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Optimal Clock Period Clustering for
Sequential Circuits with Retiming

Peichen Pan, Arvind K. Karandikar, and C. L. Liu,Fellow, IEEE

Abstract—In this paper we consider the problem of clus-
tering sequential circuits subject to a bound on the area of
each cluster, with the objective of minimizing the clock period.
Current algorithms address combinational circuits only, and
treat a sequential circuit as a special case, by removing all
flip-flops (FF’s) and clustering the combinational part of the
sequential circuit. This approach breaks the signal dependencies
and assumes the positions of FF’s are fixed. The positions of
the FF’s in a sequential circuit are in fact dynamic, because
of retiming. As a result, current algorithms can only consider
a small portion of the whole solution space. In this paper, we
present a clustering algorithm that does not segment circuits by
removing FF’s. In additional, it considers the effect of retiming.
The algorithm can produce clustering solutions with the optimal
clock period under the unit delay model. For the general delay
model, it can produce clustering solutions with a clock period
provably close to optimal.

I. INTRODUCTION

CIRCUIT partitioning/clustering is an important aspect of
VLSI design [1]–[3]. It consists of dividing a circuit

into parts, each of which can be implemented as a separate
component (e.g., a chip) that satisfies certain design con-
straints. One such constraint is the area of the component.
The limited area of a component forces the designer to lay out
a circuit on several components. Since crossing components
incurs relatively large delay, such a partitioning could greatly
degrade the performance of a design if not done properly.

There has been a large amount of work done in the area
of circuit partitioning and clustering [4]–[18]. In circuit par-
titioning, the circuit is divided into two (bipartitioning) or
more (multiway partitioning) parts. In circuit clustering, the
circuit is built up cluster by cluster. To partition designs of
large size, bottom-up clustering is often combined with top-
down partitioning. The classical objective of partitioning is to
minimize the cut-size, i.e., the number of nets spanning two
or more parts.
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Fig. 1. Conventional clustering approach.

We consider circuit clustering subject to a bound on the area
of each component, with possible replication of logic, i.e., a
gate may be assigned to more than one component. Following
[19], we refer to each such component as a cluster, and to the
problem as the circuit clustering problem. Our objective is to
minimize the clock period of the clustered circuit. The clock
period of a sequential circuit is defined as the maximum delay
between the FF’s.

Previous work on clustering has mainly focused on com-
binational circuits. Effective heuristics and optimal algorithms
have been proposed [19]–[21]. However, most circuits in prac-
tice are sequential. Clustering algorithms for combinational
circuits can be applied to sequential circuits, by clustering
the combinational logic between the FF’s as was done in
the past [19]. In other words, the FF’s in a sequential circuit
are simply removed to obtain a combinational network. Then
the combinational network is clustered. Finally, the FF’s are
placed back, as indicated in Fig. 1.

For sequential circuits, there is a functionality preserving
transformation known as retiming [22]. Retiming allows a
designer to move the FF’s around within a circuit. The original
purpose of retiming is to minimize the clock period, the
number of FF’s or both, without modifying the structure
of the circuit. Polynomial algorithms for doing so and their
efficient implementations have been proposed in the literature
[22]–[25].

The conventional clustering approach greatly restricts the
solution space that can be explored, since it ignores other
FF configurations that can be obtained using retiming. It also
fails to consider signal dependencies across FF boundaries,
since the logic is segmented into independent pieces after the
removal of the FF’s.

To illustrate the limitations of the conventional approach,
consider the trivial example shown in Fig. 2. For the circuit
in Fig. 2(a), assume the delay of each gate is 1, inter-cluster
delay is 2, and each cluster can accommodate three gates.

Using the conventional method, i.e., removing all FF’s and
then clustering the remaining logic, the solution shown in
Fig. 2(b) is obtained. The dot represents the inter-cluster delay.
As can be seen, the parts of the circuit separated by the FF’s
are clustered individually, and the clustered circuit has a clock
period of 2. Retiming at this stage cannot reduce the clock
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Fig. 2. Disadvantage of removing FF’s during clustering.

