
738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

An Efficient Algorithm for Performance-Optimal
FPGA Technology Mapping with Retiming

Jason Cong and Chang Wu

Abstract— It is known that most field programmable gate
array (FPGA) mapping algorithms consider only combinational
circuits. Pan and Liu [22] recently proposed a novel algorithm,
named SeqMapII, of technology mapping with retiming for
clock period minimization. Their algorithm, however, requires
O(K3

n
5 log(Kn2) logn)O(K3
n
5 log(Kn2) logn)O(K3
n
5 log(Kn2) logn) run time and O(K2

n
2)O(K2
n
2)O(K2
n
2) space for

sequential circuits with nnn gates. In practice, these requirements
are too high for targeting KKK-lookup-table-based FPGA’s
implementing medium or large designs. In this paper, we
present three strategies to improve the performance of the
SeqMapII algorithm significantly. Our algorithm works in
O(K2

nln j Pv j logn)O(K2
nln j Pv j logn)O(K2
nln j Pv j logn) run time and O(K j Pv j)O(K j Pv j)O(K j Pv j) space, where

nlnlnl is the number of labeling iterations and j Pv jj Pv jj Pv j is the size of
the partial flow network. In practice, both nlnlnl and j Pv jj Pv jj Pv j are less
than nnn. Area minimization is also considered in our algorithm
based on efficient low-costKKK-cut computation.

Index Terms—Expanded circuit, field programmable gate ar-
ray (FPGA), lookup table, retiming, technology mapping.

I. INTRODUCTION

T HE technology mapping and synthesis problem for field
programmable gate array (FPGA’s) is to produce an

equivalent circuit for a given circuit using only specific pro-
grammable logic blocks (PLB’s). More specifically, without
synthesis, the PLB’s in a mapping solution form a cover of
gates in the original circuit possibly with overlap. There are
a variety of different PLB architectures. In this paper, we
consider a generic type of PLB: the -input lookup table
(-LUT), which has been widely used in current FPGA
technology [1], [18], [30]. Most of the previous LUT mapping
algorithms optimize either area (e.g., [13], [14], and [20])
or delay (e.g., [5], [15], and [21]). The algorithms in [4]
and [7] consider both delay and area. The algorithms in [25]
and [27] consider the routability. A comprehensive survey of
FPGA mapping algorithms is given in [6]; however, most
of these approaches apply only to combinational circuits.
For sequential circuits, these approaches assume that the
positions of flip-flops (FF’s) are fixed so that the entire
circuit can be partitioned into combinational subcircuits, each
of which is mapped separately. A major limitation of these
approaches is that they do not consider mapping and retiming
simultaneously. In fact, the optimal mapping solutions for all

Manuscript received March 11, 1997. This work was supported in part
by the National Science Foundation under Young Investigator Award
MIP9357582 and by grants from Xilinx and Lucent Technologies under
the California MICRO program. This paper was recommended by Associate
Editor A. Saldanha.

The authors are with the Computer Science Department, University of
California, Los Angeles, CA 90095 USA.

Publisher Item Identifier S 0278-0070(98)06759-1.

combinational subcircuits may not lead to an optimal mapping
solution for the entire sequential circuit due to the effect of
retiming. Retiming is a technique of moving FF’s within the
circuit without changing the circuit behavior. For single-phase
clock and edge-triggered FF’s, Leiserson and Saxe [16], [17]
solved the retiming problem of minimizing the clock period
or the number of FF’s.

Several FPGA synthesis and mapping algorithms have been
proposed specifically for sequential circuits. The approach in
[19] does not consider retiming, but rather, its objective is
to consider proper packing of LUT’s with FF’s to minimize
the number of configurable logic blocks for Xilinx FPGA’s
[30]. The methods in [23] and [29] are heuristics that consider
loopless sequential circuits. Touatiet al. [28] proposed an
approach of retiming specifically for Xilinx FPGA’s after
mapping, placement, and routing. A significant advancement
was made recently by Pan and Liu [22]. They proposed a
novel algorithm, named SeqMapII, to find a mapping solu-
tion with the minimum clock period under retiming. Similar
to the FlowMap algorithm [5], their algorithm works in
two phases: the labeling phase and the mapping generation
phase. They introduced the idea of expanded circuits to
represent all possible -LUT’s under retiming and node-
replication. An iterative method is used to compute labels for
all nodes. The time and space complexities for SeqMapII are

and , respectively, for a
circuit with gates [22].1 Although the SeqMapII algorithm
runs in polynomial time, it has two shortcomings: 1) too
many candidate values () need to be considered
for each label update and 2) the expanded circuits are too
large (nodes) for computing the optimal solutions.
Experimental results show that the run time of SeqMapII for
computing the optimal solutions is too long in practice (e.g.,
more than 12 h of CPU time for a design of 134 gates on a
SPARC5 workstation).

In this paper, we present three strategies to improve the
performance of the label computation significantly, which is
the most time-consuming step in SeqMapII [22]. First, we
prove that the monotone property of labels holds for sequential
circuits, then develop an efficient label update to speed up the
algorithm by a factor of . Second, we propose a
new approach of -cut computation on partial flow networks,
which are much smaller than the expanded circuits used in
SeqMapII, while guaranteeing the optimality of the results.

1The authors of [22] later reduced the time complexity of SeqMapII
to O(K3

n
5 logn) [24] using the monotone property to be presented in

Section IV of this paper (first presented in [10]).

