
The Impact of Pipelining on Energy per Operation in
Field-Programmable Gate Arrays

Steven J.E. Wilton1, Su-Shin Ang2 and Wayne Luk2

1Dept. of Electrical and Computer Eng.
University of British Columbia

Vancouver, B.C., Canada

2Department of Computing
Imperial College
London, England

Abstract. This paper investigates experimentally the quantitative impact of
pipelining on energy per operation for two representative FPGA devices: a
0.13µm CMOS high density/high speed FPGA (Altera Stratix EP1S40), and a
0.18µm CMOS low-cost FPGA (Xilinx XC2S200). The results are obtained by
both measurements and execution of vendor-supplied tools for power
estimation. It is found that pipelining can reduce the amount of energy per
operation by between 40% and 90%. Further reduction in energy consumption
can be achieved by power-aware clustering, although the effect becomes less
pronounced for circuits with a large number of pipeline stages.

1. Introduction

Energy consumption has become a critical concern for Field-Programmable Gate
Arrays (FPGAs). The programmability of FPGAs is afforded through the use of long
routing tracks and programmable switches laden with parasitic capacitance. During
high-speed operation, the switching of these tracks causes significant power
dissipation. Hence an FPGA can consume up to two orders of magnitude more power
than an Application-specific Integrated Circuit (ASIC) in the same technology [22].

FPGA power consumption can be reduced by optimizing the architecture of the
programmable fabric or the Computer-Aided Design (CAD) algorithms used to map
circuits onto the FPGA. Previous work has proposed CAD algorithms that optimize
circuit implementations in an attempt to minimize energy, and achieve energy
reductions of approximately 23% [10]. This improvement is unlikely to be sufficient
to enable FPGA-based hand-held devices, or to significantly reduce the cost of
expensive packaging. Significant gains are only possible at the algorithm or system
design level. During algorithm or system design, the designer has considerable
freedom regarding resource allocation and scheduling; correct decisions here are
likely to result in a much larger impact on energy and power consumption than
optimizations performed by logic optimization or physical design CAD tools.

One of the simplest but effective ways of reducing the energy per operation of a
circuit is pipelining. A highly pipelined circuit suffers fewer glitches than an
unpipelined circuit, since it typically has fewer logic levels between registers. Fewer

glitches means that less dynamic power is dissipated during each cycle, which reduces
the energy per operation.

The ability of pipelining to reduce glitches in ASICs is well-known [15]. In an
FPGA, pipelining may be even more effective. Unlike an ASIC, in which signals can
be routed using any available silicon, FPGAs implement interconnects using fixed
metal tracks and programmable switches. The relative scarcity of programmable
switches often forces signals to take longer routes than would be seen in an ASIC or
custom integrated circuit. As a result, the potential for unequal delays among signals,
and hence the creation of glitches, is likely more than that in an ASIC. Thus, we
would expect pipelining to be an effective energy reduction technique for FPGAs.

Another reason that pipelining should work well in FPGAs is that commercial
FPGAs contain one or more flip-flops in every logic block. These flip-flops often go
unused. Thus, the additional flip-flops required for pipelining are usually “free” in an
FPGA. On the other hand, FPGA clock trees are large and consume significant
power; pipelining places further demands on the clock tree.

In this paper, we investigate the effectiveness of pipelining on the energy of FPGA
circuit implementations, and compare it to the energy improvements that can be
obtained by lower-level, power-aware synthesis algorithms. Specifically,

1. we present quantitative measurements of the impact of pipelining on the energy per

operation consumed by datapath circuits in both a 0.13µm CMOS high
density/speed FPGA and a 0.18µm CMOS low-cost FPGA;

2. we approximate the best possible gains that can be obtained by pipelining/retiming
by considering circuits with registers after every logic element;

3. we investigate the interaction between pipelining (a system-level design
optimization) and clustering (a lower-level design optimization), and determine
how the degree of pipelining affects the effectiveness of the lower-level CAD
algorithms in reducing energy.

