An Improved Algorithm for Performance Optimal Technology
Mapping with Retiming in LUT-Based FPGA Design

Jason Cong and Chang Wu
Department of Computer Science

University of California, Los Angeles, CA 90024

Abstract

A novel algorithm, named SeqMapll, of technology
mapping with retiming for optimal clock period for K-
LUT based FPGAs was recently proposed by Pan and
Liu [13]. The time complezxity of their algorithm, how-
ever, is O(K3n*log(Kn?)logn) for sequential circuits
with n gates, which is too high for medium and large
size designs in practice. In this paper, we present
three strategies to improve the performance of the ap-
proach in [13]: 1) efficient label update with single
K-cut computation based on the monotone property
of labels that we showed for sequential circuits, 2) a
novel approach for the K-cut computation on partial
flow networks, which are much smaller in practice, 3)
SCC (strongly connected component) partition to fur-
ther speedup the algorithm. In practice, our algorithm
works in O(K?n3logn) time and O(Kn) space accord-
ing to our experimental results. It is 2x10* times faster
than SeqMapll-opt for computing optimal solutions and
2 times faster than SeqMaplIl-heu which uses very small
erpanded circuilts as a heuristic.

1. Introduction

In this paper, we study the technology mapping with
retiming problem for sequential circuits in K-input
lookup tables (K-LUTSs) based FPGA designs. Most of
the previous LUT mapping algorithms (see the survey
paper [4] by Cong and Ding for details) apply only to
combinational circuits. For sequential circuits, they as-
sume that the positions of flipflops are fixed so that the
whole circuit can be partitioned into several combina-
tional subcircuits. The limitation of this assumption
is that one cannot consider the effect of mapping on
retiming. However, retiming has been shown to be a
very effective technique to move flipflops to reduce the
clock period without changing the input-output behav-
ior [10, 11]. Therefore, we study the problem of finding

the mapping solution with the minimum clock period
under retiming for sequential circuits.

Several FPGA synthesis and mapping algorithms
have been proposed for sequential circuits [12, 15, 17].
However, those algorithms are heuristics in nature. A
significant advancement was made recently by Pan and
Liu [13]. They proposed an algorithm named SeqMapII
to find a mapping solution with the minimum clock pe-
riod under retiming. They introduced the idea of ex-
panded circuits to represent all possible K-LUTs un-
der retiming and node-replication. Iterative computa-
tion is used to compute labels of all nodes. The time
and space complexities are O(K®n*log(Kn?)logn) and
O(K?n?), respectively, for a circuit with n gates. Al-
though SeqMapll runs in polynomial time, it has two
shortcomings: 1) too many candidate values (O(Kn?))
need considering for each label update, 2) the expanded
circuits are too large (O(K n?) nodes) to compute the
optimal solutions. Experimental results show that the
runtime of SeqMapll for computing the optimal solu-
tions is too long in practice (more than 20 hours of
CPU time to get the optimal solution for a design of
134 gates on a SPARC10)!.

In this paper, we present three strategies to im-
prove the performance of the label computation in Se-
qMaplII [13], which is the most time-consuming step.
First, we proved that the monotone property of la-
bels hold for sequential circuits and develop a more
efficient label update approach to speed up the algo-
rithm by a factor of log(Kn?). Second, we propose
a new approach of K-cut computation on partial flow
networks, which are much smaller than the expanded
circuits used in SeqMapll, while guaranteeing the op-
timality of the results. The experimental results show
that the average size of our flow networks are always

IThe authors of SeqMaplII observed that its runtime can be
reduced by several enhancements of the program. However, they
feel that the resulting complexity is still too high for practical
designs. Therefore, they turned to develop efficient heuristics
based on the idea in SeqMaplI [14].

less than n, which is a big improvement over O(Kn?).
Finally, SCC (strongly connected component) partition
is used to eliminate many redundant label computation
and further speed up the algorithm. In practice, our
algorithm, named TurboMap, works in O(K%n3logn)
time and O(Kn) space according to our experimental
results. It is 2x10* times faster than SeqMaplII-opt for
computing optimal solutions and, 2 times faster than
SeqMapll-heu which uses very small expanded circuits
as a heuristic.

