presented. Methods that lowered power dis-
sipation by restructuring the combinational logic of a
circuit were developed. A method to speed up a se-
quential circuit using retiming and subsequently lower-
ing power dissipation (and increasing delay) by scaling
down the power supply voltage was presented in [2]. In
this paper, we explore the application of retiming tech-
niques to modify switching activities on internal wires
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of a circuit and demonstrate the impact of these tech-
niques on average power dissipation.

2 Power Estimation

A common model for a sequential circuit is shown in
Figure 1. We assume that power is dissipated only when
the input vector to the circuit changes. We will denote
the vector pair applied to the combinational logic as
< V0, Vt >. V0 and V¢ have a primary input part
and a present-state part. V0 is denoted I0@P0 and Vi
is denoted It@Pt, where I0 and It correspond to the
primary input parts, and PO and Pt correspond to the
present-state parts.

One can ignore the feedback corresponding to the
next-state lines and present-state lines and estimate the
power dissipated by the combinational logic using the
method of [3]. However, this strategy is a relatively
crude approximation because of two reasons. Firstly,
it assumes that the vector pairs applied to the combi-
national logic are uncorrelated. However, a vector pair
< V0, Vt > will have the property that Pt is the state
produced by I0 when the machine is in state P0. This
correlation is ignored in combinational analysis. Fur-
ther, the machine may be in different states (different
P(’s) with different probabilities. Combinational anal-
ysis will assume a uniform probability for all the states.

2.1 Pipelines

Many sequential circuits, such as pipelines, can be
acyclic. They correspond to blocks of combinational
logic separated by flip-flops. An example of a 2-stage
pipeline that is an acyclic sequential circuit is given in
Figure 2. I corresponds to the primary inputs to the
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Figure 1: A General Synchronous Sequential Circuit
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Figure 3: Taking k Levels of Correlation Into Account

circuit, O the primary outputs, and PB and PC the
present-state lines that are inputs to blocks B and C,
respectively.

It is possible to estimate the power dissipated by
acyclic circuits that are k-pipelines, i.e. those that have
exactly k flip-flops on each path from primary inputs
to primary outputs, without making any assumptions
about the probabilities of the present-state lines. This
is because such circuits are k-definite [4), i.e. their state
and outputs are a function of primary inputs that oc-
curred at most k clock cycles ago.

Consider the circuit of Figure 3. The symbolic sim-
ulation equations corresponding to the switching activ-
ities of logic gates in blocks A, B and C are assumed
to have been computed using the method of [3]. The
symbolic simulation equations for block A receive in-
puts from I0; and It;, since block A receives inputs
from I alone. The symbolic simulation equations for
block B receive inputs from PB0; and PBt;, and to
model the relationship between PB and I , We gener-
ate PB0; from I0; and the PBt; from It;. Similarly,
the symbolic simulation equations for block C receive
inputs from the PC0; and PCt; and to model the re-
lationship between PC and I we generate PC0j from
I0; and the PCt; from It;.

The decomposition of Figure 3 implies that the gate
output switching activity can be determined given only
the vector pair < I0,It > for the primary inputs.
Therefore, to compute gate output transition proba-
bilities, we only require the transition probabilities for
the primary inputs. This use of the next-state logic
generates Boolean equations which model the relation-
ship between the state of the circuit and the previously
applied input vectors.
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Figure 4: Adding a Flip-Flop to a Circuit
3 Positioning of Flip-Flops

We begin with some interesting observations that relate
the positioning of flip-flops in a sequential circuit to the
power dissipation of the circuit.

Consider the circuit of Figure 4(a). If the average
switching activity (during a clock cycle) at the output
of gate g is E, and the load capacitance is (7, then
the power dissipated by the circuit is proportional to
E; - Cr. Now consider the situation when a flip-flop R
is added to the output of g, as illustrated in Figure 4(b).
The power dissipated by the circuit is now proportional
to Ey - Cr + Egr - CL, where Ej is as before, Cp is
the capacitance at the input of the flip-flop, and ER is
the average switching activity at the flip-flop output.
The main observation here is that Eg < E,, since the
flip-flop output will make at most one transition at the
beginning of the cycle. For example, the gate g may
glitch and make three transitions as shown in the figure,
but the flip-flop output will make at most one transition
when the clock is asserted. This implies that is possible
that E; - Cr + Eg - Cf is less than E, . Cp if both
E, andq Cp are high. Thus, the addition of flip-flops
to a circuit may actually decrease power dissipation.
Since adding flip-flops to a circuit is a common way to
improve the performance of a circuit by pipelining it,
it 1s worthwhile investigating the ramifications of this
observation.

