Weekly Report for Yu Hu's work from Sep. 26 to Oct. 2

October 12, 2005

Formulate the dual-vdd assignment with process variation problem to network flow. The original dual-vdd assignment (with mixed wire length) problem is presented as follows ${ }^{1}$.

$$
\begin{array}{r}
\text { Maximize } \sum_{i=0}^{N_{r}-1} \sum_{j=0}^{N_{s}(i)-1} \Delta P_{d}(i, j) f_{n}(i, j)+\sum_{i=0}^{N_{r-1}} \sum_{j=0}^{N_{s}(i)-1} f_{n}(i, j) \Delta P_{s}(i, j) \\
f_{n}(i, j) \leq \frac{s_{i k}}{C_{i k}} c_{i j} \quad 0 \leq i<N_{r} \wedge 0 \leq j<N_{s}(i) \wedge \forall k \in \mathcal{S} \mathcal{L}_{i j} \\
a(v) \leq T_{\text {spec }} \quad \forall v \in \mathcal{P} \mathcal{O} \\
a(v)=0 \quad \forall v \in \mathcal{P I} \\
a\left(p_{i 0}\right)+d\left(p_{i 0}, p_{i k}\right)+S_{i k} \leq a\left(p_{i k}\right) \\
0 \leq i<N_{r} \wedge \forall p_{i k} \in \mathcal{F} \mathcal{O}_{p_{i 0}} \\
0 \leq i<N_{r} \wedge \leq k \leq N_{k}(i) \\
s_{i k}=\frac{S_{i k}}{D_{i k}} \cdot l_{i k}
\end{array}
$$

where,

$$
\begin{array}{r}
\Delta P_{d}(i, j)=c_{i j} f_{c l k}\left[\Delta E_{0}(i, j)+c_{4}(i, j) V\right] \\
\Delta P_{s}(i, j)=\Delta P_{0} e^{-c_{1}(i, j) L-c_{2}(i, j) V-c_{3}(i, j) T} \tag{11}
\end{array}
$$

1 Robust LP formulation of the original problem

As the same way in yu_sep18.pdf, we can re-write the above formulation by removing min:

$$
\begin{array}{rc}
\max & \sum_{i=0}^{N_{r}-1} \sum_{j=0}^{N_{k}(i)-1} W_{i j} \cdot S_{i j}=\sum_{\forall \text { Sink }} W_{i j} \cdot S_{i j} \\
\text { s.t. } & a(j)-a(i) \leq-d(i, j) \\
& a(i)-a(j) \leq u_{i j}=l_{i j} D_{i j}+d(i, j) \\
& S_{i j}=a(i)-a(j)-d(i, j) \tag{12}
\end{array}
$$

where,

$$
\begin{equation*}
W_{i j}=\sum_{\forall k \in \mathcal{U B} \mathcal{B}_{i j}}\left\{c_{i k} f_{c l k} f_{s}(i, k)\left[\Delta E_{0}(i, k)+c_{4}(i, k) V\right]+\Delta P_{0} e^{-c_{1}(i, k) L-c_{2}(i, k) V-c_{3}(i, k) T}\right\} \cdot \frac{c_{i k} D_{i j}}{\left(C_{i j} l_{i j}\right)} \tag{13}
\end{equation*}
$$

where i, j, k refers to routing tree $i, \operatorname{sink} j$ and buffer k in tree i.

[^0]Similar to [Murari et al DAC'05], we re-write the above formulation as follows. P^{*} is the optimal power achieved by deterministic version of formulation 12 , and $P_{\max }$ is the initial maximum power.

$$
\begin{array}{cc}
\min & \sum_{\forall \operatorname{Sink}} S_{i j} \\
\text { s.t. } & \sum_{\forall \operatorname{Sink}} W_{i j} \cdot S_{i j} \geq P_{\text {max }}-P^{*} \\
& a(j)-a(i) \leq-d(i, j) \\
& a(i)-a(j) \leq u_{i j}=l_{i j} D_{i j}+d(i, j) \\
& S_{i j}=a(i)-a(j)-d(i, j) \tag{18}
\end{array}
$$

We then decompose the power reduction into each sink of each routing tree, and re-write Eq. 15 as

$$
\begin{array}{lll}
& W_{i j} \cdot S_{i j} \geq \Delta P_{i j} & \forall \operatorname{Sink}_{j} \in \text { Net }_{i} \\
\Longrightarrow \quad & S_{i j} \geq \Delta P_{i j} / W_{i j} & \forall \operatorname{Sink}_{j} \in \text { Net }_{i} \tag{19}
\end{array}
$$

