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ABSTRACT

Multiple clock cycles are needed to cross the global interconnects
for multi-gigahertz designs in nanometer technologies. For syn-
chronous designs, this requires retiming and pipelining on global
interconnects. In this paper, we present a practical solution for si-
multaneous retiming and multilevel global placement for perfor-
mance optimization, based on the theory and algorithms of sequen-
tial timing analysis (Seq-TA). We extend the Seq-TA to handle
gates/clusters with multiple outputs and integrate it into a multilevel
optimization framework for simultaneous retiming and placement.
We also develop two speed-up techniques which enable the Seq-TA
to be efficiently integrated into a simulated annealing-based multi-
level coarse placement for large-scale designs. Experimental re-
sults show that (i) retiming can improve the performance (delay)
by 14% on average when it is applied after placement; (ii) our ap-
proach for simultaneous retiming and placement can outperform
the two-step approach (placement followed by retiming) by 10%
on average in terms of delay minimization.
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1. INTRODUCTION

The International Technology Roadmap for Semiconductors
(ITRS’2002 update) [18] predicts that there will be over ten bil-
lion transistors integrated on a single chip with an on-chip local
clock frequency of 28GHz in the 22nm technology by 2016. It was
shown in [3] that even with the use of new interconnect materials
and aggressive interconnect optimization, the delay of a 2cm global
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interconnect still remains around 500ps. This implies that multi-
cycle communications over the long interconnects are required for
multi-gigahertz synchronous designs.

Retiming is a powerful sequential optimization technique used to
minimize the clock period (delay) or the number of flipflops (FFs)
by relocating the FFs (it changes the netlists) while preserving the
functionality of the circuits [11]. The potential of retiming over
the global interconnects needs to be considered during the global
placement stage, as the placement results define the interconnects.
Given a netlist of the circuit, the existing placement algorithms
place the gates and blocks so that certain objectives, e.g., wire-
length minimization, delay minimization, and routing congestion
minimization, can be achieved. They can not change the netlist of
the circuit. However, the benefit of considering retiming during
the placement stage is significant and can be easily illustrated by
the simple motivational example shown in Figure 1. A circuit G
shown in Figure 1(a) consists of two Pls, I1, I, two POs, O1, O2,
four gates, a, b, c,d, and one flipflop ;. We assume that each
gate has delay of 1, and the interconnect delay between a PI (PO)
and a gate (FF) is zero. The interconnect delay between two gates
(FFs) is marked on the edge connecting them in the figure. Given
Placement 0 of G (shown in Figure 1(a)) with delay of 5, a timing-
driven placer will identify the critical path based on the static tim-
ing analysis and try to minimize the longest path, thus generate
Placement 1 (shown in Figure 1(b)) with delay of 4. After de-
lay minimization retiming is performed on Placement 1 (shown in
Figure 1(c)) by moving flipflop F3 from the fanin of gate a to its
fanouts, the longest path delay is unchanged. On the other hand,
if the placer is aware of retiming possibility along the path from
Ii — F1 — a — d — Oa, it will identify critical paths in terms
of retiming potential and try to short them, thus generate Placement
2 (shown in Figure 1(d)) with path delay of 5. However, after re-
timing is applied on Placement 2 (shown in Figure 1(e)), the delay
can be further reduced to 3. This shows the necessity of consider-
ing retiming during the placement stage in order to hide long inter-
connect latency for performance optimization, because not all the
long interconnects are problematic. Only those long interconnects
which have to be crossed in a single clock cycle are problematic
and should be optimized during the placement stage. In the above
example, path p, = Is — ¢ — d — O3 has to be crossed in a
single clock cycle, while pathp = I1 — F1 — a — d — O2
can be crossed in two clock cycles if retiming is applied. There-
fore path p, is a “bad” interconnect, while path p is not. Although
Placement 1 is better than Placement 2 in terms of delay before
retiming is performed, Placement 2 is better than Placement 1 in
terms of retiming possibility as it leads to better performance after
retiming. The critical path p, (“bad” interconnects) in the retimed
circuit is shortened in Placement 2, while the apparent critical path
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Figure 1: Advantage of simultaneous placement and retiming
for delay minimization

p in the pre-retimed circuit (regarded as “bad” interconnects by the
traditional placers) is shortened in Placement 1.