(a)

(b)

Fig. 3. Clustering while ignoring the effect of FF’s.

period below this value. However, if the circuit is clustered
with the FF’s and then retimed, the solution shown in Fig. 2(c)
can be obtained. This solution has a clock period of 1.

Ignoring the effect of FF’s while trying to optimally cluster
the combinational logic of a sequential circuit, as the conven-
tional approach does, may not result in the best solution for
the sequential circuit. Consider the circuit shown in Fig. 3(a).
Assuming the delay of each gate is 1, the inter-cluster delay
is 2, and each cluster can accommodate three gates, after
clustering the combinational logic optimally, we obtain the
solution shown in Fig. 3(b). This solution has a clock period
of 8. Retiming can only reduce the clock period to 7, due to
the seven units of delay on the combinational path fromto

On the other hand, consider the clustering solution shown in
Fig. 4(a), which, by the way, is NOT an optimal clustering of

(a)

(b)

Fig. 4. Clustering while considering the effect of FF’s.

the combinational logic. This solution, however has a clock
period of 3, when retiming is applied to it, as shown in
Fig. 4(b).

Thus, the shortfalls of the conventional approach, when
applied to sequential circuits, are obvious. As can be seen
from these examples, if a circuit is segmented by removing
the FF’s, or if the effect of FF’s is ignored while clustering,
an optimal solution may not result.

Observing the shortcomings of the conventional approach,
we propose a sequential clustering approach which does not
segment a circuit by removing FF’s. The approach also takes
into account the effect of FF’s when forming clusters to avoid
cutting critical sequential paths. We further present an efficient
clustering algorithm for the new approach. The clustering
solution produced by the algorithm has the minimum clock
period under the unit delay model, and a clock period provably
close to minimum under the general delay model.

We point out that there are efforts to integrate retiming into
the classical bipartitioning problem [26], [27]. The resulting
problem is obviously NP-hard. Our problem is different in
nature. In fact, under the assumption that delay values are con-
stants, the algorithm proposed in this paper for the clustering
problem has polynomial time complexity.

The rest of this paper is organized as follows. Section II
contains some preliminaries and the problem statement. In
Section III, we introduce the strong clustering problem which
is closely related to the clustering problem. In fact, we will
solve the strong clustering problem to obtain a solution to
the clustering problem. Our algorithm to the strong clustering
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Fig. 5. Retiming a node.

problem is described in details in Section IV. We present some
experimental results in Section V, and conclude with a few
remarks and future research directions in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

We represent a circuit as a directed graph. A node in
the graph represents either a primary input (PI), a primary
output (PO) or a gate, and an edge represents an
interconnection from node to node in the circuit. An edge

has a weight, which is the number of FF’s on the
interconnection. A node has an area and a delay associated
with it. In this paper, we assume delay values are integers. (If
they are not, we can perform scaling and rounding to obtain
integer values arbitrarily close to them.) The clock period of a
circuit is the maximum total delay on the combinational paths
(paths without FF’s) in the circuit.

Retimingis a technique of repositioning the FF’s in a circuit
without altering its functionality. Retiming a node by a value
is an operation of removingFF’s from each fanout edge, and
in the same time addingFF’s to each fanin edge of the node.
Fig. 5 shows the cases in which and 1. In general, all
nodes except the PI’s and the PO’s can be retimed collectively
to arrive at a retiming of the circuit.

A retiming can be represented as a mapping from the
nodes to integers where is the retiming value for node

Note that if is a PI or PO, After applying
retiming the number of FF’s on edge becomes

Given a sequential circuit, a clustered circuit is an equivalent
circuit formed bylegal clusters.A (legal) cluster is a subcircuit
with a total area at most which is a given parameter. The
clustered circuit may contain more than one copy of a node
in the original circuit and the same is true for edges. In other
words, logic may be replicated when forming the clustered
circuit. Retiming is also allowed during clustering to exploit
the whole solution space. It should be noted that a node in
a clustered circuit may differ from the node in the original
circuit in clock cycles due to retiming.