The results of this study are important for four reasons. First, they provide guidance
to a system designer designing FPGA circuits for a low-power application. As we
will show, pipelining can reduce the energy per operation by 40% to 90%; this is the
kind of reduction needed if FPGAs are to be used in handheld applications. Second,
the results provide guidance to FPGA CAD designers by quantifying the effectiveness
of high-level and low-level energy optimizations. As we will show in the next
section, there has been significant research into power-aware retiming and other
related algorithms; our results give an indication of how useful these optimizations
can be at reducing energy. Third, pipelining also reduces the time for design tools to
estimate power consumption; current vendor tools can take an excessive amount of
time for power estimation when dealing with designs with a low degree of pipelining.
Finally, there has been work on placing pipeline registers within the interconnect
fabric of an FPGA [17]. Our results suggest that, in addition to increasing the clock
rate, these registers will also be effective at reducing energy.

2. Preliminaries

Power consumption for circuits in CMOS technology has a static component and a
dynamic component. The static power component is mainly due to leakage current.
The dynamic power component is mainly due to switching activities for charging and
discharging load capacitance. Although static power is becoming increasingly
significant, dynamic power still dominates, even in a 0.13µm technology.

It is well-known that undesirable switching activities are usually caused by
glitches: spurious pulses at the output of a combinational component due to input
signals arriving at different times because of unequal input propagation delays.
Techniques have been proposed to reduce such glitches, for instance by restructuring
multiplexer networks and inserting selective delays [15], by logic decomposition
based on glitch counting and location [4], and by selective gate freezing [1].

Several researchers have applied retiming for power and energy optimization. For
example, different pipelined designs can be obtained by adding flip-flops to circuit
inputs; such flip-flops can then be relocated by the retiming algorithm to reduce
combinational path length and the associated switching activities [13]. Retiming can
be combined with supply voltage scaling [3] and with register disabling [6].

Other techniques for reducing switching activities, including loop folding [8] and
finite state machine decomposition [14], have also been studied. In addition, the effect
of high-level compiler optimizations on system power has been investigated [7].

The power and energy optimizations described above are not developed
specifically for FPGAs. FPGA-specific optimization schemes have also been reported.
These include boolean optimization of multiple lookup tables [9], perturbation-based
word-length optimization [5], implementation of critical loops in configurable logic
[19], empirical energy modeling based on surface-curve fitting [16], and combination
of power-aware CAD algorithms such as technology mapping and clustering [10].

Many of these optimization techniques rely on the reduction of switching activity
by the insertion of registers. Yet the effectiveness of doing this in a modern FPGA
has not been quantified. Our work, therefore, is orthogonal to these previous studies,
since most of the previous studies rely on a significant improvement in power as a
result of glitch reduction. In our work, we quantify what sort of reduction is possible.

The effect of pipeline granularity on reducing power consumption has been
examined for Xilinx XC3000 [2], XC4000 and Virtex devices [20]; it is shown that
glitch power reduction compensates the synchronization overheads due to pipelining
in these small circuits. Our work is different from these previous studies in several
ways. First, we consider FPGAs fabricated in modern including a 0.13µm CMOS
technology; the power characteristics of integrated circuits implemented using these
technologies are very different from those of integrated circuits implemented using
older technologies. Second, we consider the pipeline-aware reductions in the context
of an entire CAD flow, and examine the interactions between pipelining (a system-
level optimization) and clustering, a lower-level power-optimization stage that has
been shown to be effective at reducing power.

3. Impact of Pipelining

In this section, we quantify the impact of pipelining on FPGA implementations, first
for a high speed and high density 0.13µm CMOS FPGA, and then for a low-cost
0.18µm CMOS FPGA.

3.1 Experimental Methodology

We employ an experimental methodology to investigate pipelining in FPGAs. We
use four benchmark circuits; for each circuit, we create several versions, each with a
different degree of pipelining. For some circuits, we add pipeline stages by modifying
the original hardware description code by hand; for other circuits, we use an
automatic synthesis tool [11] that generates circuits with differing degrees of
pipelining. In all cases, the function of all versions of each circuit is the same, except
for the additional latency imposed by pipeline stages. The first three columns of
Table 1 list respectively our benchmark circuits, the number of registers, and the logic
depth in each version of the circuit.