There are two kinds of approaches, iterative and simultaneous,
for integrating retiming with placement or floorplanning in the
physical design phase. In the iterative approach [21, 13, 14], place-
ment and retiming are alternatively performed until the timing con-
straints are met, that is, wirelength-driven or timing-driven place-
ment is first performed on the given netlist to minimize the total
wirelength and/or delay followed by performing retiming on the
placed circuit based on the layout information. In the simultane-
ous approach [5, 2, 20], placement or floorplanning is performed
in such a way that the placement or floorplanning engine can be
aware of the retiming possibility and thus reduce the lengths of in-
terconnects which are critical in terms of retiming potentials. In
the simultaneous approach, the placer with retiming awareness will
shorten the “bad” interconnects in terms of retiming potential and
thus produce a solution similar to Placement 2 in Figure 1. In the
iterative approach, the traditional timing-driven placer will shorten
the critical path in the pre-retimed circuit and thus produce a solu-
tion similar to Placement 1 in Figure 1. In the iterative approach,
another iteration of placement can be performed in the retimed cir-
cuit (Figure 1(c)) to further shorten path p,.. However, it is not as
efficient as the simultaneous approach which can lead to the best
solution in one round.

Clearly, the simultaneous approach has the advantage of effi-
ciently generating better results. However, the existing simultane-
ous approaches have their limitations. In [2], retiming is integrated
into the floorplanning stage based on the theory that as long as the
target retiming preserves the number of FFs for every loop in a
circuit whose underlying graph is strongly connected, there exists
a valid finite sequence of retiming operations which can reach this
target, thus making the loops become critical in terms of delay min-
imization when pipelining is to be performed afterwards. Edges in
the critical loops are given high weights during the partitioning-
based floorplanning stage to promote clusters of loops within a sin-
gle partition, such that the clock period can be minimized (the clock
period is determined by the ratio of the loop delay to the register
count in the loop). However, in addition to that the complexity
of such method is too high, there may not be enough global in-
terconnects seen by a floorplanner, which could limit the retiming
potentials. In [20] retiming is integrated into a simulated anneal-
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ing (SA)-based placement for FPGA designs. At each tempera-
ture, critical cycle and slack analysis is performed so that the SA-
based placement engine can be aware of the retiming possibility
and thus reduce the lengths of the critical cycles. Their placement
method, however, is based on the flat netlist and may have difficulty
in handling large-scale designs. In [5], sequential timing analysis
(Seq-TA), formerly called RTA, is proposed and integrated with a
multilevel partitioning-based physical planner GEO. By doing that,
GEO can generate results with retiming awareness. However, the
proposed Seq-TA has one limitation — it can not handle gates (or
clusters of gates) with multiple outputs, which makes it difficult
to be directly applied to the multilevel framework. As a result,
in GEO Seq-TA is always performed on the original single-output
gate-level circuits, greatly affecting its efficiency.

In this paper, we present a practical solution for simultaneous re-
timing and multilevel global placement for performance optimiza-
tion. Our contributions are (i) we generalize the Seq-TA to handle
the gates/clusters with multiple outputs; (ii) we integrate retiming
into the multilevel placement framework in order to efficiently han-
dle large-scale designs and provide two speed-up techniques for
Seq-TA to be efficiently integrated with the placement process.

The remainder of this paper is organized as follows. Section 2 re-
views the related work and defines the terminologies. Section 3 de-
scribes the generalized sequential timing analysis for gates/clusters
with multiple outputs. Section 4 describes the overall flow of inte-
gration. The experimental results are shown in Section 5, followed
by the conclusions and ongoing work in Section 6.