0278–0070/98$10.00 1998 IEEE

CONG AND WU: ALGORITHM FOR FPGA TECHNOLOGY MAPPING 739

Our experimental results show that the average numbers of
nodes in the partial flow networks are far less than, which
is a big improvement over the number of nodes in
the expanded circuits used in SeqMapII [22]. Last, strongly
connected-component (SCC) partitioning and heuristic label
ordering are used to eliminate much redundant label com-
putation to further speed up the algorithm. In practice, our
algorithm works in time and space
according to our experimental results. The area reduction is
also considered in our algorithm by choosing a low-cost-cut
for every node. As a result, our algorithm is 2.810 times
faster than SeqMapII-opt for computing optimal solutions,
and even eight times faster than SeqMapII-heu, which uses
very small expanded circuits as a heuristic. Furthermore, our
algorithm reduces LUT count by 28%, and FF count by 27%
and achieves clock periods 23% shorter as compared with
SeqMapII-heu [22].

The remainder of this paper is organized as the following.
Section II presents the problem formulation and definitions.
Section III gives a review of the approach by Pan and Liu
[22]. Our improved algorithm is presented in Section IV. The
experimental results are presented in Section V, followed by
conclusions and future work in Section VI.2

II. PROBLEM FORMULATION AND DEFINITIONS

Given a sequentialcircuit, the technology mapping prob-
lem for -LUT-based FPGA’s is to construct an equivalent
circuit consisting of -LUT’s and FF’s. For performance
optimization, we study the following problem.

Problem 1: For a sequential circuit, find an equivalent LUT
circuit with the minimum clock period under retiming.

As in [5] and [22], theunit delay modelis used in this paper,
which assumes that the delay of each LUT is one and the delay
of each net is zero or a constant.

A mapping solution in which the output signals of all LUT’s
are from the original circuit is called asimple mapping solution
[22]. As shown in Fig. 1(b), the outputs of LUTand LUT
are the outputs of and in the original circuit shown in
Fig. 1(a). But the output of LUT in Fig. 1(c) is one clock
cycle ahead of the output of in the original circuit. Pan and
Liu [22] showed that there exists a simple mapping solution
whose clock period under retiming is equal to the minimum
clock period among all mapping with retiming solutions. This
means that there is no need to move FF’s before mapping in
order to get an optimal solution to Problem 1. Furthermore,
they proposed to solve the decision version of the problem.

Problem 2: Given a target clock period , determine the
existence of a simple mapping solution whose clock period
under retiming is no more than.

As in [5] and [22], the results in this paper apply to only
-bounded networks, i.e., each gate in the network has at

most fan-ins.3 In the remainder of this paper, all circuits
are assumed to be -bounded.

2 An extended abstract of this paper appears in [10].
3When a circuit is notK-bounded, we can use gate decomposition

algorithms in [2], [3], and [8] to decompose gates with more thanK fan-ins.

(a)

(b)

(c)

Fig. 1. Simple and nonsimple mapping solutions.

We use or to denote theretiming graph[17]
of a sequential circuit, where is the set of nodes representing
the gates in the circuit, is the set of edges representing
the connection between the gates, andis the set of edge
weights. Edge denotes the connection from gateto
gate and denotes the number of FF’s on the connection.
The path weight,denoted of a path , is the sum of
weights of all edges on the path. is a subgraph of
consisting of node and all nodes that have paths to.

For a simple mapping solution and a given clock period
, theedge length,denoted of an edge , is defined

to be . Thepath length,denoted of a
path , is . The -value of a node in a
mapping solution is the maximum length of all paths from
primary inputs (PI’s) to in . We define
if there is a path from one of the PI’s to going through
a (feedback) loop of positive length. It was shown that for
a mapping solution and a given , the retimed clock
period is no more than if and only if for
every PO [22]. The label of node , denoted , is
defined to be theminimum -values of the -LUT’s rooted at

amongall mapping solutions. Clearly, there is a mapping
solution with retimed clock period of no more thanif and
only if for every primary output (PO)
[22].

Now let us introduce the definition of -cuts. In a directed
graph with one sink and one source, acut is a partition
of the graph such that the sink is in and the source is in

. The node cut-set is the set of nodes in that
are connected directly to nodes in. If ,
a cut is called a -feasible cut,or -cut in short. A
cut is amin-cut if is minimum. To determine the
existence of a -cut, one can compute the max-flow from the
source to the sink and decide whether it is larger than(see
[5] for details). This process is called -cut computationin
this paper.

740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

(a) (b) (c)

(d) (e)

Fig. 2. Expanded circuits.

III. REVIEW OF THE SEQMAPII A LGORITHM

The SeqMapII algorithm works in two phases: label com-
putation and mapping generation. The label computation starts
with a lower bound on the value of each node label and
repeatedly improves the lower bounds until they all converge
to the node labels. The initial lower bounds are zero for the PI’s
and for the other nodes. Based on the current lower bound

of each node , Pan and Liu [22] presented a procedure
to determine a new lower bound . They introduced the
concept of expanded circuits for each nodeto represent all
possible -LUT’s rooted at with consideration of retiming
and node replication. An expanded circuit of node with
control number is a directed acyclic graph (DAG) rooted
at formed by replication of nodes in , such that has
the property that all paths from a node to the root have the
same number of FF’s. If a replication of nodepasses
FF’s before reaching the root in , we denote it and
call its weight . The control number of is the shortest
distance (in terms of the number of edges) between the root
and each leaf in that is not a replication of a PI in . For
example, Fig. 2(b)–(e) is four expanded circuitsof node
shown in Fig. 2(a) with control numberfrom zero to three,
respectively.