For each design, we also create a version with a pipeline stage after every logic
element. Unlike all other versions of the circuit, this version is likely to have a
different behaviour from the original circuit, since paths containing different numbers
of logic elements will have different numbers of registers. The results from this
version of each circuit will give an estimate of the best possible optimization
achievable using pipelining. To generate these circuits, we use facilities provided
through the Quartus University Interface Program (QUIP) which allow us to insert
registers after logic synthesis but before place and route. The rows labeled “Max” in
Table 1 show the statistics for these circuits. For all but the multiplier circuit, the
depth of these “maximally pipelined” circuits is larger than one LE (Logic Element);
this is because we do not insert pipeline registers along the carry and cascade chains.

The circuits are implemented on an Altera Nios Development Kit (Stratix
Professional Edition) which contains a 0.13µm CMOS Stratix EP1S40F780C5 device.
The input pins are not driven externally, since this could consume significant power,
possibly dwarfing the on-chip power we want to measure. Instead, we generate our
test vectors on-chip using a linear-feedback shift register. For the same reason, we do
not drive a pin with each circuit output. Instead, we combine all outputs using a
multi-input exclusive-or gate and feed the result to an output pin. We use an
exclusive-or gate rather than leaving the outputs floating, to ensure that Quartus does
not “optimize away” parts of the circuit not used to drive output pins. The outputs are
registered before the exclusive-or gate, preventing glitches appearing at the inputs to
the exclusive-or gate. This ensures that the power consumed by the exclusive-or gate
is constant across all versions of a circuit. Finally, we register the output of the
exclusive-or gate to ensure that glitches on the output pin do not overwhelm the glitch
power internal to the FPGA. The clock of each circuit is driven by a scaled version
of the 50Mhz on-board oscillator.

3.2 Effect of Pipelining on a 0.13µm FPGA

The final two columns of Table 1 show our measured power results. These are
obtained by measuring the current entering the board from the power supply, and
multiplying by the power supply voltage. The first of these columns shows the
overall board (system) power. This system power includes the power of the board’s
transformer. In this paper, we are interested in the dynamic power of the FPGA itself.
Therefore, we have subtracted the quiescent power when the board is idle, and
recorded the results in the final column of Table 1 – we have found that the power
dissipated by an idle FPGA and board is independent of the configuration of the
FPGA on that board. This difference between the quiescent power and the total
power represents the dynamic power of both the FPGA and the board.

In our experimental set-up, we have no way of isolating the dynamic power of the
FPGA itself. To estimate this quantity, we have simulated our circuits using the
Quartus simulator and power estimator. These simulation results are shown in the
sixth column of Table 1. We also record the component of the FPGA power that is
due to dynamic switching inside the logic block array; the fifth column of Table 1
shows these measurements.

In gathering the results in Table 1, we use the same clock speed for all versions of a
given circuit. By holding the clock rate constant while varying the amount of
pipelining, we obtain measurements proportional to the total energy per operation for
each circuit. Normally, pipelining is used to increase the clock frequency, thereby
increasing the number of operations per second. However, pipelining can also be
used to reduce power. As we will show, by pipelining a circuit without changing the
clock frequency, power reductions can be achieved without a reduction in operations
per second, provided that the additional latency can be tolerated at the system level.

The results from Table 1 are startling. For the 64-bit unsigned multiplier, the
difference in dynamic system energy between our most pipelined variant and our least
pipelined variant is 81%. For the other benchmark circuits, this difference ranges
from 40% to 82%. When we focus on just the dynamic logic block energy, the
difference is as high as 98%. In contrast, lower-level physical design optimizations
can typically reduce energy by up to 23% [10]. The results in Table 1 show that,
indeed, system-level optimizations such as pipelining can have a far more significant
impact on the overall energy dissipation.
 Table 1 also shows the results for the “maximally pipelined” variant of each
benchmark circuit, in which a register is used at the output of every logic block As
the table shows, for all of the benchmark circuits, the energy dissipated by the
maximally pipelined variant is smaller than the energy dissipated by all the other
versions. However, in three of the circuits, the difference in energy between the
maximally pipelined variant and the next-most pipelined variant is small. This
implies that there is little opportunity of reducing glitch energy further by increasing
the number of pipeline stages in these circuits.

Table 1. Pipelining results for 0.13µm FPGA.