2. REVIEW OF RELATED WORK
2.1 Retiming

Retiming is a sequential optimization technique that relocates
the sequential elements in a circuit without changing the behav-
ioral of the circuit. It moves the FFs across the combinational
elements to optimize the clock period, the number of FFs, or
power. In [11] Leiserson and Saxe first proposed a graph-theoretic
model for a synchronous circuit. In this model, a circuit consist-
ing of functional elements and globally clocked registers is trans-
fered to a finite vertex-weighted, edge-weighted directed graph
G =< V,E,d,w >. This graph is called a retiming graph. Ver-
tex v € V corresponds to a functional element in the circuit and
is weighted with its propagation delay d(v). Edge e € E rep-
resents the interconnection between an output of a functional ele-
ment and an input of another functional element, and is weighed
with register count along the connection w(e). Retiming of a cir-
cuit G =< V,E,d,w > is an integer-valued vertex-labeling:
r : V. — Z such that G is transformed to a new graph G, =<
V,E,d,w, >, where the edge weight w, is defined for an edge
u = v by w(e) = w(e) + r(v) — r(u). Retiming a node by
a value of ¢ is an operation that removes ¢ FFs from each fan-out
edge and adds ¢ FFs to each fan-in edge of that node. A circuit
is retimed to a clock period ¢ by a retiming r if (i) w-(e) > 0,
(if) w-(p) > 1 for each path p such that its delay is greater than
¢, where wr(p) = > ., wr(e). The retiming problem for clock
period minimization can be formulated into a Mixed-Integer Linear
Programming (MILP) problem and solved in polynomial time [11].

2.2 c-Retiming

Pan proposed c-retiming [15], a continuous version of retiming
where the value assigned to a vertex can be a real number. To com-
pute a c-retiming for a target clock period ¢, another edge weight
I(e) for an edge u < v is defined as —w(e)¢ + d(v), where d(v)
is the combinational delay of vertex v. The [-value of a node is



defined as the weight of the longest path from the PIs to this node
using the new edge weighting method. In a sequential circuit, if
there is a PO whose [-value is greater than ¢, the circuit can not be
retimed to a clock period of ¢. If, on the other hand, the [-values
of all the POs are not greater than ¢, the circuit can be retimed to
a clock period less than ¢ + K, where K is the maximum gate
delay in the circuit. Because c-retiming can be computed much
more efficiently than retiming and can be converted to a retiming
by a simple rounding, it is combined with other optimization and
synthesis techniques, such as FPGA mapping [17, 7], performance-
driven clustering [16, 4], and partitioning [6], for a tight integration.
Moreover, c-retiming is used as the basis for sequential timing anal-
ysis in the next subsection.

2.3 Sequential Timing Analysis (Seq-TA)

In [5], the concept of sequential timing analysis (formerly called
RTA) was proposed. Similar to the static timing analysis, where
arrival time, required arrival time, and slack are computed such
that the critical paths are identified, sequential arrival time (SAT),
sequential required time (SRT), and sequential slack are computed
based on the concept of c-retiming. SAT of vertex v € V' in terms
of fan-in vertices is defined as

I(v) = max{l(u) — ¢ - w(e) + d(e) + d(v)| u > v,e € E}
Similarly, SRT of v in terms of fan-out vertices is defined as
q(v) = min{q(u) + ¢ - w(e) — d(e) — d(v)| v > u,e € E}

where d(e) is the interconnect delay of edge e. The slack of v,
denoted as s(v), is defined as g(v) — I(v). If the SATs for all POs
are not greater than ¢, then the target delay ¢ is called feasible. A
Bellman-Ford variant shortest path algorithm RTA is proposed to
determine whether the target clock period ¢ is feasible. A binary
search is performed in order to find the minimum feasible clock
period. If ¢ is feasible, based on the SAT and SRT value of the
vertices, the e-network for the given sequential circuit is derived
and used for net weighting during the partitioning phase in GEO.

Obviously, Seq-TA is very helpful for the placers (floorplanners)
because it can identify the critical path with retiming potentials and
let them be aware of it. On one hand, by minimizing those critical
paths, the placer (floorplanner) can achieve further delay reduction
with the anticipation of retiming. On the other hand, retiming is
not required to be performed during the placement (floorplanning),
saving a great deal of runtime.

3. SEQUENTIAL TIMING ANALYSIS FOR
COMPLEX NETWORKS

The first contribution of this work is to extend the sequential
timing analysis for circuits consisting of multi-output gates.

DEFINITION 1. An SO-gate is a combinational gate that has a
single output and a uniform propagation delay.

DEFINITION 2. An MO-gate is a combinational gate that has
multiple outputs and/or non-uniform propagation delays.

DEFINITION 3. A simple network is a circuit network that con-
sists of only SO-gates.

DEFINITION 4. A complex network is a circuit network that
consists of MO-gates and SO-gates.