In a clustered circuit, an edge from a node outside a cluster
to a node inside the cluster incurs an inter-cluster delay
which, as is also a given parameter.The clustering problem
addressed in this paper is to find a clustered circuit with the
minimum clock period.We assume each PI or PO forms
a singleton cluster of its own and no inter-cluster delay is
incurred on edges involving its cluster.

In the description above, the underlying delay model is
usually called thegeneral delay modelas the delay values
of the gates can be arbitrary. When all gate delays are zero
and we have the so-calledunit delay model[19].

In practice, a target clock period is usually given and the
objective is to find a clustered circuit with the target clock

period. This leads to the decision version of the clustering
problem:

Problem 1: Given a sequential circuit, and a target clock
period find a clustered circuit with a clock period of if
such a circuit exists.

With a method to solve the decision problem, we can easily
find a clustered circuit with the minimum clock period if it
is so desired, by carrying out binary search on the target
clock period within estimated lower and upper bounds. For
example, the optimal clock period of the original circuit is a
lower bound, and the optimal clock period plus where

is the number of nodes in the original circuit, is an upper
bound as there are at mostclusters in the clustered circuit.

To consider the effect of retiming during clustering, we
generalize theconcept of l-valuesintroduced in [28] and use
l-values as an indirect way to consider retiming. For this
we introduce another set of weights on the edges in the
circuit (graph). For each edge the second weight

where is the number of FF’s on
and is the delay of The -value of a node is defined

as the weight of the longest paths from the PI’s to the node
using weight. One useful property of l-values is that the
l-values of the PO’s are an invariant with respect to retiming,
as stated in the following result:

Lemma 1: If a circuit is obtained from another one by
retiming, then the l-values of the corresponding PO’s in both
circuits are the same.

Proof: Actually the following stronger statement holds:
Suppose circuit is obtained by applying retiming to

For any path from a node to a node the difference
of the weights of in and is

For each edge its weight in is
With this formula,

the above statement is obvious. Since if is a PI or
PO, the lemma follows from the statement.

Finally, we list a few additional notations. We will use
to denote the circuit to be clustered throughout the rest of this
paper. A node is an input to a cluster if the node is not in the
cluster, but is connected to at least one node in the cluster. For
each node in we use to denote the delay incurred
on all edges starting at and going into the same cluster, so
it is zero if is a PI or the cluster is a PO, otherwise it is
For any two nodes and in we use to denote
the weight of the longest paths fromto using weights.

III. T RANSFORMING THE CLUSTERING PROBLEM

Dealing directly with the clock period during clustering
proves to be difficult since we do not have the clustered circuit
before clustering is complete. In this section, we introduce the
so-calledstrong clustering problemwhose objective is stated
in terms of l-values. Our approach to the clustering problem
is to solve the strong clustering problem. We also identify
a subset of clustered circuits such that it suffices for us to
consider only clustered circuits in the subset to find a solution
to the strong clustering problem.

First we state an important property of l-values whose proof
is given in the appendix.
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Theorem 1: In a sequential circuit, if there is a PO whose
l-value is greater than the circuit cannot be retimed to a
clock period of If, on the other hand, the l-values of all
PO’s are less than or equal to the circuit can be retimed
to a clock period less than where is the maximum
gate delay in the circuit.

This result shows a close tie between retiming and l-values.
In fact, l-values can be viewed as a sequential version of
arrival times commonly used in combinational circuits. To
check whether the target clock periodis achievable, we can
simply examine the l-values of the PO’s. This leads us to the
following problem:

Problem 2 (Strong Clustering Problem):Given a positive
integer find a clustered circuit such that the l-values of
the PO’s in the clustered circuit are less than or equal to

If there is no solution to the strong clustering problem, from
Theorem 1 there is no clustered circuit with a clock period of

On the other hand, if a clustered circuit is a solution to
the strong clustering problem, the circuit can be retimed to a
clock period less than plus the maximum of and the largest
gate delay in In the special case of unit-delay model, the
clustered circuit can actually be retimed to a clock period of
Therefore, instead of studying Problem 1, we study the strong
clustering problem. We will present an efficient algorithm to
the strong clustering problem.