FPGA Power Estimate
by Quartus

Measured System
Power

Bench
mark
Circuit

Number
of

Pipeline
Stages

Number
of

Registers

Max.
Stage
Depth
(LE’s)

Logic Block
Power
(mW)

Total FPGA
Power (mW)

Total
Power
(mW)

Dynamic
Power
(mW)

2 361 105 2 289 2 748 9 657 7 659
4 555 73 1 977 2 436 7 263 5 265
8 943 57 173 631 5 427 3 429
16 1 719 49 59.3 512 4 563 2 565
32 3 271 45 38.5 498 4 041 2 043
64 6 374 43 38.7 497 3 654 1 656

64-bit
integer
array
mult.

Max 15 730 1 86.4 545 3 402 1 404
6 3 823 33 1 225 1 684 4 204 2 206
12 4 542 17 2 008 2 467 4 041 2 043
24 5 983 9 365 824 3 015 1 017
48 9 023 5 144 603 2 718 720

Triple-
DES
encrypt.
circuit

Max 20 579 2 109 568 2 664 666
1 100 132 Could not estimate 12 645 10 647
2 353 100 3 951 4 420 7 866 5 868
4 545 43 1 987 2 468 5 580 3 582

8-tap
FP FIR
filter

Max 6 738 31 219 776 3 834 1 836
2 2 147 160 Could not estimate 6 507 4 509
4 3 811 80 512 971 5 139 3 141
8 6 835 40 152 611 4 437 2 439
16 13 171 20 105 565 4 716 2 718

Cordic
circuit

Max 25 191 20 107 567 4 140 2 142

3.3 Effect of Pipelining on a 0.18µm FPGA

The results in Table 1 are obtained using a 0.13µm FPGA. Intuitively, in an FPGA
implemented using a less aggressive technology, we would expect a larger component
of the overall energy to be dynamic energy, and hence glitch energy. Thus, pipelining
may even be more effective. On the other hand, an FPGA implemented in a 0.18µm
technology will likely contain fewer logic elements than one in a 0.13µm technology,
hence the user circuits will likely be smaller, and thus the potential for glitches may
be reduced.
 Table 2 shows measured energy results obtained using a 0.18µm FPGA, a Xilinx
Spartan XC2S200 device on a Celoxica RC-100 board. Since the chip is smaller than
that employed in the previous section, we have scaled down our benchmark circuits
by reducing the bit-width in the multiplier, the number of parallel Cordic modules in
the Cordic circuit, and the number of taps in the FIR filter. We do not attempt to
reduce the size of the triple-DES circuit. As the results show, the impact of pipelining
on power – and hence energy per operation – is similar to that for the 0.13µm chip,
although less pronounced.

Table 2. Pipelining Results for 0.18µm FPGA.

Measured
System Power

Benchmark Circuit Number
 of
Pipeline
 Stages

Total
Power
(mW)

Dynamic
Power (mW)

1 5 124 4 116
2 3 924 2 916
4 3 312 1 304
8 3 192 2 184

16-bit unsigned integer array
multiplier

16 3 168 2 160
1 10 476 9 468
2 9 048 8 040

4-tap Floating Point FIR
filter

4 7 800 6 792
2 5 777 4 408
4 4 094 2 727
8 3 364 1 995

Cordic circuit to compute sine
and cosine of angle

16 2 888 1 519

4. Interaction between Pipelining and Clustering

Energy optimization can be performed during high-level system design by techniques
such as pipelining, in addition to optimization during low-level synthesis/physical
design. Related work has shown that reductions of up to 23% are achievable during
synthesis and physical design [10]. In the previous section, we have shown that larger
reductions are achievable during system design by pipelining the circuit.

A true power-aware CAD flow would likely attempt to optimize power at both the
system design level and the synthesis/physical design level. However, it is
conceivable that fewer power reduction opportunities will exist for the lower-level
tools, if the higher-level tools are power-aware. In our case, pipelining will tend to
reduce the number of nodes with very high switching activities due to glitches, so that
there are fewer of these nodes for the physical design tools to optimize. At the
extreme, in a very heavily-pipelined circuit, there are no glitches, meaning all nets
will have roughly the same activity. This means that the physical design tools will not
be able to effectively optimize for power consumption.