In reality, the MO-gates correspond to multi-output gates, such
as adders and MUX. In the multilevel optimization scenario, clus-
ters of SO-gates can also be regarded as MO-gates. Previous work
in Seq-TA [5] only works on the simple network.
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Figure 2: SO-gate vs. MO-gate. (a) is an example of a simple
network and (b) is its corresponding retiming graph. (c) is an
example of a complex network by clustering SO-gates into MO-
gates and (d) is its retiming graph.

An example of SO-gates vs. MO-gates is shown in Figure 2. In
Figure 2(a), all the gates have a single output and gate G1, G3 and
G5 have a propagation delay of 1, while gate G2 and G4 have a
propagation delay of 2. Its corresponding retiming graph is shown
in Figure 2(b). When we cluster gate G1, G3, G2, and G4 into
a cluster GO (which can be regarded as an MO-gate), shown in
Figure 2(c), GO has not only multiple outputs but also non-uniform
input-output propagation delays. Its corresponding retiming graph
is shown in Figure 2(d). Obviously, it is necessary to extend the
Seq-TA to the complex network, such that Seq-TA can be integrated
with more optimization processes.

3.1 Generalized c-Retiming

When the MO-gates are combinational logic, i.e., there is no se-
quential logic (FFs) inside, we can generalize the c-retiming for
them. In the retiming graph of a complex network, each gate (with
either a single output or multiple outputs) corresponds to a vertex
with internal edges from its inputs to its outputs according to the
logic dependence. Each PI corresponds to a vertex with zero prop-
agation delay, one input, and one output. Each PO corresponds to a
vertex with zero propagation delay, one input, and one output. An
example is shown in Figure 3. Vertex u corresponds to an MO-
gate which has inputs v}, ub, ..., u’, and outputs u$,u3, ..., uS,.
FO(u}) is defined as the set of outputs of vertex u which are
logically dependent on the input u’, of vertex u. We call output
u?, a reachable-output of input vu?, if u%, € FO(u%). Similarly,
FI(u3,) is defined as the set of inputs of vertex u which can deter-
mine the logic value of output u2, of vertex w. u?, is called a drive-
input of u%, if u%, € FI(u2,). The logic dependence is shown by
the internal edges (the dashed edges in Figure 3) of u. An inter-
nal edge from an input ! to its reachable-output u¢ is denoted as
fT. o, and its delay is denoted as d(f7,_.o,). An edge e of the
retiming graph (called external edge and shown by a solid line in
Figure 3) connects an output of a vertex and an input of another
vertex and its delay is denoted as d(e).

DEFINITION 5. li-value labeling: li-value of a vertex v is the
weight of the longest path from Pls to this vertex using wi weight:
wi(e) = —¢ - w(e) + d(e) + dmax(v), where dmaxz(v) is the
maximum internal edge delays of vertex v. e is an external edge
connecting with v. Each vertex has one l1-value label.

DEFINITION 6. la2-value labeling: l2-value of an output v{ of



Figure 3: Retiming graph of a complex network.

vertex v is the weight of the longest path from all the Pls to this out-
put using ws weight: wa(e, 7, o,) = —¢-w(e) +d(ff, -o0,)+
d(e), where e is an external edge connecting with input v}, ffsﬂot
is an internal edge of v which e connects with via input vs. Each
output of a vertex has one lz-value label.

COROLLARY 1. For any vertex v € V,12(v§) < l1(v), where
v is an output of v.

THEOREM 1. In a sequential circuit with MO-gates, if 3 a PO
Vo, l2(Vo) > ¢, then the circuit can not be retimed to a clock period

of .

THEOREM 2. If V PO v,l1(v) < ¢, then the circuit can be
retimed to a clock period less than ¢+ K, where K is the maximum
input-output delay of all the gates/clusters.

If ¢; is the minimum clock period such that the l>-value labels
of all the POs are not greater than ¢;, then ¢; is the lower bound
of the feasible clock period achieved by retiming. If ¢,, is the min-
imum clock period such that the [;-value labels of all the POs are
not greater than ¢, then ¢, 4+ K is the upper bound of the min-
imum feasible clock period achieved by retiming, where K is the
maximum input-output delay of all the gates/clusters. For the cir-
cuits without MO-gates, [1-value labeling and l2-value labeling are
equivalent and [, -value labeling is equivalent to the SAT defined in
Section 2.3.

Under the scenario of multilevel placement, the netlist of the
original circuit is clustered to form a coarser netlist. Let C be a cir-
cuit which only consists of SO-gates. Let C. be the circuit which
is derived from C' by clustering SO-gates into MO-gates.