Next, consider the more complex scenario of altering
the position of a flip-flop in a sequential circuit. Con-
sider the circuit of Figure 5(a). The power dissipated
by this circuit is proportional to Ey -Cgr + E1 - Cpy +
E5 - CLs. Similarly, the power dissipated by the circuit
of Figure 5(b) is proportional to Ey-Cr1 + E'y - Cr +
E's . Cr2. Again, one circuit may have a lesser power
dissipation than the other. Due to glitching, £’y may
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Figure 5: Moving a Flip-Flop in a Circuit
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be greater than E; but by the same token E’5 may be
less than E. The capacitances of the logic blocks and
the flip-flops along with the switching activities will de-
termine which of the circuits is more desirable from a
power standpoint. The circuits may also have differing
performance.

We utilize the above observations in a heuristic re-
timing strategy that targets power dissipation as its pri-
mary cost function.

4 Retiming for Low Power

Retiming algorithms that minimize clock periods [5, 6]
rely on the fact that delay varies linearly under retim-
ing. Unfortunately that is not so with switching ac-
tivity. The retiming of a single node can dramatically
change the switching activity in a circuit and it is very
difficult to predict what this change will be. Further,
estimating the switching activity is itself a computa-
tionally expensive task.

The algorithm we propose for reducing power dissi-
pation in a pipelined circuit heuristically selects the set
of nodes which, by having a flip-flop placed at their out-
puts, lead to the minimization of switching activity in
the network. Nodes are selected based on the amount
of glitching that is present at their outputs and on the
probability that this glitching propagates through their
transitive fanouts.

4.1 Cost Function

We start by estimating the average switching activity
of the combinational network (ignoring the flip-flops}),
both with zero delay (F,erop) and actual delay (Eyenp)
for each gate, thus obtaining the amount of gﬂitch—
ing (Egiitcn) at each gate by taking the difference of
the expected number of transitions in these two cases
(Eglitch = EgenD - EzeroD)c

We then evaluate the probability that a transition
at each gate propagates through its transitive fanout.
For each gate j in the transitive fanout of node i we
calculate the probability of having a transition at node
J caused by a transition at gate i (sensitivity of gate j
relative to gate i, s;;):

. _ PGLASD)
= TRG)

where Pgi 1) is the probability of a transition at node
1, calculated using the methods of [3].

The value of P(i] A j[) can be calculated by first
calculating the primary input conditions under which a
transition at ¢ triggers a transition at j. This can be cal-
f:ul[zg];ed using the zero delay power estimation methods
in [3].

Since the objective is to reduce power, we weight
these sensitivities with the capacitive load of the corre-
sponding node. So the measure of the amount of power
dissipation that is reduced by placing a flip-flop at the
output of a node 7 is:

Janout,

power_red(i) = Egitcn (%) x (Ci + Z (si x Cj))

J

The transitive fanout of a node might contain a very
large number of nodes, so we restrict the number of
levels of transitive fanout that are taken into account.
This not only reduces computation time, but also can
increase the accuracy since glitching can be filtered out
by the inertial delay of combinational logic.

One other factor that can significantly contribute to
power dissipation is the number of flip-flops in the net-
work. We try to minimize this number by giving higher
weights to nodes with larger number of inputs (n;(¢))
and outputs (n,(¢)). A flip-flop placed at one of these
nodes will be in a greater number of paths, reducing the
total number of flip-flops needed. Therefore, our final
cost function is:

weight(i) = power_red(i) x (ni(i) + no())
4.2 Verifying a Given Clock Period

Although we aim at the circuit that dissipates the least
possible power, we might also want to set a constraint
on performance by specifying the desired clock cycle of
the retimed circuit.