In solving the strong clustering problem, we restrict the
search space while making sure at least one of the solutions to
the problem is in the restricted space. We focus on clustered
circuits that satisfy the following four conditions:

1) Each cluster has one output.If there is a cluster with
more than one output, we can replicate the cluster
enough times so that each copy of the cluster has only
one output. This transformation does not change the l-
values of any node in the clustered circuit. It, of course,
may increase the number of clusters and the amount
of logic replication. We can overcome this problem by
a post-processing step to merge the clusters. We will
refer to a cluster with the output coming from node
a cluster at

2) The retiming value at each node in the clustered circuit
is zero.That is, we only consider the clustered circuits
that do not involve retiming. This requirement does not
exclude all solutions to the strong clustering problem.
Consider an arbitrary clustered circuit. If there is a node
in the clustered circuit with a retiming value we
retime the node one more time by a value equal to
This additional retiming step cancels out the existing
retiming at the node and makes the net retiming value
at the node zero. From Lemma 1, the l-values of the
PO’s of the clustered circuit are kept the same after
the additional retiming. Therefore, if the initial clustered
circuit is a solution to the strong clustering problem,
so is the retimed one. Thus, if the strong clustering
problem has a solution, it has one that satisfies this
requirement. Since there is no retiming at each node,
in such a clustered circuit, each node is functionally the
same as the corresponding node inand each edge has
the same number of FF’s as the corresponding edge in

As a result, all copies of the same node in are
functionally equivalent in the clustered circuit, and the
edges fanning out of these copies can be redistributed
among the copies without changing the functionality of
the clustered circuit. This property will be utilized in
discussing the next two requirements.

3) For each node in there is at most one cluster at
the node.Suppose in has several clusters in the
clustered circuit. We modify the clustered circuit by
removing all such clusters except one with the smallest
l-value at the output. Then we redirect all edges coming
from these clusters so that they come from the output
of the only remaining cluster at This modification
preserves functionality as the outputs of all clusters at
are equivalent. Moreover, it does not increase the l-value
of any node. Thus, if the clustered circuit is a solution
to the strong clustering problem, so is the modified one.

4) If the cluster at is connected to nodes in the cluster
at then the cluster at does not contain a copy of

Suppose the cluster at contains a copy of If
in the clustered circuit, the l-value of exceeds the l-
value of by an amount larger than or equal to
we remove and redirect all edges coming out of so
that they come from On the other hand, if the l-value
of is less than the l-value of plus we redirect
all edges from to nodes in the cluster atso that they
come from In either case, none of the l-values in the
clustered circuit is increased.

A clustered circuit that satisfies all the above four require-
ments will be referred to as asimple clustered circuit.Based
on the above analysis, we have the following result:

Theorem 2: If the strong clustering problem has a solution,
it has a simple solution.

Because of this result, we only consider simple clustered
circuits in solving the strong clustering problem. Simple
clustered circuits are well-behaved and have the following
useful property which may not be true for nonsimple ones:

Lemma 2: Let be a simple clustered circuit. If is a
cluster at a node in then

is an input to

where denotes the l-value of node in
Proof: Let be a path from a PI to in and be the

node in that is an input to separates into two segments
and where is the segment from to and is the

rest. Then,
Thus,

is an input to
We next show for any input

to For a path from to in the original circuit with
weight equal to consider the corresponding path in

Since is simple, the path must originate from Thus,
the path must cross Hence,

IV. A N ALGORITHM FOR THESTRONG CLUSTERING PROBLEM

In this section, we present an efficient algorithm for the
strong clustering problem. The algorithm has two phases. In
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Fig. 6. Outline of the labeling procedure.

the first phase, for each node in a label and a corresponding
cluster are computed.The label we wish to compute is the mini-
mum l-value of the node in all simple clustered circuits ofIf
the labeling phase stops successfully, the algorithm goes to the
second phase to generate a solution by connecting the clusters
computed in the first phase. In this section, we first describe
the two phases. Then we analyze the time complexity of the
algorithm and point out a few enhancements to the algorithm.