THEOREM 3. If the minimum clock period which can be
achieved by retiming on circuit C' is ¢, and the minimum clock
period which can be achieved by retiming on circuit C. is ¢, then

¢ < de.

Due to page limit, we have to omit the proofs for the above the-
ories. Please refer [8] for details.

3.2 Generalized Sequential Timing Analysis

Based on the generalized c-retiming, we can generalize the se-
quential timing analysis for the complex network by using the [>-
value labeling to compute SAT and SRT values for the inputs and
outputs of vertices. We define the SAT for each output v5’ of vertex
v (shown in Figure 4) in the retiming graph G as

SAT(vf) = max{SAT(u?) — - w(e) +d(e) + d(f}, -o,)
| vi € FI(w9),ul 5 vj,e € B}

Similarly, SRT of each input uj of vertex u is defined as

SRT(u}) = min{SRT(v}) + ¢ - w(e) — d(e) — d(f}: -0,)
)

|u§€FO(u§- Jul 5 vie € B}

The edge slack is defined as slack(e)
SAT (u?) where u$ = vi,e € E.

SRT(vi) — d(e) —
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Figure 4: Illustration of generalized SAT and SRT computation

We call the generalized sequential timing analysis Seq-TA-M. If
the SATs of all the PO inputs are not greater than ¢, then the tar-
get clock period ¢ is called feasible under the l»-value labeling.
Though [2-value c-retiming can not be converted to a retiming, it
gives us enough information to catch the critical “sequential path”
that should be minimized during the placement phase such that the
placement solution can produce the best result achieved by retim-
ing. We still use the Bellman-Ford variant shortest path algorithm
to determine whether the target clock period ¢ is feasible under the
l2-value labeling and compute the generalized SAT and SRT for in-
puts and outputs of the vertices, as the RTA algorithm [5] does. We
start with the initialization for the SAT and SRT values. SAT for
all the PI outputs are set to zero while the outputs of other vertices
are set to —oo. SRT for all the PO inputs are set to ¢ while the
inputs of other vertices are set to co. During one iteration of re-
laxation, we visit the vertices and iteratively update SAT and SRT
values of their inputs and outputs. The iteration stops when SATs
and SRTs converge to their maximum and minimum values, re-
spectively, or there is one PO input whose SAT is greater than ¢. A
binary search is performed to find the minimum feasible clock pe-
riod under the l>-value labeling. Based on the Seq-TA-M, we can
identify the e-network which is defined to be a subcircuit consisting
of external edges whose slacks are smaller than or equal to € in the
current placement. The e-network consists of critical interconnects,
in terms of the retiming potential, that deserve attention from the
placement engine for optimization.

4. INTEGRATION OF RETIMING WITH

MULTILEVEL PLACEMENT FRAME-
WORK

The second contribution of our work is to provide a solution for
integrating retiming to a multilevel placement framework and two
speed-up techniques for Seq-TA-M.

The multilevel optimization method is very powerful in solv-
ing problems with high computation complexity. It includes two
phases, a coarsening phase and a refinement phase. We integrate
retiming with a multilevel coarse placement [1] by performing
Seq-TA-M to identify critical nets and assigning higher weights to
them. A simulated annealing-based placement engine minimizes
the weighted wirelength to reduce the length of the critical path
and thus to reduce the delay. The integrated placement algorithm,
called mPG-rt, consists of a bottom-up coarsening phase and a top-
down placement. The overall flow is shown in Figure 5.

During the bottom-up coarsening phase, we build a coarser level
netlist(graph) L* from level L*~* by performing clustering until
we reach level L' where the number of clusters is within a certain
range, so that the SA-based placement can be efficiently performed.
We use the FirstChoice (FC) clustering algorithm [9] as it experi-
mentally generates a better hierarchy for global placement [1]. FFs
are not allowed to be clustered if Seq-TA-M is to be performed at
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Figure 5: Overall flow of mPG-rt

a certain level, because Seq-TA-M can not handle clusters with in-
ternal FFs. We allow FFs to be clustered above level Lk, where k
is a user-defined parameter, for the following reasons: (i) at coarser
levels, the sizes of clusters are fairly large compared to those at the
finer levels. Moving FFs across such huge clusters may not bring
delay reduction, as retiming is an optimization for a fine-granularity
structure; (ii) forbidding FFs to be clustered at all levels may bring
too much constraint in the coarsening phase and thus may cause
bad clustering results and a poor hierarchy for refinement.