In the retiming algorithm we will be selecting the
nodes that should have a flip-flop placed at the output.
We restrict this selection to the nodes that still allow
the retimed circuit to be clocked with the given clock
period. Since the algorithm works with pipelines, this
is accomplished simply by discarding nodes that have
a path longer than the desired clock period, both from
any primary input or to any primary output.

4.3 Retiming Constraints

The objective is to select the nodes (from those not ex-
cluded in the previous phase) with the highest weights.
The constaint for node selection is that the number
of nodes that share any input-output path should not
surpass a given value (which is the number of flip-flop
stages in the pipeline). The set having the highest sum
of weights over the nodes belonging to the set is chosen.

We restrict our algorithm to place one stage of flip-
flops at a time. The reason for this is that, if we allowed
two stages, the algorithm could select a node 7 and one
of its immediate fanout nodes j for a set. Choosing ¢
will eliminate most of the glitching present at j, possi-
bly changing significantly the weight of j, and this new
weight of j difficult to predict. Thus, for pipelines with
more than one stage, we apply our algorithm iteratively.

So the goal is to find the set of nodes with no more
than one node per input-output path and with the high-
est sum of weights. QOur algorithm uses a binary tree
search over all the nodes, keeping record of the best set
so far. For large networks, we limit the search to the
most promising nodes.

First we check for pairwise compatibility, i.e. for
each pair of nodes we check if there is one input-output
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Figure 6: Circuit with the Nodes in the Selected Set
Retimed.

path to which they both belong. This greatly simplifies
the test at each level of the binary tree as we just verify
if the node corresponding to this level is incompatible
with any other node previously selected.

4.4 Executing the Retiming

Initially we position the flip-flops at the primary inputs
of the network. To place a flip-flop at the output of a
node in the selected set, we recursively perform back-
ward retiming on the node, i.e. we add a flip-flop at its
output and remove a flip-flop at each input. This opera-
tion is repeated with nodes that have negative flip-flops
at their output due to previous retimings. Eventually
we reach the primary inputs where flip-flops are present,
thereby ending the recursion.

Once we have placed flip-flops at the output of all
the nodes in the set, there are typically some flip-flops
that can still be moved without disturbing the flip-flops
already placed. These are flip-flops on paths that do
not contain any node in the selected set. For instance,
consider the circuit in Figure 6 which has been through
the first phase of retiming, where the only node in the
selected set was node c1.

The first observation is that although node c1 was
retimed (and has a flip-flop at its output as was the
objective), s0 was not. Thus the flip-flops at the inputs
c0, vO and w0 were not removed. In this case it is
obvious that it is preferable to retime node 80 so that
we reduce the number of flip-flops in the circuit (one at
the output of s0 instead of three at the inputs).

The second observation is that the flip-flops at inputs
vl and w1 were also not touched. Nodes x and y can
be retimed and this would reduce the levels of combi-
national logic in the circuit from two to one. Note that
retiming x and y will make s1 and cout retimable, but
we do not allow it since that would remove the flip-flop
from the output of c1.

Thus, in the last phase of the algorithm we go
through the network, from primary inputs to primary
outputs, performing a backward retiming on retimable
nodes so that:

e The maximum delay is lower than the desired clock
period.

e The number of flip-flops is reduced.
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¢ This retiming operation does not disturb the flip-
flops placed at the output of the nodes in the se-
lected subset.

5 Experimental Results

In Table 1, power estimation results for several
pipelined sequential circuits are summarized. For each
circuit, the number of stages in the pipeline, the num-
ber of flip-flops (ff), estimated power using the method
of [3] (METHOD-I) and the estimated power using the
method pictorially described in Figure 3 (METHOD-
I1) are given. The CPU times for power estimation us-
ing the two different techniques on a DEC 3000 Model
500 AXP Workstation are also given. The different
pipelined implementations with a varying number of
stages for each circuit were obtained by adding flip-flops
to the inputs to the circuit and retiming the circuit for
minimum delay. A uniform frequency of 20 MHz was
assumed for computing the power dissipation for all the
circuits.