Pan and Liu [22] showed that to examine all-LUT’s for
a node , it sufficed to examine all the -LUT’s that can be
derived from the -cuts in . With the assumption that
the weight of each edge is at most one, it was shown that the
numbers of nodes and edges in are bounded by
and , respectively, where is the number of gates
in the original circuit [22]. In an expanded circuit of node,
the height of a -cut is defined as

based on the current lower bounds of node labels. The

new lower bound is computed as

This value is determined by binary search among
candidates in the set of and
performing a -cut computation for each candidate value. The
computation time for every is
based on network flow computation. The labels of all nodes
can be determined in time because there
is a total of label updates [22].4

SeqMapII [22] is the first polynomial algorithm to find a
mapping solution with the optimal clock period under retim-
ing. However, two major shortcomings make this approach
inefficient in practice. First, the expanded circuit is too
large [nodes and edges], which requires
prohibitively large memory and run time for circuits with more
than 1000 gates. Second, too many values () have to
be considered when computing the new lower bound of each
node label.

IV. TURBOMAP ALGORITHM

In this section, we present three strategies to improve the
label computation of the SeqMapII algorithm, which is the
most time-consuming step. First, we prove the monotone
property of the node labels and develop a new procedure
for computing atighter lower bound with asingle -cut
computation. Second, we propose a new approach to compute

-cuts on much smaller partial flow networks, which are
built incrementallyduring the -cut computation. Third, SCC
partitioning and depth-first-search (DFS) ordering are used to
eliminate much redundant label computation and reduce the
number of labeling iteration to further speed up the algorithm.

A. Label Update with Single K-Cut Computation

In SeqMapII [22], to compute for a node, it is
necessary to perform binary search among all pos-
sible values in , which
requires -cut computations. In our approach,
we compute atighter lower bound with single -
cut computation to speed up the algorithm by a factor of

. Let

We update the lower bound on the value of the label ofas
follows:

if cut with

otherwise.

Obviously, can be computed with single -cut com-
putation. Recall that this result is similar to Lemma 2 in [5],
which applies to combinational circuits only.

4The total number of label updates was shown to beO(n2) in [22]. In [24],
however, it changed toO(n3) due to the difficulty of proving thatO(n2)
guarantees finding an optimal solution.

CONG AND WU: ALGORITHM FOR FPGA TECHNOLOGY MAPPING 741

(a) (b)

(c) (d)

Fig. 3. Proof of monotone property of node labels.

The correctness of our approach is based on the fact that
, where is the lower

bound computed in SeqMapII [22]. This can be proved based
on the monotone propertyof node labels. In a sequential
circuit, which has a mapping solution with a clock period
of no more than a given , we say that the set of its
node labels is monotone if for any edge ,

.
Theorem 1 (Monotone Property):In a sequential circuit

that has a mapping solution with the clock period of no more
than a given under retiming, the node labels are monotone.
That is, for every edge
in the retiming graph of the circuit.

Proof: For each edge in the original circuit, there
exists a simple mapping solution such that .
Let LUT denote the -LUT rooted at in . We consider
the following two cases.

Case 1: is a fan-in to LUT . According to the definition
of -values, the -values of and in satisfy

. Since by
definition, we have

.
Case 2: is covered inside LUT, as shown in Fig. 3(a).

Let be the number of FF’s on edge and be
the number of FF’s on edge LUT for each fan-in
of LUT . In formation of LUT , we have to push those
FF’s on back to LUT ’s fan-in edges as shown in
Fig. 3(b).5 Let be the sub-DAG rooted at inside LUT .6

The edge weight after retiming of each fan-in edge
of is . The edge weight for the rest of the
fan-ins of LUT remains unchanged, i.e., . Since

can be covered by a -LUT by replicating explicitly
outside LUT to form LUT , we get another simple mapping
solution as shown in Fig. 3(d). Note that the weight of

5Note that the FF’s cannot be pushed down to the output of LUTv , asM
is a simple mapping solution.

6Note that the FF’s insideHu need to be pushed back on edgee(xi; Hu) as
well. For ease of presentation, we assume thatwx includes both the numbers
of FF’s originally on edgee(xi; Hu) and from insideHu.

edge LUT is because those FF’s were pushed
back only on edges LUT . The -value in is

Since every input of LUT is also an input of LUT

This concludes that for any edge
in the original circuit.

Let one iterationdenote the computation process where
is updated once for every node(in an arbitrary order). We
prove the following.

Theorem 2: For a sequential circuit that has a mapping
solution with a clock period under retiming of no more than
a given , the inequalities hold
during every iteration.

Proof: It is clear that based on the
definitions of and . We prove

by mathematical induction.
Initially, . Now suppose that

holds for every node at the current iteration. We
prove that the newly updated lower bound
holds for every node . Since , we have

Case 1: If there is a -cut in with ,
then .

Case 2: If there is no -cut in with ,
then . To prove , let us
prove by contradiction. Suppose .
Since , it must be that .

Suppose is a simple mapping solution such that
and LUT is the LUT rooted at . Since any LUT

rooted at corresponds to a -cut in , let
be the cut with LUT . So

Based on the definition
of and the assumption that , it must be
the case that

It means that
. The result is contradictory to the assumption that there

is no -cut in with height of no more than .

742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

Note that the above results depend on neither the order of
label update nor the number of iterations performed. Therefore,
we can conclude that the inequalities

hold for every node during every iteration.