2. Problem Formulation and Definitions

Give a sequential circuit, the technology mapping
problem for K-LUT based FPGAs is to construct an
equivalent circuit consisting of K-LUTs and flipflops.
In the unit delay model, the delay of each LUT is one,
the delays of nets are zero. The clock period of a se-
quential circuit is the maximum delay of combinational
paths. The clock period under retiming is the mini-
mum clock period which can be achieved with retiming.
For performance optimization, we study the following
problem:

Problem 1 For a sequential circuit, find an equiva-
lent LUT circuit with the minimum clock period under
retiming.

A mapping solution in which the output signals of
the LUTs are a subset of those in the original circuit
is referred as simple mapping solution [15]. Pan and
Liu [15] showed that there is a simple mapping solu-
tion whose retimed clock period is equal to the mini-
mum clock period among all mapping solutions. Fur-
thermore, they transformed the optimization problem
into a deterministic problem:

Problem 2 Guven a target clock period c, determine
the existence of a simple mapping solution whose re-
timed clock period s ¢ or less.

Obviously, if Problem 2 can be solved, Problem 1
can be solved with binary or linear search. As in [3],
the results in [13, 15] and this paper apply only to K-
bounded circuits?.

We use G(V, E, W) to denote the retiming graph of
a sequential circuit [11], where V is the set of nodes
which represents gates in the circuit, £ is the set of
edges which represents the connection between gates,
and W is the set of edge weights. For an edge e, its

2When a circuit is not K-bounded, we can use the gate de-
composition algorithm, such as balanced tree decomposition [1],
dmig [2] or DOGMA [6], to decompose the gates with more than
K fanins.

weight, denoted w(e), is the number of flipflops on the
connection represented by e. The path weight, denoted
w(p) for a path p, is the sum of weights of all edges on
the path. For anode v, Gy, is a subgraph of GG consisting
all nodes which have paths to v.

For a simple mapping solution M and a given clock
period ¢, the edge length, denoted length(e), of an edge
e is defined to be —c-w(e)+1. The path length, denoted
length(p) of a path p, is EeEp length(e). The l-value
lar(v) of a node v is the maximum length of all paths
from the Pls to v in M3, It was shown in [13] that for
a mapping solution M and a given ¢, the retimed clock
period is ¢ or less iff Iy (v) < e+ 1 for every PO v. For
a node v in the original circuit, the label of v, denoted
1°P*(v), is defined to be the minimum of the I-values of
the K-LUTs rooted at v among all mapping solutions.
It was shown that there is a mapping solution whose
retimed clock period is ¢ or less, iff IP*(v) < c+ 1 for
every PO v [13].

In a directed graph G with one sink and one source,
a cut (X, X) is a partition of the nodes in the graph
such that the sink is in X and the source is in X. The
node cut-set V(X, X) is the set of nodes in X that are
connected to one or several nodes in X. A cut is called
K-cut, if |[V(X,X) |[<K.

3. TurboMap Algorithm

3.1. Review of the SeqMapl | Algorithm

The SeqMaplI algorithm consists of three steps: 1)
label computation, 2) mapping generation, 3) retiming
to get the final solution [13].

Their labeling process computes a lower-bound on
the value of each node label and repeatedly improve
the lower-bounds until there is no further improvement
for all the lower-bounds.

The initial lower-bounds for all PIs are zero and for
all the others nodes are —oo. For the current lower-
bound /(v) of each node v, Pan and Liu [13] presented
a procedure IMPROVE(v) to determine the new lower-
bound /e (v). They introduced the concept of the ex-
panded circuit for each node. The expanded circuit of
node v is used to represent all possible K-LUTs for im-
plementing v with consideration of retiming and node
replication. An expanded circuit £ at node v with
control number 7 is a DAG rooted at v formed by repli-
cation of nodes in G, and it has the property that all
paths from any given node in £ to the root have the
same number of flipflops. A replication of node u is de-
noted as u" if it passes w flipflops before reaching v in

31a(v) = oo if there is a path from Pls to v with a loop of
positive length in M.

EL. The control number i of £ is the shortest distance
(in terms of the number of edges) between the root and
each source in & that is not a replication of a PI.

Pan and Liu [13] showed that to ezamine all K-
LUTs for a node v, it sufficed to examine all the K-
LUTs that can be derived from the K-cuts in X7,
With the assumption that the weight of each edge is at
most one, i.e., each edge has at most one flipflop. It was
shown that the numbers of nodes and edges in £X™ are
bounded by O(Kn?) and O(K?n?), respectively, where
n is the number nodes in the original circuit [13].