With substituting Eq. 18 into Eq. 15 and Eq.14, then our formulation becomes

$$
\begin{array}{ccl}
\min & \sum_{\forall V} \rho_{i} a_{i} & \\
\text { s.t. } & a(j)-a(i) \leq-d(i, j)-\Delta P_{i j} / W_{i j} & \forall \text { Sink }_{j} \in \text { Net }_{i} \\
& a(j)-a(i) \leq-d(i, j) & \forall e d g e(i, j) \\
& a(i)-a(j) \leq l_{i j} D_{i j}+d(i, j) & \forall e d g e(i, j) \tag{20}
\end{array}
$$

where $\rho_{i}=\operatorname{out}\left(v_{i}\right)-i n\left(v_{i}\right)$.
Note that Formulation 20 is a robust LP optimization problem, in which, $S_{i j}$ and $a(i)$ are variables, $W_{i j}$ and $d(i, j)$ are uncertain coefficients. $W_{i j}$ captures the affect of process variation to both dynamic power and leakage power, and $d(i, j)$ captures those to delay. Particularly, we have $W_{i j}=f_{w}(L, V, T)$ and $d(i, j)=f_{d}(L, V)$, where L, V, T are the gate length, $V_{t h}$ and $T_{o x}$ respectively.

2 Approximation of the robust LP formulation (still a LP)

THEOREM (Calafiore, Campi, 2002): Given a robust convex problem

$$
\begin{equation*}
\min c x: \forall u \in \mathcal{U}, f_{i}(x, u) \leq 0, i=1, \cdots, m \tag{21}
\end{equation*}
$$

where $f_{i}(x, u)$ is convex and \mathcal{U} is compact. We can replace \mathcal{U} by a randomly chosen finite subset of \mathcal{U} and solve corresponding convex problem. If the number of samples satisfies

$$
\begin{equation*}
N \geq \frac{n}{\epsilon \beta}-1 \tag{22}
\end{equation*}
$$

then with probability $1-\beta$, the probability of violation of the constraints is less than ϵ.
Obviously, the range of process variation parameters L, V, T can be limited within a compact set. Based this theorem, we can perform sampling (e.g. random generate a N-length vector (L, V, T) with a normal distribution) in the all the possible values of L, V, T. For each sample of $\left(L_{s}, V_{s}, T_{s}\right)$, we can get $W_{i j}^{s}=f_{w}\left(L_{s}, V_{s}, T_{s}\right)$ and $d^{s} i, j=f_{d}\left(L_{s}, V_{s}\right)$, which adds a new deterministic constraint in formulation 20 . The union of all these new constraints makes the ϵ approximation of the formulation 20 .

On the other hand, we can find that the increment of the sampling number won't increase number of constraints in Formulation 20 due to its special structure (all uncertain coefficient is not a multiplier of variables, when we get the union of all constraints, there will be only one constraint according to each $W_{i j}$ and $d(i, j)$. e.g. for each sampled values of $W_{i j}$, only the minimum one will be used in the formula). Based on these, after sampling and union constraints, the ϵ approximation of formulation 20 is

$$
\begin{align*}
\min & \sum_{\forall V} \rho_{i} a_{i} \\
\text { s.t. } & a(j)-a(i) \leq L_{i j} \\
& a(i)-a(j) \leq U_{i j} \quad \forall e d g e(i, j) \tag{23}
\end{align*}
$$

where $U_{i j}=l_{i j} D_{i j}+d^{s}(i, j)$, and

$$
L_{i j}= \begin{cases}-d^{s}(i, j)-\Delta P_{i j} / W_{i j}^{s}, & \forall \operatorname{Sink}_{j} \in \operatorname{Net}_{i} \tag{24}\\ -d^{s}(i, j) & \forall \operatorname{edge}(i, j) \overline{\operatorname{Sink}}\end{cases}
$$

3 The dual of the approximation LP formulation is a min-cost flow problem

The dual problem of formulation 23 is

$$
\begin{array}{cc}
\min & \sum_{e_{i j} \in E}-U_{i j} z_{i j}-L_{i j} y_{i j} \\
\text { s.t. } & \sum_{e_{k i} \in E}\left(y_{k i}-z_{k i}\right)-\sum_{e_{i j} \in E}\left(y_{i j}-z_{i j}\right)=\rho_{i} \\
y_{i j}, z_{i j} \in R_{+} \tag{27}
\end{array}
$$

This is a min-cost network flow problem and can be solved efficiently.

[^0]: ${ }^{1}$ Denotations can be found in http://eda.ee.ucla.edu/member_only/FPGA_reports/rlp_slack.pdf