B. K-Cut Computation on Partial Flow Networks

In this subsection, we present a new approach to de-
termine if by max-flow computation on
much smaller partial flow networks than that of the expanded
circuit used in [22]. To check whether
with the approach in SeqMapII [22], one needs to build the
expanded circuit and construct the corresponding flow
network, and then decide the existence of a-cut by max-
flow computation. In TurboMap, however, we construct the
flow network incrementally without constructing the entire

. More important, we construct the flow networkjust large
enoughto determine whether a -cut exists. Recall that all the
previous flow-computation-based FPGA mapping algorithms
[5], [7], and [23] build the entire flow network before the
max-flow computation. Thus, they are less efficient than our
approach, and can be improved in a similar way.

The basic idea of our algorithm is that, although the flow
network for is very large, the union of the shortest
augmenting paths (in terms of the number of edges) is usually
much smaller. (Note that we only need to determine whether or
not the value of a max-flow is no more than. Searching for

shortest augmenting paths is enough.) So if we start from
and grow the flow network during the -cut computation

incrementally,the flow network constructed would be much
smaller than . We call the flow networks constructed by
our approach thepartial flow networks.

When updating the label lower bound for node, we
construct the partial flow network, denoted, directly from

. As shown in Fig. 4(c), the edge direction in is reversed
from that in [shown in Fig. 4(a)]. The is the source of

, and all the for PI will be connected to the sink
of .

A node in an expanded circuit of is critical if
. The basic idea of partial flow network

construction is to perform breadth-first search on during
the construction of . We maintain a first-in, first-out (FIFO)
queue , which initially includes only node , the source of

. Each time, we fetch a node from to process and add
new nodes to the end of until is empty or has an edge
to the sink . Suppose is the current node fetched from the
queue. If has fan-ins in the partially constructed, we put
the fan-ins to the end of . If, however, does not have fan-
ins and is not a PI in , we create the fan-in edges for
and add new nodes to the flow network as follows. For each
fan-in edge of in , we create two nodes
and if they have not been created and put
first and then to the end of . We add a new edge

and assign the flow capacity to be if
is a critical node, or “1” otherwise. Then we add edge

with flow capacity of . If is a PI in , we
connect to the sink with flow capacity of and find one
augmenting path. Whenever an augmenting path is found, we

(a) (b) (c) (d) (e)

(f) (g)

Fig. 4. Incremental construction of the partial flow network withK-cut
computation. (a)Gc and (b)–(g) are the flow networks we constructed step
by step. The sources of the flow networks arec0; the sinks aret. The number
beside each edge is the flow capacity, which, in default, is1.

augment the path, clear, and start from again to search
for another shortest augmenting path until no more augmenting
paths exist [in this case, we assign], or we
find the th augmenting path [here, a-cut does not
exist and we assign].

Let us look at an example of constructing the partial flow
network for node in shown in Fig. 4(a). Node is a
primary input with . Each black bar represents an FF.
For and , suppose . We now
compute . Since , we only need to decide
whether or . The construction of the
partial flow network is shown step by step in Fig. 4(b)–(g).
At first, we create as the source of the partial flow network
and put it in an FIFO queue . Then, for getting from ,
nodes and edges with flow capacity of

will be created based on edges in . Nodes
will be put to the end of . In the following,

will be fetched successively from , and nodes and
edges will be created. Since is critical
[because], the flow capacity of edge

is . On the other hand, is not critical [because
], so the flow capacity of edge

is one. The current flow network is shown in Fig. 4(c).
Since is a PI, a new edge with flow capacity of
will be created, and one shortest augmenting path is found.
After augmenting this path, we clearand start from again

CONG AND WU: ALGORITHM FOR FPGA TECHNOLOGY MAPPING 743

Fig. 5. K-cut computation on partial flow networks. The heavy shaded area is LUTc. The light shaded area is the partial flow networkPc. The entire
network corresponds toEKn=9c .

to search for another augmenting path. The flow network is
shown in Fig. 4(d). When reaching , which was created in
previous steps, we need to create the fan-out edges ofand
add two pairs of nodes and . The new flow
network is shown in Fig. 4(e). We then create the fan-out edges
of and add two nodes , as shown in Fig. 4(f). Now
we find and augment another augmenting path. The new flow
network is shown in Fig. 4(g).

As shown in Fig. 5, after finding three augmenting paths,
there exist no more. The value of max-flow is and
therefore . The light shaded area is the
partial flow network , which corresponds to the expanded
circuit in this example. As shown in Fig. 5, is much
smaller than the entire flow network corresponding to .
The heavy shaded area shown in Fig. 5, of the min-cut

in , forms a -LUT rooted at .
Since only the first shortest augmenting paths

are searched, the incrementally constructed flow networks are
much smaller than the flow networks corresponding to the
large . Our experimental results on MCNC and ISCAS
benchmarks show that the average numbers of nodes in the
partial flow networks are always far less than. As a result,
each label update takes only time and space
in practice.

To bound the partial flow networks to be no larger than the
flow network of , we add an additional criterion to the
partial flow network construction. Since the shortest path from
a leaf to the root in is bounded by and each node
needs to be split into two nodes to construct the corresponding
flow network, the shortest path from the root to a leaf in the
flow network of is bounded by . Therefore, we limit
the augmenting path length to be no more than in .
In other words, if the shortest augmenting path length from
the source to during the construction of is , we
mark as a leaf and connect it directly to the sink without
growing further to ’s fan-ins. Let be the corresponding
flow network of . We prove that , and there
is a -cut in if and only if there is a -cut in .