In the expanded circuit of node v, based on the cur-
rent lower-bound /(u) of node labels, let the height of
a K-cut (X, X) be

h(X,X)=max{l(u) —c-w+1|Vu* € V(X,X)}.

In SeqMapllI [13], the new lower-bound is computed
by:
lnew(v) = min h(X,X).
K—cut (X,X) in £EEKn

This value is determined by binary search among
O(Kn?) possible values in {l(u) —c-w+1 | u¥ €
EEn} and performing a K-cut computation for each
value. The computation time for every ln.,(v) is
O(K3n?log(Kn?)). The labels of all nodes can be de-
termined in O(K?n*log(Kn?)) time [13].

This approach is the first polynomial algorithm to
find a mapping solution with the optimal clock period
under retiming. But we have observed two shortcom-
ings in this approach. First, the expanded circuit £X”
is very large (O(Kn?) nodes and O(K?n?) edges). Sec-
ond, there are too many values (O(Kn?)) to be con-
sidered when computing the new lower-bound of each
node label.

We improve the SeqMapll algorithm in three ways.
First, we show the monotone property of the node
labels and develop a new procedure for computing a
tighter new lower-bound with single K-cut computa-
tion. Second, we propose a new approach to compute
a K-cut on a partial flow network. The partial flow
network is built incrementally during the K-cut com-
putation. The number of nodes in it 1s always far less
than n as shown in our experiments. Third, we use
SCC (strongly connected component) partition to re-
duce the number of iterations. Our algorithm, named
TurboMap, will be presented in the following three sub-
sections.

3.2. Labd Update with Single K-Cut Computation

In SeqMapll, to compute /ey (v) for a node v, it
is necessary to perform binary search among O(Kn?)

possible values which needs O(log(Kn?)) K-cut com-

putations. In our approach, we compute a tighter

lower-bound 1, (v) with single K-cut computation.
Let £L(v) = max{l(u)—c-w(e) | Ve(u,v) € G, } for a

node v. We update the lower-bound as follows:

/ L(v

b ={ £9.,
Obviously, I/, (v) can be computed with only one K-
cut computation. Recall this result is similar to Lemma
2 in [3] which applys to combinational circuits only.

The correctness of our approach is based on the fact
that lyew(v) < 1., (v) < I°P'(v), or in other words,
I ..(v) is a tighter lower-bound. This is based on
the monotone property of node labels. In a sequen-
tial circuit which has a mapping solution with the re-
timed clock period of no more than ¢, we call the set
of its node labels [°P*(v) is monotone if for any edge

e(u,v) € Gy, 1°P'(v) > 1P (u)—c-w(e). We have that [8]:

if IK-cut h(X, X) < L(v)

otherwise.

Theorem 1 (Monotone Property) In a sequential cir-
cutt which has a mapping solution with the retimed
clock period of no more than c, the labels are mono-
tone. That is, I°P*(v) > 1°P'(u) — ¢ - w(e) for any edge
e(u,v) in the original circuit.

Let one iteration denote the computation process
where [(v) is updated once for every node v (in an
arbitrary order). Based on Theorem 1, we can prove

that [8]:

Theorem 2 For a sequential circuit which has a map-
ping solution with the retimed clock period of no more
than ¢, we have that Iy (v) < 1., (v) < 1°P'(v) at any
iteration.

With the computation of the tighter lower-bound
(v) in our algorithm, we have the following result:

17/1611)
Corollary 1 For a sequential circuit with n nodes and
a target clock period c, the labels of all nodes can be

computed in O(K3n*) time.

Since £K" has O(Kn?) nodes and O(K?Zn?)
edges, to compute lpey(v) in SeqMapIl [13] takes
O(K3n*log(Kn?)) time. To compute X, (v) in Tur-
boMap takes only O(K3n*) time and [, (v) will con-
verge to [°P*(v) with no more iterations than l,e,(v)

need.
3.3. K-Cut Computation in Partial Flow Networks

In this subsection, we present a new approach to

compute I/ . (v) on a partial flow network, which is

much smaller than £X7 but still guarantees the opti-
mal solutions. To check whether I, (v) < L(v) with
the approach in SeqMaplI [13], we need to build the
EKn and construct the corresponding flow network and
then, perform the K-cut computation. In TurboMap,
to check whether 1/, (v) < L(v), we construct the flow
network incrementally without constructing the entire
&K And more important, we construct the flow net-
work just large enough to detect whether a K-cut ex-
ists. Recall that all the previous max-flow computation
based FPGA mapping algorithms [3, 5, 13, 15] build
the entire expanded circuit or the flow network before
the max-flow computation to test the existence of a
K-cut.