During the top-down placement refinement phase, at level L,
where ¢ > k, i.e., FFs may be clustered, we perform static tim-
ing analysis and assign weight to nets according to their criticality
to reduce the longest path delay at the current level. This is help-
ful for reducing the runtime for performing Seq-TA-M at the finer
levels as it brings Seq-TA-M a placement with a decent path de-
lay to start with during the binary search for finding the minimum
feasible clock period. At level L*, where i < k, i.e., FFs are not
clustered, we build a retiming graph and perform Seq-TA-M once
at each temperature, and weight each net according to its criticality
in terms of the retiming potential. Except for the top level, where
a full-scale SA process is performed, the SA process starts from
a low temperature at the following levels to save the runtime [1].
At the finest level, after the SA-based placement is finished, final
retiming is performed and FFs are inserted as proposed in [5]. A
low temperature SA process may be required to legalize the retimed
placement.

4.1 Speed up the Sequential Timing Analysis

Although the Seq-TA-M is polynomial, the complexity can still
be up to O(|V||E|) when determining whether the target delay
is feasible under the l»-labeling and computing SAT and SRT.
Additionally, the binary search for finding the minimum feasible
clock period under the /3-labeling may also be time-consuming.
When we perform Seq-TA-M, we visit the vertices in their pseudo-
topological order, as it is shown in [15], that if we visit the vertices
in the pseudo-topological order, the relaxation will be converged
much faster than one with a random order. Furthermore, we pro-
vide two methods to further speed up the Seq-TA-M process. The
first method is called “single-¢,” that is, instead of doing a binary
search to find the minimum feasible clock period for SAT, SRT
and slack computation, we just use the longest path delay Daqa
of the current placement to calculate the SAT, SRT, and slack. Be-
cause D,q. is the longest path delay of the given placement, it
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circuit #GA #PI | #PO | #FF
$9234 1290 28 39 135
$5378 1443 35 49 163
s13207 3146 59 152 486
s15850 3784 76 150 515
s38584 13209 38 304 | 1423
indl 29780 | 2630 | 3242 603
ind2 26060 | 2772 | 6242 | 1755
ind3 52197 | 2801 | 3070 | 2001
ind4 101531 | 4155 | 4547 | 8333

Table 1: Benchmark circuit characteristics.

is feasible under /5-value labeling. The second method is called
“early abortion,” that is, for each target clock period ¢;, we only
perform £ iterations to determine whether ¢; is feasible. If the SAT
computation can not converge within k iterations, ¢; is regarded as
infeasible, though it may actually be feasible if more iterations are
allowed. By doing that, we can reduce the runtime, though we may
get a less accurate feasible clock period estimation.

4.2 Net Weighting

At each temperature in the SA process, once either static timing
analysis or sequential timing analysis is performed, the criticality
of nets is obtained and transfered to weights on the nets. When
static timing analysis is performed, we use the PATH algorithm
[10] to compute the weights for nets. When the sequential timing
analysis is performed, we use the net weighting methods proposed
in [12, 19] to compute the weight. The delay cost of an edge in the
timing graph (or retiming graph) is the product of the edge delay
and its weight. Delay_Cost is the sum of all the delay costs of
all the edges/connections in the timing graph (or retiming graph).
Wire_Cost is the sum of all the bounding box lengths of the nets.
The overall cost is a weighted sum of Wire_Cost and Delay_Cost
defined as

Wire_Costcvrment
Wire_Costprevious

Delay_Coste“rmemt

Cost = ,
o8 @ Delay_Costprevious

+(1-a)

« is a user defined value which can trade off wirelength with delay.
We set it to 0.5.

S. EXPERIMENTAL RESULTS

We implemented our algorithm mPG-rt in C++/STL and tested
it on a Sun Blade 1000 workstation running at 750MHz frequency.
The benchmark consists of 5 ISCAS circuits and 4 large scale in-
dustrial designs which were used in [5]. " The delay model we used
is the same as that in [5]. > The circuit characteristics are listed in
Table 1.