Theorem 3: .
Proof: Let denote the shortest path length (in

terms of the number of edges) from the root to in the
residue flow network after pushingflows. Based on Lemma
27.8 in [11], the shortest path distance in the residual graph

is monotonically increasing if we always augment the shortest
augmenting paths. So for
any leaf . This implies that the shortest path distance
from the root to every leaf in is less than . So

.
Theorem 4: There exists a -feasible cut in if and

only if there exists a -feasible cut in .
Proof: () It is obvious because .

() We shall prove that for the min-volume min-cut
in , and V are included in , where the min-
volume min-cut is a min-cut with the minimum . (Note
that the root is the source of the flow network and belongs
to .)

One important property of the min-volume min-cut
is that every node in is reachable from the source in the
residual graph of a maximum flow based on Lemma 6 in [5].

Since is -feasible, has at most nodes.
The reason is that if , at least one node
in the original circuit has duplications in with

different weights. (Note that each node
in becomes a node pair with the same weight in .)
Since every node is reachable from the PI’s (nodes isolated
from the PI’s can be deleted easily with a preprocessing), there
must be a path of in the original circuit from a PI to

. Thus, for each duplication , there is a unique duplication
of in . It means that the max-flow in

is at least , and the cut is not -feasible.
Let be a maximum flow with . Since any

is reachable from the source and , the
shortest path length in the residual graph

. Therefore, for any flow with ,
. Note that

if and only if . Thus, any in is also
in . Since any is connected directly to a
node , where is a node pair and will be
created together in , thus .

C. SCC Partitioning and DFS Ordering

An SCC of a retiming graph is a maximal set
of vertices such that for every pair of nodesand in

, there are both paths and . Clearly, the labels
of two nodes and are mutually dependent only if they are

744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

in one SCC. For and in different SCC’s, e.g., but
, the label of can be computed before the label of

without iterations between and .
TurboMap first computes all the SCC’s and sorts them in a

topological order in linear time based on the algorithm in [12].
Then it labels the nodes in each SCC together. For different
SCC’s, the labels are computed separately in the topological
order of SCC’s from PI’s to PO’s. Our results show that with
the SCC partitioning, the computation time of TurboMap can
be reduced by 50% on average.

The computation order is also important to the rate of
convergence of labeling computation. In [22], it is proved that
the number of labeling iterations is bounded by , which
is too large in practice. In TurboMap, we compute the node
labels in the order based on DFS from the outputs to the inputs
of each SCC. If node is searched after node, we update
the label of before in every iteration. Our experimental
results show that if there is a feasible solution for a target clock
period, all the node labels can be computed in 5–20 iterations
in almost all the cases, which is much less than the worst case
bound of under an arbitrary computation order.

D. Area Minimization

After obtaining the minimum clock period and all the
node labels, we can form a mapping with retiming solution by
implementing each as the LUT rooted at each nodefor
the min-cut of computed during label computation.
Although this solution has the minimum clock period after
retiming, the area may not be good. In this subsection, we
propose a heuristic to compute a low-cost-cut for every
node based on to reduce the number of LUT’s. Since the
number of FF’s is undetermined before retiming, we reduce
only the number of LUT’s during mapping, while minimizing
the number of FF’s during a postprocessing of retiming [17].

There are two approaches to reduce the numbers of LUT’s
in final mapping solutions. First is to enlarge the volume of
each -cut, as in [5]. Second is to maximize the sharing of
fan-ins between LUT’s as follows.

Similar to CutMap [7], we define the cost of a node to be
zero if the node has already been marked as an LUT root,
and one otherwise. Initially, all PI’s, PO’s, and nodes with
large fan-out numbers are marked as LUT roots. Our approach
begins with an FIFO queue containing all PO’s. For every
node fetched from the queue, we compute a low-cost-cut
and put all nodes in the cut-set to the end ofand mark them
as LUT roots. If the cut cost of the cut ofcomputed during
labeling is zero, the cut has the minimum cost. Otherwise, we
try to compute another -cut of with smaller cost with two
additional max-flow computations in a heuristic way.

First, we compute a zero-cost min-cut for node by
constructing a new flow network and computing the max-flow.
Let thecut capacityof a node be the edge capacity of the edge
connecting the node pair of the node in the new flow network.7

We assign the cut capacity of to be zero if is noncritical,
i.e., , and has already be marked

7Recall that each node in the expanded circuit corresponds to a pair of
nodes in the flow network.

TABLE I
CUT-CAPACITY ASSIGNMENT FORK = 5. THE

MIN-CUT SIZE IS THE MINIMUM CUT SIZE ON Pv

TABLE II
INITIAL CIRCUITS FOR MCNC FSM’S AND ISCAS BENCHMARKS

as an LUT root. Otherwise, we assign the cut capacity to be
. If the min-cut in the new flow network is -feasible, it

corresponds to a zero-cost-cut on . Otherwise, there does
not exist any zero-cost -cut on . In this case, if the min-
cut we computed happens to have cost one, it corresponds to
a min-cost -cut on . If, however, the cost of the min-cut
is larger than one, we try to find a lower cost-cut with one
additional -cut computation by assigning different cut capac-
ities to LUT roots and non-LUT roots based on the min-cut
size on , as shown in Table I. The cut capacity is assigned
in such a way that a min-cut in the new network corresponds
to a min-cost cut on if the min-cut is -feasible. For
example, suppose on one min-cut size is three with cost of
two, and there exists another cut with a cut size of four and
cost of one. Based on the assignment table, the cut capacity
of the min-cut is . The cut capacity of the other
cut is , however, so it is the min-cut on the new
flow network and can be found through max-flow computation.
Note that this approach is not guaranteed to find the min-cost

-cut on because the min-cut on the new flow network
may not be -feasible. For the previous example, if there is
also a cut with cut size of and cost of zero, the cut
capacity is six. It is also a min-cut on the new flow network
but not -feasible, and cannot be implemented in one LUT.
In the case that the min-cut found on the new flow network is
not -feasible, we keep the min-cut on for node .