In this section, we investigate whether the effectiveness of lower-level tools is
affected by pipelining at the system level. We focus on clustering, since it has been
shown that clustering is more effective at reducing power than other low-level CAD
stages [10]. Commercial FPGAs contain logic elements arranged in clusters; these are
known as Logic Array Blocks in Altera parts and Configurable Logic Blocks in Xilinx
parts. Each of these clusters contains between two and ten logic elements
implemented as lookup-tables. Clustering attempts to pack tightly-connected logic
elements together into clusters.

The power-aware cluster algorithm described in [10] attempts to minimize energy
by encapsulating high-activity nets within a cluster, so that they can be implemented
using low-capacitance intra-cluster connections. It avoids separating the pins of a

high-activity net among several clusters such that the net must be implemented on
high-capacitance inter-cluster connections. Intuitively, this will be less effective if
most nets have similar activities; in this section, we investigate whether this intuition
holds.

4.1 Experimental Methodology

We illustrate our methodology by considering the Cordic circuit and the 64-bit integer
multiplier, since these two circuits have the largest number of variants. Each circuit is
first optimized and mapped to lookup-tables by Quartus. Then, using facilities
provided in the Quartus University Interface Program (QUIP), we feed each
technology-mapped netlist into both the power-aware cluster algorithm described in
[10] and the non-power-aware cluster algorithm described in [12]. Next, each of these
clustered circuits is read back into Quartus, placed and routed, and implemented on
the FPGA. The power consumption, which is proportional to energy per operation, is
then measured as in Section 3.

Note that neither of the clustering algorithms in [10] and [12] uses carry chains or
cascade chains. As a result, it is not meaningful to compare these results with the
results in Table 1 which are obtained using the Quartus clusterer, since those results
do employ carry and cascade chains where appropriate. Nonetheless, the trends
observed in this section will likely hold in a carry/cascade chain-capable clusterer.

4.2 Results

Figure 1 shows the results for the array multiplier and the Cordic circuits. The
horizontal axis on each graph is the number of pipeline stages, and the vertical axis is
the measured system (board) dynamic power, which is proportional to the energy per
operation of the circuit. The top line in each graph represents the energy obtained
when using the non-power-aware cluster algorithm, while the lower line represents
the energy obtained when using the power-aware cluster algorithm. As the graphs
show, the improvements obtained by pipelining are much more significant than those
obtained by making the cluster algorithm power-aware.

The graph also illustrates the interaction between the two optimization schemes:
the reduction achieved by the cluster algorithm varies as the degree of pipelining
changes. In general, for the array multiplier, the reduction achieved by the cluster
algorithm decreases as the degree of pipelining increases. For both circuits, the
power-aware cluster algorithm is ineffective at reducing power for the most heavily-
pipelined variants, since it has fewer high activity nets to work with.

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6
Pipeline Stages

2000

4000

6000

8000

10000

12000

14000

1 2 3 4
Pipeline Stages

M
ea

su
re

d
En

er
gy

(m
W

)

M
ea

su
re

d
En

er
gy

(m
W

)

Power-Aware
Clustering

Power-Aware
Clustering

Non-Power Aware
Clustering

Non-Power Aware
Clustering

 a) 64-bit integer multiplier b) Cordic circuit

Fig. 1. Power-aware and non-power aware clustering results.

These results are significant. They indicate that for most circuits, it does make

sense to optimize for power both at the system level as well as during low-level
synthesis and physical design. The results also show, however, that it is not
reasonable for a designer to rely on pipeline-aware synthesis and physical design.
Incorrect system-level design decisions, such as a bad choice for pipelining depth, can
not be “made up for” by low-level CAD tools.

5. Conclusions

In this paper, we have shown that pipelining has a significant impact on the energy
dissipation in an FPGA. Pipelining reduces the number of spurious glitches which, in
turn, reduces dynamic power. The primary contribution of this paper is the
quantification of just how effective this technique can be in modern FPGAs. Among
our four benchmark circuits, we have found that pipelining can reduce the amount of
energy per operation required by an algorithm by between 40% and 90%.
 These results are important for a number of reasons. For system designers, it
illustrates the need for careful planning of a datapath and pipelining during system
design. No matter how good the subsequent power-aware CAD tools are, it is
unlikely that they will be able to “make up for” a bad decision during system design.
Although designers have been aware of this before, our results suggest that correct
pipelining is especially critical in modern FPGAs. For the CAD research community,
these results suggest that more attention needs to be paid to high-level system-level
optimizations, such as pipelining. Traditional power-aware optimization studies focus
on lower-level technology mapping, clustering, or physical design. The gains
achievable at these low level are important, but they will not be enough to make
handheld FPGA devices a reality. On the other hand, the significant energy
improvements shown in this paper can make FPGAs appropriate for a much larger
class of low-power applications than ever before.