A. Computing the Labels

Due to the presence of loops, there are cyclic dependencies
among the labels. Our approach to overcome this difficulty
is to maintain a lower bound on the label of each node and
successively tighten the lower bound.

Initially, the lower bounds of all nodes are set to
except for the PI’s, whose lower bounds are always zero. In
general, a certain number of iterations are needed for the lower
bounds to reach the respective labels. We useto denote
the number of iterations. For now, we assumeis large
enough so that either all lower bounds settle down or one
of the PO’s is found to have a lower bound larger thanWe
will present an estimate for later. If the lower bound for
a PO exceeds as will be shown later, there is no solution
to the strong clustering problem and the labeling procedure
terminates with a return value FAILURE. Fig. 6 shows an
outline of the labeling procedure, where TIGHTENBOUND is
the routine that tightens or improves the lower bound for a
given node. Each time TIGHTENBOUND is called, it returns the
improved lower bound and an associated legal cluster.

We now introduce the procedure TIGHTENBOUND. To make
sure the lower bounds approach the labels from below, we
increase each lower bound only by an amount that is absolutely
necessary, based on the current lower bounds for all nodes.
Namely, we minimize the new lower bound for each node.
Suppose we are to improve the lower bound forFor each
node in we calculate a value as follows:

(1)

where is the current lower bound for node

Fig. 7. Computing the improved lower bound.

If is an input to a cluster at then the new bound for
is at least for this is the case in a simple clustered

circuit (Lemma 2). Remember that we want to minimize the
new lower bound. We set the new lower bound to be the value
given by the following formula:

a cluster at
is an input to

Obviously, the new bound is equal to one of thevalues.
To find this value, we sort the values of the nodes in
into a list and do a binary search on the list. The main step
is, then, solving the following problem:

Problem 3: Given an integer determine whether there is
a legal cluster at such that the value of each input to the
cluster is at most

To solve Problem 3, we form a cluster at as follows:
All nodes having an value less than or equal to are
removed from and is composed of all nodes that still
have a path to Intuitively, consists of all gates that
must be inside a cluster atsince they have a path tothat
cannot cross clusters.

Lemma 3: Problem 3 has a positive answer iff is a
legal cluster and does not contain a PI.

Proof: By construction, each input to is a
removed node and has a value less than or equal to
Since it is a legal cluster, is a solution to Problem 3.

It suffices to show that any cluster that is a solution to
Problem 3 must contain We prove this by contradiction.
Suppose is in but not in Since is in there
exists a path from to such that every node in has a
value larger than must cross for otherwise would be
in This means has an input with an value larger than

which contradicts the assumption that is a solution to
Problem 3.

Based on Lemma 3 we can carry out binary search on the
list of values to determine the improved lower bound for
Fig. 7 summarizes the procedure TIGHTENBOUND

We now use the circuit in Fig. 8 to illustrate the labeling
procedure. For this example, the cluster area, inter-cluster
delay and target clock period are assumed to be 2 units, and
the area and delay of each gate are assumed to be one unit.
The table in Fig. 8 shows the all-pairs matrixfor the circuit.
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Fig. 8 A circuit and its all-pairs matrix for� = 2:

(a) (b)

Fig. 9. Final clusters for the example.

Initially,
Suppose we tighten the lower bounds for in this order.
After the second iteration, the lower bounds become

Consider the third
iteration of the procedure LABEL.

For node

The new lower bound for is still 1. To form the corre-
sponding cluster, both and are removed, so the resulting
cluster is as shown in Fig. 9(a).

For node

The new lower bound for is still 2, and the corresponding
cluster is formed by removing and as shown in
Fig. 9(b).

For node

The new lower bound for is still 1, and the corresponding
cluster is formed by removing and as shown in
Fig. 9(c).

For the PO (Note that since
each PO forms a cluster by itself, its lower bound is always
that of the gate that generates the output, plus theweight

of the edge leading to the PO.) Since no change in the bounds
is encountered, the labeling procedure comes to a halt.

Lemma 4: (1) For any node is nondecreasing from
iteration to iteration. (2) After the labeling procedure stops
with SUCCESS, is an
input to

Proof: Using induction on the number of calls to
TIGHTENBOUND, it is easy to show which
obviously implies statement (1).