After getting the low-cost -cut of every node ,
we then try to pack single-output fan-ins of the cut into
(or LUT). Our experimental results show that this approach
is very efficient (with only two additional max-flow compu-

CONG AND WU: ALGORITHM FOR FPGA TECHNOLOGY MAPPING 745

TABLE III
PERFORMANCE COMPARISON BETWEEN TURBOMAP AND SEQMAPII ON A SPARC5. ENTRY “***” I NDICATES THAT

SEQMAPII- OPT DID NOT PRODUCE A RESULT AFTER RUNNING 24 H. “GEO-MEAN” L ISTS THE GEOMETRIC MEAN

OF THE RESULTS. “SUB-MEAN” L ISTS THE GEOMETRIC MEAN OF THE RESULTS OF THEFIRST EIGHT EXAMPLES

tations) and effective (reducing LUT count by 19% and FF
count by 7%).

E. Summary of the TurboMap Algorithm

In the preceding subsections, we have presented three strate-
gies to speed up the label computation of the SeqMapII
algorithm [22] and one heuristic method to reduce the area.
For a target clock period, our algorithm, named TurboMap,
performs SCC partitioning at first. Then, in topological order
from the PI’s to the PO’s, TurboMap computes the node labels
for each SCC separately. For each SCC, a number of efficient
label update iterations are performed.

To find the minimum clock period, TurboMap performs
a binary search using the upper bound of the clock period
computed by FlowMap [5] on each combinational subcircuit
independently. After getting the minimum clock period and
the low-cost -cut for every node, TurboMap generates the
mapping solution and then performs LUT packing [5] and
retiming to achieve the minimum clock period [17], [22].

Theorem 5: For a -bounded sequential circuit with
nodes, the TurboMap algorithm produces a-LUT mapping
solution with the minimum clock period under retiming in

time, where is an upper bound on
the labeling iteration number and is an upper bound on
the numbers of nodes in the partial flow networks.

Proof: Each -cut computation on the partial flow net-
work takes time and space. Each
label update iteration needs -cut computation. The label
computation for a given target clock period takes

run time with space requirement. Clearly,
the minimum clock period under retiming is less than.
With binary search, the total run time of label computation
is . There are at most low-cost -
cut computations, each of which takes run time
and in total run time. So the total run time of

TABLE IV
COMPARISON OF THENUMBER OF NODES OF THEEXPANDED CIRCUITS USED

BY TURBOMAP AND SEQMAPII. ENTRY “***” M EANS NO RESULTS

AFTER RUNNING THE ALGORITHM FOR 24 H. “GEO-MEAN” L ISTS THE

GEOMETRIC MEAN OF THE RESULTS. “SUB-MEAN” L ISTS THE GEOMETRIC

MEAN OF THE RESULTS EXCLUDING THE LAST FOUR EXAMPLES

TurboMap is with space
requirement.

In practice, and . TurboMap can
be finished in time. Since the original Se-
qMapII algorithm takes time and

space to compute optimal mapping solutions with
the minimum clock period under retiming [22], TurboMap is
about times faster with times less
memory. In fact, our monotone property (first presented in
[10]) was also adopted by the authors of SeqMapII to improve
its performance in a later publication [24].

746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

TABLE V
COMPARISON OFTURBOMAP WITH FLOWMAP AND CUTMAP PLUS RETIMING. “GEO-MEAN” L ISTS THE GEOMETRIC MEAN OF THE RESULTS

V. EXPERIMENTAL RESULTS

The TurboMap algorithm has been implemented in the C
programming language on Sun SPARC workstations and incor-
porated into the SIS package [26] and the RASP FPGA synthe-
sis package [9]. The test set includes 13 MCNC finite state ma-
chines (FSM’s) and four large ISCAS benchmarks as used in
[10]. The initial gate-level circuits for technology mapping are
shown in Table II. Columns PI and PO list the numbers of pri-
mary inputs and primary outputs, respectively, of the circuits.
Columns GATE and FF list the numbers of gates and FF’s,
respectively, in the circuits. Column lists the clock periods
of the circuits after retiming but before technology mapping.

The experiments were run on a SUN SPARC5 workstation
with 96 MB memory. is set to be five. FlowMap followed
by retiming is performed to get an upper bound (shown
in column in Table II) of the clock period for each
example. LUT packing [5] and retiming are performed as
postprocessings to get the final mapping solutions. Table III
shows the comparison of TurboMap with SeqMapII [22].
SeqMapII has a parameter selectingfor . We choose

(SeqMapII-opt, which guarantees the optimal solution)
and (SeqMapII-heu, which was used in the experiments
by Pan and Liu [22] as a heuristic method), respectively,
for each example. Columns LUT and FF list the numbers
of LUT’s and FF’s, respectively, in the final solutions. The

columns list the minimum clock periods of the final solu-
tions. The CPU columns list the CPU time in seconds. Note
that both TurboMap and SeqMapII-opt can obtain mapping
solutions with the minimum clock periods under retiming, but
TurboMap is 2.8 10 times faster. Moreover, TurboMap
is more than 8 times faster than SeqMapII-heu, which may
generate suboptimal solutions.8 Compared with SeqMapII-
heu, TurboMap produces mapping solutions with 23% smaller
clock periods, 28% fewer LUT’s, and 27% fewer FF’s.