The basic idea of our algorithm is that although the
flow network for £K7 is very large, the union of the
first K41 shortest augmenting paths are usually much
smaller as compared to £X™. If we start from 27 to
search for the shortest augmenting paths to the sink,
only a small portion of £X" will be searched. So if we
start from v° and grow the flow network during the K-
cut computation incrementally, the flow network would
be very small as compared with ££7. We call it the
partial flow network.

Now, let us define the critical nodes in the expanded
circuit and the corresponding flow network. For L(v)
based on the current lower-bound, a node u* in the
expanded circuit is critical if [(u) —c-w > L(v). Oth-
erwise, it is not critical. Let £ be the partial flow
network. As shown in Figure 1(c), the edge direction
will be reversed from that in graph G, (shown in Fig-
ure 1(a)). The root v° is the source of & and all the
u® for PIs u in the original circuit will be connected to
the sink ¢.

Initially, we have only the source »° in the partial
flow network. We go from v" along the fanin edges of
v in G, to search for the shortest augmenting paths
to the sink based on the BFS (breadth first search)
search. Suppose u" is the current node. For each fanin
edge e(a,u) in Gy, we create a pair of nodes qutwie)

wHw(e)

and a; if they have not been created before, and

assign edge (avtv(¢), aqf-l_w(e)) with flow capacity oo if
a¥+%(€) is a critical node, or 1 otherwise. Then we con-
nect u¥ to a¥+¥(¢) with flow capacity co. If a is a PI
in the original circuit, we also connect atlu-l_w(e) to the
sink ¢ with flow capacity co. When one shortest aug-
menting path is found, we augment this path and start
from v° again to search another shortest augmenting
path until there is no augmenting path can be found
(in this case, we assign [, (v) = L(v)) or we find the
(K+1)-th augmenting path (in this case, a K-cut does
not exists and we assign /.., (v) = L(v) + 1).

Let us look at the example of constructing the par-

Figure 1. Incremental Construction of the Par-
tial Flow Network with Max-flow Computation.
Default flow capacity is co.

tial flow network for node ¢ in G, shown in Figure 1(a).
The node i is a primary input. Each black bar repre-
sents a flipflop. For K =3 and ¢=1, suppose the labels
1°P*(a) = 1°P*(b) = 1 are known and L(c)=1. We want
to decide whether I,,,,(¢)=L(c) or L(¢)+1. The com-
putation is shown step by step in Figures 1(b,c,d,e,f,g).
At first, we create c? as the source and put it to a FIFO
(first-in-first-out) queue @. Then, getting ¢® from @,
for edges (b,¢),(i,¢) € G, we create nodes b°,i? and
edges (%, %), (", %) with flow capacity oo in the flow
network, and put 6°,42 to Q. In the next two steps,
we will get 6°,i? successively from @ and split them
by adding two more nodes b?,i? and two more edges
(6°,89), (2,4%). Since I(b) —e -0 = L(c) = 1, the flow
capacity of edge (b°,49) is co. The flow capacity of
edge (i?,i%) is 1 as shown in Figure 1(c). As i is a PI,
we add a new edge (i7,1) to the sink ¢ with flow ca-
pacity of co and claim finding one shortest augmenting
path from the source ¢ to the sink ¢. After augment-
ing this path, we clear) and start from ¢° again to
search another path. The residue graph is shown in
Figure 1(d). Since b} was just created in the previous
step, we need to build the fanout edges of 9 and add
two pairs of nodes a°,a} and a',al when BFS search
reachs bY. The new network is shown in Figure 1(e).
In the next step, we will build a? and add two nodes
i,4J as shown in Figure 1(f). Since 7 is a PI, we find
another augmenting path. The new residue graph is
shown in Figure 1(g).

After finding 3 augmenting paths, there is no more
in the residue graph. So the value of max-flow is 3(= K)
and therefore, I/, (¢)=L(c)=1.