Suppose the labeling procedure stops with SUCCESS. Con-
sider the last iteration in the procedure. For each nodesince

and changed FALSE, we have,
Right after the call to TIGHTENBOUND

is an input to Since no changes
in any lower bounds thereafter, this relation holds when the
procedure stops.

Lemma 5: Let be the l-value of a node in a simple
clustered circuit. Then,

Proof: We prove the statement by induction on the
number of times TIGHTENBOUND has been called. At the
beginning of the algorithm, with the initial values of the lower
bounds the statement is obviously true. Suppose it is true right
before a call to TIGHTENBOUND After the call only the
lower bound for may be changed, so all we need is to show
the new lower bound for is still less than or equal to

Let be the cluster at in the simple clustered circuit.
From Lemma 2, we have is
an input to Thus

is an input to

is an input to

is an input to

The labeling procedure returns FAILURE if there is a PO
whose lower bound exceeds which according to Lemma
5, implies that the l-value of that PO in any simple clustered
circuit exceeds This means the strong clustering problem
has no solution. Thus, we have the following result:

Lemma 6: If the labeling procedure returns FAILURE, the
strong clustering problem has no solution.

B. Generating a Clustered Circuit

After the successful completion of the labeling procedure,
we also have a cluster for each node, in addition to the label,
i.e., the final lower bound. In this phase of the algorithm, we
construct a solution for the strong clustering problem. This
is done by connecting the clusters together. If nodeis an
input to the cluster at node the output of the cluster at is
connected to each node thatis supposed to be connected to in
the cluster at and the number of FF’s on each connection is
kept the same as that on the corresponding connection inIn
general, some clusters are redundant in that their outputs have
no path to the PO’s. After all connections are made, we remove
the redundant clusters by tracing the clustered circuit backward
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(a)

(b)

Fig. 10. (a) Initial clustered circuit; (b) retimed one with a clock period of 2.

from the PO’s, and deleting all clusters not encountered. Let
the resulting circuit be For example, Fig. 10(a) shows the
solution for the circuit in Fig. 8 constructed using the clusters
in Fig. 9.

Lemma 7: If is the output of a cluster in the l-value
of in is less than or equal to the final lower bound for

Proof: Let be the final lower bound for and
be the corresponding cluster at It suffices to show is
larger than or equal to the total weight of for
any path from a PI to in We prove this by induction
on the number of cut edges on

For the base case thatcontains no cut edge, must be a
PI (since we assume each PI forms a cluster of its own), so
the statement is trivially true.

Now assume the statement is true for any path with cut
edges. Suppose there arecut edges on Let be the node in

that is an input to the cluster at separates into two
segments and where is the segment from to and

is the rest. Then,
From the induction assumption,

Therefore,

is an input to

(Lemma 4

Note that the final lower bound for each PO is less than or
equal to Hence the l-value of each PO in is less than
or equal to according to Lemma 7. Combining this with
Lemma 6, we have have the following result which asserts the
correctness of our algorithm.

Theorem 3: If the labeling procedure returns FAILURE,
there is no solution to the strong clustering problem. If, on the
other hand, the procedure return SUCCESS,is a solution to
the strong clustering problem.

To obtain a solution to Problem 1, we optimally retime
Let denote the retimed circuit. Combining Theorems 1 and
3, we have the following result:

Theorem 4: If the labeling procedure returns FAILURE,
there is no clustered circuit with a clock period of On the
other hand, if the procedure return SUCCESS,has a clock
period less than where is the maximum of the gate
delays and

For the unit delay model, where and each gate delay
is zero [20], we have that the clock period of is less than

which implies the clock period is less than or equal to
since is an integer. Thus,

Corollary 1: For the unit delay model, has a clock
period less than or equal to if the labeling procedure return
SUCCESS.

For the clustered circuit in Fig. 10(a), after retiming we
obtain the clustered circuit in Fig. 10(b), which meets the
target clock period 2.