8Note that SeqMapII forks a child process to perform the max-flow
computation. The CPU time listed under SeqMapII includes this portion as
well, which may differ much with the CPU time listed in [22].

To show the effect of our -cut computation on partial flow
networks, we compare the numbers of nodes of the partial flow
networks with those of and used in SeqMapII [22].
The results are shown in Table IV. The column NODE lists
the number of nodes in the retiming graph for each example,
which is the sum of the numbers of the PI’s, the PO’s, and
the gates. The column FF lists the numbers of FF’s in the
original circuits. The columns with subscripts and
list the maximum and average numbers of nodes, respectively,
of the partial flow networks or the expanded circuits over all
nodes in the original circuits and generated by each algorithm.
For the last four examples, cannot be generated due to
either time or space limitations. The results show that the
average sizes of the partial flow networks are only slightly
larger than and 314 times smaller than . This result,
together with our efficient label update and SCC partitioning
with DFS ordering, provides an explanation of why TurboMap
is significantly faster than SeqMapII-opt.

Table V shows the comparison of TurboMap with the con-
ventional design flow of using FlowMap [5] or CutMap
[7] for mapping each combinational circuit independently
followed by optimal retiming, whose results are listed in
columns “FlowMap Retiming” and “CutMap Retiming,” re-
spectively. The results show that TurboMap can reduce the
clock periods by 14% on average compared with both methods,
with 4% fewer LUT’s as compared with “FlowMap+retiming”
but 4% more LUT’s as compared with “CutMap+retiming.”
TurboMap also uses 49% more FF’s to reduce the clock period.
Note that the number of FF’s will not affect area significantly
because it is usually much less than the number of LUT’s in
a mapping solution. The final PLB count of FPGA’s will be
determined by the number of LUT’s.

VI. CONCLUSIONS AND FUTURE WORK

We presented an improved algorithm, named TurboMap, for
technology mapping with retiming for optimal clock periods.
We proved the monotone property of node labels. Three

CONG AND WU: ALGORITHM FOR FPGA TECHNOLOGY MAPPING 747

strategies are used to enhance the performance of SeqMapII,
i.e., efficient label update with single -cut computation,
much smaller partial flow networks, and SCC partitioning
and DFS ordering. Area reduction is also considered. The
experimental results show that TurboMap is about 2.810
times faster than SeqMapII in computing optimal solutions.
TurboMap is even 8 times faster than SeqMapII-heu heuristic
algorithm. As a result, we conclude that optimal mapping
for minimum clock period under retiming can be carried out
efficiently for large circuits in practical use. Furthermore, there
is no area overhead compared to conventional approaches to
sequential circuits (FlowMap [5] or CutMap [7] followed by
retiming). In our future work, we want to develop an efficient
algorithm to compute the initial state of the mapping solution
and combine resynthesis and pipelining techniques to further
reduce the clock periods. We also want to investigate the open
issues in this work of whether and whether the
label computation can converge in time in the worst case.

ACKNOWLEDGMENT

The authors are very grateful to Prof. P. Pan and Prof. C. L.
Liu for providing the SeqMapII program for the comparative
study. The software donation from Synopsys is also gratefully
acknowledged.

REFERENCES

[1] Altera, “Flex 8000 and Flex 10000 Programmable Logic Device family
data sheets,” 1995.

[2] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,”IEEE Trans.
Computer-Aided Design,vol. 6, no. 6, pp. 1062–1081, 1987.

[3] K. C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, “DAG-
map: Graph-based FPGA technology mapping for delay optimization,”
IEEE Design Test Comput. Mag.,pp. 7–20, 1992.

[4] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” inProc. 30th ACM/IEEE Design Automation
Conf., 1993, pp. 213–218.

[5] , “FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs,”IEEE Trans.
Computer-Aided Design,vol. 13, no. 1, pp. 1–12, 1994.

[6] , “Combinational logic synthesis for SRAM based field pro-
grammable gate arrays,”ACM Trans. Design Automation Electron. Syst.,
vol. 1, no. 2, pp. 145–204, 1996.

[7] J. Cong and Y.-Y. Hwang, “Simultaneous depth and area minimization
in LUT-based FPGA mapping,” inProc. ACM 3rd Int. Symp. Field
Programmable Gate Arrays,1995, pp. 68–74.

[8] , “Structural gate decomposition for depth-optimal technology
mapping in LUT-based FPGA design,” inProc. 33rd ACM/IEEE Design
Automation Conf.,1996, pp. 726–729.

[9] J. Cong, J. Peck, and Y. Ding, “RASP: A general logic synthesis system
for SRAM-based FPGA’s,” inProc. ACM 4th Int. Symp. FPGA,1996,
pp. 137–143.

[10] J. Cong and C. Wu, “An improved algorithm for performance optimal
technology mapping with retiming in LUT-based FPGA design,” in
Proc. IEEE Int. Conf. Computer Design,1996, pp. 572–578.

[11] T. H. Cormen, C. H. Leiserson, and R. L. Rivest,Introduction to
Algorithms. The MIT Press, 1990, ch. 27, p. 597.

[12] , Introduction to Algorithms. Cambridge, MA: MIT Press, 1990,
ch. 23, pp. 488–493.