REFERENCES

1. L. Benini et al, Glitch power minimization by selective gate freezing, IEEE Trans. VLSI
Systems, 8(3): 287-298, 2000.

2. E. I. Boemo et al, Some notes on power management on FPGA based systems, Field
Programmable Logic and Applciations, LNCS 975, Springer, 1995, pp. 149-157.

3. N. Chabini et al, Unification of basic retiming and supply voltage scaling to minimize
dynamic power consumption for synchronous digital designs, Proc. ACM Great Lakes
Symposium on VLSI, 2003.

4. K. S. Chung, T. Kim and C. L. Liu, A complete model for glitch analysis in logic circuits.
Journal of Circuits, Systems, and Computers, 11(2): 137-154, 2002.

5. G. A. Constantinides, Perturbation analysis for word-length optimization, Proc. Int. Symp.
field-Programmable Custom Computing Machines, 2003, pp. 81-90.

6. Y. L. Hsu and S. J. Wang, Retiming-based logic synthesis for low power, Proc. Int. Symp.
Low Power Electronics and Design, ACM Press, 2002, pp. 275-278.

7. M. Kandemir et al, Influence of compiler optimizations on system power, IEEE Trans.
VLSI, 9(6):801-804, 2001.

8. D. Kim and K. Choi, Power conscious high level synthesis using loop folding, Proc. 34th
Design Automation Conference, 1997.

9. B. Kumthekar et al, Power optimization of FPGA-based designs without rewiring, IEE Proc.,
147(3): 167-174, 2002.

10. J. Lamoureux and S. Wilton, On the interaction between power-aware FPGA CAD
algorithms, Proc. ICCAD, 2003.

11. W. Luk et al, Parameterized hardware libraries for configurable system-on-chip technology,
Canadian Journal of Elect. and Computer Engineering, 26(3/4):125-129, 2001.

12. A. Marquardt, V. Betz and J. Rose, Using cluster-based logic blocks and timing-driven
packing to improve FPGA speed and density, ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays, Feb. 1999, pp. 37 - 46.

13. J. C. Monteiro, S. Devadas and A. Ghosh, Retiming sequential circuits for low power, Proc.
ICCAD, pp. 398-402, 1993.

14. J. C. Monteiro and A. L. Oliveira, Finite state machine decomposition for low power, Proc.
35th Design Automation Conference, 1998.

15. A. Raghunathan, S. Dey and N. K. Jia, Register transfer level power optimization with
emphasis on glitch analysis and reduction, IEEE Trans. CAD, 18(8):114-1131, 1999.

16. L. M. Reyneri et al, A hardware/software co-design flow and IP library based on Simulink,
Proc. 38th Design Automation Conference, 2001.

17. A. Singh et al, Interconnect pipelining in a throughput-intensive FPGA architecture,
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2001, pp 153-160.

18. D. Singh and S. Brown, The case for registered routing switches in Field Programmable
Gate Arrays, ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2001, pp. 161-
169.

19. G. Stitt et al, Using on-chip configurable logic to reduce embedded system software energy,
Proc. Int. Symp. Field-Programmable Custom Computing Machines, IEEE Computer
Society Press, 2002, pp. 143-151.

20. G. Sutter et al, Logic depth, power, and pipeline granularity: updated results on XC4K and
Virtex FPGAs, Computacion Reconfigurable & FPGAs, Publicaciones Digitales S.A., 2003,
pp. 201-207.

21. W. Tsu, et al, HSRA: High-speed, hierarchical synchronous reconfigurable array, ACM
Seventh International Symposium on Field-Programmable Gate Arrays, Feb. 1999.

22. P. Zuchowski et al, A hybrid ASIC and FPGA architecture, Proc. ICCAD, 2002, pp. 187-
194.