C. Time Complexity and Improvements

In this section, we determine the time complexity of the
labeling procedure as it is the most time consuming step in the
algorithm. In the following, we will use and to denote
the number of nodes and number of edges inrespectively.

We first determine the number of iterations needed in the
labeling procedure. For this, we modify the labeling procedure
by setting the initial lower bound for each node to its l-value
in since the l-value of any node in any simple clustered
circuit is obviously larger than or equal to the l-value of the
node in

Consider the clustered circuit generated by our algorithm.
Any simple path can cross clusters at most times
as has at most clusters. As a result, the l-value of
any node in is larger than the l-value of the node in

by at most During each iteration before the
labeling procedure stops, at least one of the lower bounds
is increased. After at most iterations, all lower
bounds must reach their maximum possible values. Thus, we
can set to in the labeling procedure. If there
are still unsettled lower bounds after iterations,

does not exist, which means the target clock period is
not achievable. In this case, the procedure simply stops by
returning FAILURE.

Given the l-values of the nodes in can be determined
in time using Bellman-Ford algorithm, and the all-
pairs matrix can be calculated in time
[29]. (Note that longest paths become shortest paths if we
negate the edge weights.) In TIGHTENBOUND, searching the
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Fig. 11. Cluster reduction.

list of values and determining the corresponding cluster
take time TIGHTENBOUND is called at most

times at each node. Hence the time cost of the labeling
procedure is in the worst case. This worst-
case scenario is unlikely to occur in practice as the estimate
of is obviously very loose. We also have several methods
to improve the running time, as discussed next.

One area for improvement is in TIGHTENBOUND, which
tightens the lower bound for Noticing that only those nodes
that have a path to can be in the cluster we only
consider those nodes in determining the improved bound.

If T IGHTENBOUND is called with a particular order of the
nodes, the number of iterations can be reduced significantly.
An effective ordering is obtained as follows. A set of nodes
are selected to break all cycles in A topological order is
obtained for the remaining nodes. We then append the removed
nodes at the end of the topological order to generate an order of
all nodes in The intuition here is to tighten the lower bounds
of the fanins of a node before the node itself. Obviously, this
is not possible for all nodes in the circuit if there are feedback
loops. The proposed order makes sure that this is the case for
most of the nodes. In our experiment, we observed that either
the lower bounds settle down, or a PO with a lower bound
larger than is found in a very small number of iterations
when TIGHTENBOUND is called in this order.

D. Cluster and Replication Reduction

In the previous discussion, we assume each cluster has one
output. If this assumption is relaxed, a post-processing step can
be added to reduce the number of clusters, without increasing
the l-values of the PO’s. For this, techniques similar to those
in [19] can be used. For example, if the l-value of a node

in its own cluster is equal to the l-value of a copy of the
node in another cluster, the entire cluster atcan be removed,
and replaced by the copy. As an example, for the circuit in
Fig. 10(a), the l-value of the in the cluster at is 1, the
same as the l-value of thein its own cluster. Hence, we can
remove the cluster at and replace it with the in the cluster
at After the reduction, we obtain the clustered circuit in
Fig. 11. This circuit can also be retimed to the target clock
period 2.

Replicated nodes can also be reduced, as follows. If the l-
values of two copies of the node differ by an amount greater
than or equal to the inter-cluster delay then the output

of the copy with the smaller l-value can replace the copy
with the larger l-value. This does not increase the l-values
of any nodes. Also, we have observed that there are only a
few “critical paths” that make one or more of the PO’s with l-
values close or equal to For nodes on noncritical paths, there
are slacks available and their l-values need not be minimum.
This property can also be used to further remove replicated
nodes while keeping the l-values of the PO’s to be less than
or equal to Once this reduction of replicated nodes is carried
out, there may be clusters that are not completely filled. We
can merge some of the clusters, provided that the area bound
is not exceeded.

Several techniques were proposed to guide the cluster
merging for combinational circuits in [19]. Similar ideas apply
here except that l-values are used in place of combinational
path delays. We follow a two-stage strategy. In the first stage,
we search for clusters which contain copies of the same node.
If these clusters are merged, all such copies in the resulting
cluster could potentially be replaced by the copy with the
smallest l-value. Note that the previous condition that require
the l-values to differ by an amount greater than or equal to
the inter-cluster delay can now be relaxed, since the nodes
being replaced are now in the same cluster. Two clusters are
mergeable if their combined area (after the replicated copies
have been removed) does not exceed the area bound.