) "new

Since we only search the first (K +1) shortest aug-

menting paths, which are usually very short as com-
pared with K'n, the incrementally constructed flow net-
work will be much smaller than ££7. Our experimental
results on MCNC and ISCAS benchmarks show that
the average sizes of the flow networks are always far
less than n for all examples we tested. So practically,
each label update takes only O(K?n) time and O(Kn)
space in TurboMap and, the overall label computation
takes O(K?n?) time and O(Kn) space.

3.4. SCC Partition

A strongly connected component (SCC) of a re-
timing graph G(V, E, W) is a maximal set of vertices
U C V such that for every pair of nodes u and » in
U, we have both paths u ~ v and v ~ u [9]. Since
the node labels are the minimum [/-values which is the
longest path from the PIs to the nodes, the labels of
two nodes u and v are mutual dependent if they are
in one SCC. But if they are in different SCCs, for ex-
ample, suppose u ~ v but v 76 u, the label of v will
dependent on the label of u, but the label of u will not
dependent on the label of v. So the label of u can be
computed before v. The algorithm introduced in [9]
can find all the SCCs and sort them in a topologic or-
der from the PIs to the POs. In TurboMap, the nodes
in one SCC will be labeled together with the iterative
label computation stated in the preceding two subsec-
tions. For different SCCs, the labels will be computed
separately in the topologic order of SCCs from the Pls
to the POs. For one SCC, since the node labels of the
preceding SCCs have been computed beforehand, the
lower-bounds of this SCC will converge to the labels
faster than all the node labels of the preceding SCCs
are unknown. Our results show that with SCC par-
titioning, the computation time of TurboMap can be
reduced by 50% in average.

3.5. Summary of the TurboMap Algorithm

In preceding subsections, we have presented three
strategies to speedup the label computation of Se-
qMaplI algorithm [13]. For each given clock period,
our algorithm named TurboMap, perform SCC parti-
tion at first. Then, for the SCCs in the topologic order
from the Pls to the POs, TurboMap computes the node
labels for each SCC component separately according to
the topological order. For each SCC, a number of la-
bel update iterations are performed. In each iteration,
the efficient label update for each node v with single
K-cut computation on the partial flow network is used

to compute the new lower-bounds I/, .. (v).

To find the minimum clock period, TurboMap per-
forms binary search using the upper-bound of the clock
period computed by FlowMap [3] on each combina-
tional subcircuit independently. After getting the min-
imum clock period, TurboMap will generate the map-
ping solution and then, perform the postprocessing of
LUT-packing [3] and retiming to minimize the number

of flipflops [11].
4. Experimental Results

Our TurboMap algorithm has been implemented in
C language on Sun SPAR stations and incorporated
into SIS package [16]. The test set includes 13 MCNC
FSM benchmarks and 4 ISCAS’89 benchmarks. SIS
sequential synthesis commands and dmig [2] are per-
formed to generate the initial circuits. The results are
shown in Table 2. Column NODE lists the numbers of
nodes (gates+PIs+POs) in the retiming graphs of the
initial circuits. Column FF lists the number of flipflops.

Our tests are performed on a SPARC10 worksta-
tion with 64MB memory. K is set to 5. FlowMap [3]
is performed to get a upper-bound (shown in Column
®ppr in Table 1) of the clock period (®) for each ex-
ample. LUT-packing [3] and retiming [11] are per-
formed as postprocessings to get the final solutions.
Table 1 shows the comparison of TurboMap with Se-
qMapll [13]. SeqMapll has a parameter to set i for £
We choose i = Kn (SeqMaplI-opt, which guarantees the
optimal solution) and i =6 (SeqMapII-heu, which was
used in the experiments by Pan and Liu [13] as a heuris-
tic method), respectively for each example. Note that
both TurboMap and SeqMaplI-opt can get mapping so-
lutions with the optimal clock periods under retiming,
but TurboMap is 2 x 10* times faster. Moreover, Tur-
boMap is more than 2 times faster than SeqMaplI-heu
which may generate the suboptimal solutions*. Com-
pared with SeqMapll-heu, TurboMap produces map-
ping solutions with 7% smaller of the clock periods,
uses 8% fewer FFs and about the same LUTs.