[13] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology mapping
program for lookup table-based field programmable gate arrays,” in
Proc. 27th ACM/IEEE Design Automation Conf.,1990, pp. 613–619.

[14] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast technology
mapping for lookup table-based FPGA’s,” inProc. 28th ACM/IEEE
Design Automation Conf.,1991, pp. 613–619.

[15] , “Technology mapping of lookup table-based FPGA’s,” inProc.
IEEE Int. Conf. CAD,1991, pp. 568–571.

[16] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming (preliminary version),” inProc. 3rd Caltech Conf.

Very Large Scale Integration,R. Bryant, Ed. Rockville, MD: Caltech,
Computer Science Press, 1983, pp. 87–116.

[17] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, 1991, vol. 6, pp. 5–35.

[18] AT&T Microelectronics,AT&T Field-Programmable Gate Arrays Data
Book, 1995.

[19] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Sequential
synthesis for table lookup programmable gate arrays,” inProc. 30th
ACM/IEEE Design Automation Conf.,1993, pp. 224–229.

[20] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Improved logic synthesis algorithms for table lookup architectures,” in
IEEE International Conference on CAD,1991, pp. 564–567.

[21] , “Performance directed synthesis for table lookup programmable
gate arrays,” inProc. IEEE International Conf. CAD,1991, pp. 572–575.

[22] P. Pan and C. L. Liu, “Optimal clock period FPGA technology mapping
for sequential circuits,” inProc. 33rd ACM/IEEE Design Automation
Conf., 1996, pp. 720–725.

[23] , “Technology mapping of sequential circuits for LUT-based
FPGA’s for performance,” inProc. ACM/SIGDA Int. Symp. FPGA’s,
1996, pp. 58–64.

[24] , “Optimal clock period FPGA technology mapping
for sequential circuits,” ACM Trans. Design Automation
Electron. Syst.,vol. 3, no. 3, 1998. [Online]. Available WWW:
http://www.acm.org/todaes/V3N3/L166/paper.ps.gz.

[25] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup table-based FPGA’s,”IEEE Trans. Computer-Aided
Design,vol. 13, no. 1, pp. 13–26, 1994.

[26] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Electronics Research Labo-
ratory, University of California, Berkeley, Memo. UCB/ERL M92/41,
1992.

[27] N. Togawa, M. Sato, and T. Ohtsuki, “Maple: A simultaneous tech-
nology mapping, placement, and global routing algorithm for field-
programmable gate arrays,” inProc. 31st ACM/IEEE Design Automation
Conf., 1994, pp. 156–163.

[28] H. Touati, N. Shenoy, and A. Sangiovanni-Vincentelli, “Retiming for
table-lookup field-programmable gate arrays,” inProc. FPGA’92,pp.
89–94.

[29] U. Weinmann and W. Rosenstiel, “Technology mapping for sequential
circuits based on retiming techniques,” inProc. Eur. Design Automation
Conf., 1993, pp. 318–323.

[30] Xilinx, The Programmable Logic Data Book.San Jose, CA: Xilinx,
1997.

Jason Cong received the B.S. degree in com-
puter science from Peking University, P.R.C., in
1985 and the M.S. and Ph.D. degrees in computer
science from The University of Illinois at Urbana-
Champaign in 1987 and 1990, respectively.

Currently, he is a Professor and Codirector of
the VLSI CAD Laboratory in the Computer Science
Department of the University of California, Los An-
geles. His research interests include layout synthesis
and logic synthesis for high-performance low-power
very-large-scale-integration (VLSI) circuits, design

and optimization of high-speed VLSI interconnects, field programmable gate
array (FPGA) synthesis, and reconfigurable computing. He has published more
than 100 research papers and led more than 20 research projects supported by
the Defense Advanced Research Project Agency, National Science Foundation
(NSF), and a number of industrial sponsors in these areas. He was the General
Chair of the Fourth ACM/SIGDA Physical Design Workshop, the Program
Chair and General Chair of the 1997 and 1998 International Symposium
on FPGA’s, respectively, and on program committees of many VLSI CAD
conferences, including DAC, ICCAD, and ISCAS. He is an Associate Editor
of ACM Transactions on Design Automation of Electronic Systems.

Dr. Cong received the Best Graduate Award from Peking University in 1985
and the Ross J. Martin Award for Excellence in Research from The University
of Illinois at Urbana-Champaign in 1989. He received the NSF Research
Initiation Award and NSF Young Investigator Award in 1991 and 1993,
respectively. He received the Northrop Outstanding Junior Faculty Research
Award from UCLA in 1993 and the IEEE TRANSACTIONS ONCOMPUTER-AIDED

DESIGN OFINTEGRATED CIRCUITS AND SYSTEMS Best Paper Award in 1995. He
received the ACM Recognition of Service Award in 1997.

748 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 1998

Chang Wu received the B.S. degree from the Com-
puter Science Department of Shanghai Jiao Tong
University, Shanghai, P.R.C., in 1986 and the M.S.
degree from the Institute of Pattern Recognition
and Artificial Intelligence of Shanghai Jiao Tong
University in 1989. He is now a Ph.D. student in
the Computer Science Department of the University
of California, Los Angeles.

From 1989 to 1995, he was with the Beijing In-
tegrated Circuit Design Center as a Senior Software
Engineer developing the Panda VLSI CAD System.

He was a Visiting Scholar at the University of California, Los Angeles, from
1995 to 1996. His major interests are logic synthesis and technology mapping
with retiming for high-performance very-large-scale-integration design.