In the next stage, the remaining clusters are simply merged
such that the area bound is not violated. When there are
choices, we select “strongly connected” clusters to merge.
The reason for doing this is as follows. Merging clusters
that have edges between them results in removing inter-
cluster delays between the clusters. This could potentially
reduce the l-values of all nodes downstream of these nodes.
It may now be possible to replace nodes that previously
could not be replaced. Hence, we follow this merging step by
recalculating the l-values of the nodes. We then iterate between
replacing copies and merging clusters till no further reduction
is possible.

V. EXPERIMENTAL RESULTS

We implemented the clustering algorithm proposed in this
paper, and carried out some experiments. In this section, we
describe our experiments and summarize the results.

The test examples come from the sequential circuits in the
ISCAS 89 suite. In our experiments, we set the area and delay
of each gate to one unit and the inter-cluster delay to two units.

For each circuit, we tested three area bounds:is 5, 10,
and 20% of the number of gates. The results obtained are
summarized in Table I, where column lists the minimum
clock period, column lists the number of gates, and column

lists the number of clusters in the clustered circuit. The
final column lists the largest CPU time among the three area
bounds for a given target clock period on an UltraSPARC 2
workstation.

From the table it can be seen that overall our algorithm
obtains optimal clock period clustering solutions with reason-
able area overhead. As the cluster size increases, there is more
freedom in assigning gates to clusters. The results in the table
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TABLE I
EXPERIMENTAL RESULTS

show that our algorithm can automatically detect and utilize
this freedom, to produce clustered circuits with decreasing
clock periods.

When the area bound is 10% of the number of gates, the
clock period of the clustered circuit obtained by our algorithm
is very close to the optimal clock period of the original circuit,
which can also be viewed as a clustered circuit withequal
to the number of gates. This shows the effectiveness of our
algorithm in avoiding cutting sequential critical paths as 10%
is still a small fraction of the size of the circuit.

VI. CONCLUSIONS

Circuit clustering is an important step in the design of VLSI
circuits. The solution formed at this step greatly influences the
quality of the final design. We have developed a clustering
algorithm for sequential circuits that incorporates retiming.
The clock period of the solution obtained by our algorithm
is optimal for the unit delay model, and provably close to
optimal for the general delay model.

We are currently working to improve the algorithm by
further reducing the running time and the replicated logic.
We are also looking into the clustering problem with other
constraints such as pin count.

Another direction for further research concerns classical
circuit partitioning. If the effect on the clock period is not
taken into account during partitioning, a critical path may be
cut a large number of times. We are investigating ways to
balance clock period and cut-size.

APPENDIX

PROOF OF THEOREM 1

Let denote the circuit. We use and to
denote the weight, weight, and the total delay of a path

in respectively. Let denote the l-value of nodein
(if) Suppose there is a POsuch that Let be a

path from a PI to such that Then,
or To have a clock

period of on there must be FF’s
on by pigeonhole principle. This is obviously impossible
since retiming cannot change the number of FF’s on any path
from a PI to a PO.

(only if) Let be the following retiming:

is a PI or a PO

otherwise

and denote the circuit obtained by retiming according
to We claim has a clock period of

First, we verify that is a legal retiming. That is, the number
of FF’s on any edge in the retimed circuit is nonnegative.
Consider an edge We have,

There are four cases depending on whether
and are gates, PO’s, or PI’s. All the case can be proved

similarly. Here we show the case thatis a gate and is a
PO. In this case, we have so

Dividing both sides by and taking the ceiling, we
have
After rewriting, we have the number of FF’s onafter the
retiming is

To show the retimed has a clock period less than
we need to show that for any pathsuch that
there is at least one FF on it. Let the first and last nodes of
be and respectively. Then,

Dividing both sides by and taking the ceiling, we have,

Thus, the number of FF’s on in
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