Given o delay model, the method of Figure 3 exactly
computes the average switching activity for a pipelined
circuit taking into account the correlation between the
flip-flops. The method of [3] and other power estimation
methods are restricted to assuming default values of 0.5
for the switching activities of the flip-flop outputs. They

EX stages/ff | METHOD-I | METHOD-II
ower | time | Power | time

cla_16 0/0 1100 12 1100 13
1/48 2497 5 2389 8

2/91 3740 4 3509 7

3/131 4953 3 4632 6

rpl-16 0/0 1419 23 1419 26
1/33 2302 8 2303 12

2/65 3198 b 3172 8

3/98 4132 4 4025 8

cbp_16 0/0 1815 111 1815 117
1/38 2842 29 2748 45

2/78 3931 9 3657 20

3/115 4989 7 4569 12

cbp_32 0/0 3687 | 1772 3687 | 1890
1/74 5751 894 5590 | 904

2/152 7912 | 588 7459 | 608

3/223 9944 | 446 9234 | 453

mult4 0/0 689 3 689 3
1/14 1218 1 900 2

2/27 1558 1 1152 1

3/43 2054 1 1503 1

mult6 0/0 2658 151 2658 155
1/29 3707 | 262 2803 55

2/53 4166 7 3156 32

3/76 4710 3 3581 155

mult8 0/0 6621 207 6621 207
1/46 8051 110 6104 120

2/87 8798 80 6690 84

3/136 9743 70 7404 i

Table 1: Power Estimation for Sequential Circuits



EX Retime-Delay Retime-Power
it | delay | power | H | delay | power
cla_16 | 48 12 23891 43 12 2147
rpl 16 | 33 18 2303 1 32 32 2074
cbp_16 | 38 22 2748 | 34 42 2338
cbp 32174 42 0090 161 71 4725
multd | 14 ] 900 | 11 i 803
mult6 | 29 8 2803 | 22 11 2096
multy | 46 11 6104 | 37 15 0834

Table 2: Retiming for Low Power Without Any Timing
Constraints

EX st | Delay | Retime-Delay T Retime Power
I | power ff' [ power

cla_16 1 121 48 23891 44 2181
3 6| 131 4632 | 126 4280

rpl_16 1 181 33 23038 | 31 2039
3 91 98 4025 | 99 3698

cbp 16 | 1 227 38 2748 | 32 2407
3 11 | 115 4569 | 105 4125

cbp 321 1 421 T4 2090 | 59 4871
3 21 | 223 9234 | 172 7725

mult4 1 o] 14 900 | 13 860
3 3| 43 1503 | 38 1378

multo 1 3| 29 2803 | 26 2660
3 4| 76 3581 | 78 3563

mult8 1 1117 46 6104 | 43 6003
3 61 136 7404 | 128 6975

Table 3: Retiming for Low Power and Minimum Delay

also cannot take into account the correlation between
the flip-flops. This results in erroneous power values.

Next we present results obtained by using the re-
timing method of Section 4 that directly targets power
dissipation. The delay and power dissipated by circuits
retimed for minimum delay, and the delay and power
dissipated by circuits retimed for minimum power with-
out any liming constraints are given in Table 2. We were
able to achieve significant reductions in power for some
of the circuits by a judicious placement of registers us-
ing the strategies described in Section 4. However, the
maximum delay of some of the retimed circuits for low
power is close to the delay of the original circuit. So
retiming for low power disregarding timing might give
poor results is terms of performance.

In Table 3 we present the results obtained for the
same circuits but now adding the constraint of mini-
mum delay. We give results both for 1-stage pipelines
and 3-stage pipelines. The latter was obtained by ap-
plying the algorithm of section 4 first to the original
circuit and then to each of the two combinational parts
of the retimed circuit.

We first note that the power dissipated by the
pipelined circuits obtained by retiming for low power
disregarding timing or by retiming for low power with
a minimum delay constraint are very close. Thus it
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is possible to achieve a important gains in power dis-
sipation without losing in performance. For example
rlp_16 placing a delay constraint results in a slightly
better power dissipation due to the heuristic nature of
the algorithms used.

Secondly observe that, even though we are using an
iterative strategy for the 3-stage pipelined circuits, the
gain in power 1s greater for these circuits. This means
that even greater savings could be obtained if our al-
gorithm is extended to build k-stages pipelines in one
pass, by taking into account in the cost function of a
node the reduction of glitching caused by the selection
of another node that shares a common path(s).
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