To show the effect of our K-cut computation on par-
tial flow networks, we compare the sizes (in terms of
numbers of nodes) of our flow networks with ££" and
&% which are used in SeqMapllI [13]. The columns with
subscripts maz and avg list the maximum and aver-
age sizes, respectively, of the expanded circuits over
all nodes in each example and generated by each algo-
rithm. For the last four examples, we cannot generate
EX7 due to both time and space limitations. The re-
sults show that the average sizes of our flow networks

4Since SeqMaplII forks a child process to perform the max-
flow computation, the CPU times listed under SeqMaplII include
this portion as well.

circuit TurboMap SeqMapll-opt SeqMaplI-heu

LUT| FF | @ | CPU |LUT [FF]| ® | CPU LUT| FF | @ | CPU Dpyr
bbara 13 9 3 0.5 12 91 3 180.8 19 9 4 2.8 4
dk1h 7 2 1 0.3 7 21 1 155.1 23 3 6 4.6 1
dk16 104 18] 14 11.2 HAk 113 15 14 71.5 14
dk17 8 5 1 0.4 6 31 1 293.0 14 4 4 7.3 2
kirkman 57 17 5 0.7 65| 23| 5| 5373.3 66 22 5 4.8 6
exl 93 16 8 1.6 89 | 24 | 8 | 55653.0 89 24 8 9.1 8
sl 60 7 7 0.9 62 | 12 | 7| 22435.7 62 12 7 12.6 7
sse 52 12 6 0.4 50 | 16 | 6 | 45084 50 16 6 6.6 7
keyb 80 13 9 1.5 89 | 14| 9| 78534.4 89 14 9 17.4 10
styr 173 10 | 16 8.4 Ak 190 16 16 36.6 17
sand 179 36 | 1b 13.8 HAk 211 27 15 96.4 16
planetl 222 26 | 18 20.3 HAk 236 42 18 118.9 19
scf 342 26 | 13 32.5 Ak 343 | 101 13 101.9 14
89234 525 | 238 4| 102.0 HAk 499 | 282 4 226.6 5
sH378 490 | 292 4 92.3 HAk 457 | 280 4 145.1 4
s15850.1 | 1541 | 811 8 | bHl1l.5 R 1525 | 844 8 732.4 8
s38417 3988 | 2552 6 | 4056.8 14002 | 2706 6 | 9599.7 8
total 7934 | 4090 | 138 | 4855.2 — | — | — — | T988 | 4417 | 147 | 11595.1 150
ratio 1 1 1 1 — | — | — — | 1.01| 1.08 | 1.07 2.39 | 1.09

Table 1. Performance comparison between TurboMap and SeqMapll. Entry "***" means no result after

running 24 hours.

are only slightly larger than £5 and 823 times smaller
than £K7. This result, together our efficient label up-
date and SCC partition, give an explanation why Tur-
boMap is significantly faster than SeqMapll-opt and
even 2 times faster than SeqMaplI-heu.

5. Conclusions

We present a new algorithm for technology map-
ping with retiming for optimal clock period as an im-
provement of the SeqMapll algorithm by Pan and Liu
[13]. We showed the monotone property of node labels
and propose an efficient label update with single K-cut
computation based on partial flow networks. SCC par-
tition is used to further speedup the algorithm. The
experimental results show that TurboMap is 2 x 10*
times faster than SeqMapll. In our future work, we
want to develop an efficient algorithm to compute the
initial state of the mapping solution. Also we are in
the process of integrating the TurboMap algorithm into
RASP [7].

6. Acknowledgment

The authors thank very much Professors Peichan
Pan and C. L. Liu for providing SeqMapll program for
the comparative study. The authors also appreciate the
helpful discussion with Mr. Yeanyow Hwang and Mr.
John Peck. This work is partially supported by Beijing
Intergrated Circuit Design Center, National Science
Foundation Young Investigator Award MIP9357582
and grants from Xilinx and AT&T Microelectronics un-
der the California MICRO program.

References

[1] R. K. Brayton, R. Rudell, A. L. Sangiovanni-
Vincentelli, and A. R. Wang. Mis: A multiple-level
logic optimization system. IFEF Tans. on Computer-
Aided Desing, 6(6):1062-1081, 1987.

[2] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and
P. Trajmar. DAG-Map: Graph-based FPGA Technol-
ogy Mapping for Delay Optimization. In IEEFE Design
and Test of Computers, 1992.

[3] J. Cong and Y. Ding. FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization in
Lookup-Table Based FPGA Designs. [FEF Trans.