5.1 Impact of Speedup Techniques of Seq-TA

We tested our two speed-up techniques, “single ¢” and “early
abortion,” for Seq-TA-M on some of the largest circuits on a 8x8
global placement grid. The results are shown in Table 2. For each
circuit we adopted “single ¢” with full relaxation, “early abortion”
with iteration of 5, 15, and 30 and the full relaxation.

From this table it can be seen that using a limited number of
iterations can greatly reduce the runtime with a reasonable quality

!Currently the large-scale placement benchmarks in public domain
are mainly for wirelength-driven placement and are lack of func-
tionality information of the cells/blocks which is required by the
retiming operation.

“We did not compare mPG-rt with GEO because GEO did not con-
sider wirelength minimization and a direct comparison in terms of
wirelength may not be very meaningful.



circuit || single ¢ binary search min. ¢
full early abortion full

relaxation 5 iter. 15 iter. 30 iter. relaxation

dly cpu| dly cpu| dly cpu| dly cpu|dly cpu
s38584| 36 713 36 803| 32 837 32 O9Il| 32 1228
indl || 353 3529|353 3649|353 3916|353 4337|353 4793
ind2 59 3187 59 3367| 54 3654| 46 3927| 46 5343
ind3 || 550 5858|550 5903|550 6378|550 6886|546 14392
ind4 || 102 15818| 102 16714| 106 20265| 102 21474| 95 84316
avg. |[1.10 0.50{1.10 0.53|1.06 0.57[1.02 0.62| 1 1

Table 2: Impact of speedup techniques for Seq-TA-M

circuit || GP delay wirelength runtime(s)
mPG mPG-rt]| mPG [mPG-rf]] mPG [mPG-rt

grid || before | after + +

size |[retiming|retiming| retiming retiming
$9234 || 8x8 34 25 23 415 449 79 163
$5378 || 8x8 24 17 15 486 | 528 97 195
s13207|| 8x8 43 39 33 1422 | 1512 || 289 | 428
s15850|| 8x8 63 48 39 1437 | 1551 314 | 574
$38584|| 8x8 44 43 36 7063 | 7177 || 2387 | 3411
indl |[l6x16|| 348 330 326 || 9719 [10309| 4148 | 9216
ind2 |[l6x16| 51 40 40 9947 10056 4158 | 7200
ind3 |[l6x16|| 588 536 | 500 || 25151 {26936 7801 |14113
ind4 |[l6x16|| 104 101 88 17826 |25246 || 25040 | 38313
avg. 1 0.86 | 0.77 1 1.10 1 1.79

Table 3: Impact of simultaneous retiming and placement

loss. It becomes even more efficient when the circuit size increases.
Therefore in all of our experiments shown in the next subsection we
used the “early abortion” scheme with iteration of 30.

5.2 Impact of Simultaneous Retiming and
Placement

Our multilevel coarse placement can be used as a wirelength-
driven placer when the cost is totally set to be the Wire_Cost (which
is mPG). We ran mPG [1] followed by retiming and a post legaliza-
tion on the global placement. > We also ran mPG-rt followed by the
same post legalization procedure. We compared the results gener-
ated by mPG followed by retiming with those generated by mPG-rt
to show the impact of simultaneous retiming and placement. We
also report the delay of placement results generated by mPG be-
fore retiming to show the impact of retiming on placement. The
comparison results are shown in Table 3.

It can be seen that (i) retiming can improve the performance by
14% on average when it is applied after placement; (ii) our simul-
taneous approach for retiming and placement can outperform the
two-step approach (placement followed by retiming) by 10% on
average in terms of delay with 10% wirelength increase, demon-
strating the necessity of such integration.

6. CONCLUSIONS AND ONGOING WORK

We proposed a practical solution for integrating retiming into the
multilevel global placement for large-scale designs. We extended
the available sequential timing analysis to handle gates/clusters
with multiple outputs, and integrated it into a multilevel SA-based
placement framework for performance optimization. We also pro-
vided two speed-up techniques to enable it to be efficiently inte-
grated into the placement engine. Experimental results show that
such an approach is efficient compared with the two-step approach
(placement followed by retiming). We are currently working on

31t is done by a timing-driven SA-based refinement on the finest
level in the mPG framework.
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large benchmarks to further test our approach, and plan to use a
performance-driven cluster algorithm in the coarsening phase in-
stead of using connectivity-driven clustering algorithms.
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