TurboMap SeqMaplI-opt SeqMaplI-heu
circuit NODE | FF | &nas | Eavg ERn | E(ﬁ’; ES o | E(?w
bbara 34 10 68 37 2226 1734 82 44
dk15 53 2 59 28 2524 2490 61 36
dk16 167 5 380 | 190 49456 47784 196 117
dk17 47 5 94 62 2948 2840 78 49
kirkman 124 5 114 47 9550 8501 77 48
exl 167 5 165 71 32478 31902 149 92
sl 121 5 135 65 15100 13629 124 64
sse 88 4 89 42 9457 9160 108 67
keyb 143 5 161 63 37435 32028 164 91
styr 300 5 252 | 112 | 179268 | 167516 227 123
sand 347 17 220 | 100 | 167164 | 158678 229 116
planetl 374 6 364 | 175 | 198261 | 196171 245 145
scf 597 7 808 | 349 | 447506 | 431549 284 155
$9234.1 1360 | 135 669 | 169 ok ok 101 57
sH378 1587 | 164 439 90 Ak Ak 106 40
s15850.1 4013 | 515 | 1482 | 202 HAk HAk 110 46
838417 9897 | 1464 | 1176 | 133 HAk HAk 119 58
total 19419 | 2359 | 6673 | 1935 — — | 2460 1348
subtotal 2907 | 1341 | 1153373 | 1103982 | 2024 1147
ratio 1 1 396.8 823.3 0.7 0.9

Table 2. Comparison of the sizes of expanded circuits used by TurboMap and SeqMapll. Entry "***"
means no results after running the algorithm for 24 hours.

[10]

on Computer-Aided Design of Integrated Circuits And
Systems, 13(1):1-12, 1994.

J. Cong and Y. Ding. Combinational Logic
Synthesis for SRAM Based Field Programmable
Gate Arrays. ACM Transactions on Design
Automation of FElectronic Systems, 1(2), 1996.
http://www.acm.org/todaes/VIN2/TOC.html.

J. Cong and Y.-Y. Hwang. Simultaneous Depth and
Area Minimization in LUT-Based FPGA Mapping. In
ACM 3rd Int’l Symp. on Field Programmable Gate Ar-
rays, pages 68-74, 1995.

J. Cong and Y.-Y. Hwang. Structural Gate Decom-
position for Depth-Optimal Technology Mapping in
LUT-based FPGA Design. In 38rd ACM/IEEFE De-
sign Automation Conference, pages 726-729, 1996.

J. Cong, J. Peck, and Y. Ding. RASP: A General Logic
Synthesis System for SRAM-based FPGAs. In Proc.
ACM 4th Int’l Symp. on FPGA, pages 137-143, 1996.

J. Cong and C. Wu. An Improved Algorithm for Tech-
nology Mapping with Retiming for Lookup-Table Based
FPGAs. UCLA-CSD 960012, Technique Report, 1996.
T. H. Cormen, C. H. Leiserson, and R. L. Rivest. In-
troduction To Algorithms. The MIT Press, 1990.

C. E. Leiserson and J. B. Saxe. Optimizing Syn-
chronous Systems. In 22nd IFEFE Annual Symposium

[11]

[12]

[13]

[16]

on Foundations of Computer Science, pages 23-36,
1981.

C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6:5-35, 1991.

R. Murgai, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Sequential Synthesis For Table Lookup
Programmable Gate Arrays. In 30th ACM/IEEE De-
sign Automation Conference, pages 224-229, 1993.

P. Pan and C. L. Liu. Optimal Clock Period FPGA
Technology Mapping for Sequential Circuits. In 33th
ACM/IEEE Design Automation Conference, pages
720-725, 1996.

P. Pan and C. L. Liu. private communication. 1996.

P. Pan and C. L. Liu. Technology Mapping of Sequen-
tial Circuits for LUT-based FPGAs for Performance.
In ACM/SIGDA International Symposium on FPGAs,
pages 58—64, 1996.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton,
and A. Sangiovanni-Vincentelli. SIS: A System for Se-

quential Circuit Synthesis. Electronics Research Lab-
oratory, Memorandum No. UCB/ERL M92/41, 1992.

U. Weinmann and W. Rosenstiel. Technology Map-
ping For Sequential Circuits Based On Retiming Tech-
niques. In Proceedings of European Design Automation
Conference, pages 318-323, 1993.

