In this week I completed the following work.
1. M202 course project

2. M209 course presentation, read two papers about technology mapping and prepared slides.
3. For FPGA retiming vdd assignment part, to solve the problem that some of the FF assignments are not available (due to the data structure constraint in VPR). I paid the following efforts:

a) I tried to move these FFs to the available FF slot. The following 4 kinds of timing edges are considered in the FF movement after retiming.
[image: image1.wmf]LUT

FF

SUBBLK

_

IPIN

SUBBLK

_

OPIN

CLB

_

OPIN

CLB

_

IPIN

LUT

FF

BLE

BLE

BLE

FF

(

A

)

BLE

FF

(

B

)

SUBBLK

_

OPIN

-

>

CLB

_

OPIN

CLB

CLB

CLB

_

IPIN

-

>

SUBBLK

_

IPIN

BLE

(

C

)

CLB

F

F

CLB

_

OPIN

-

>

CLB

_

IPIN

CLB

BLE

FF

CLB

BLE

(

D

)

SUBBLK

_

OPIN

-

>

SUBBLK

_

IPIN

For each of these four cases, I moved the FF into its nearest empty slot. After moving FF, I re-construct the timing graph and found that the clock period is much lesser, which indicates that the FF# in the critical path is changed and the functionality of the circuit is changed. Then, I realized that in some cases, we can not even move a FF neither forward or backward. Consider the following case:
[image: image2.wmf]FF

C

A

B

D

E

F

If we move FF forward (to edge DE/DF) or backward (to edge AC/BC), the FF# in a certain path will change. Actually, these scenarios exist extensively in my retimed results, which makes it prohibitive to solve the unavailable FF slot problem by moving FF.
b) After realizing the failure of the FF movement, I found that it is hard to accomplish a successful retiming by simply solving a LP formulation and then performing FF assignment in a highly constrained data structure in the current VPR. I tried to add an extra non-linear constraint
(x_v-P)(x_u-P)>=0, for edge (u, v) contains no FF slots (1)
where P is the clock period, and x_v is the arrival time in timing node v. As all x_v < 2*P by the timing constraint, we can enforce that ceil(x_v)=ceil(x_u) for edge (u, v) contains no FF slots by (1), which make sure that no FF are inserted in unavailable timing edges.
To solve such a quadratic optimization problem, I used an optimization package “Mosek”, which is also used by Yan to solve power-timing-yield robust LP problem. After spending some time learning the usage of Mosek, I used it to solve my quadratic programming problem. But the solver reported the status of the solution of the problem was unknown, which means the results might be unreasonable. I think the reason why Mosek failed to solve this quadratic optimization problem is that the solution space of this problem is not convex. Actually, even the solution space of (x1-P)*(x2-P)>=0 is not convex.
To verify the correctness of my usage of Mosek, I used it to solve the mixed-wire length FPGA vdd assignment problem, I tested a relative larger circuit “frisc”. It took 30 seconds for Mosek to get the solution. Note that “lp_solver” will use more than 20 minutes to solve this problem on the same machine and “network flow” will use about 2-5 seconds. From this experiment, we can find that “network flow” reduces its speedup ratio when we employ interior point method to solve the LP problem.
My conclusion: After these tries, I think that it’s hard to get a feasible FF assignment with a continuous formulation for retiming due to the limitation of available FF slots in VPR. We should try some discrete formulation of this problem as the FF# constraint in certain edges can be easily represented in discrete formulation (without things like ceiling). Hence, I’m going to try the following formulation (similar way used in [N. Chabini, GLSVLSI’03] for voltage scaling) in the next week.
Forumla-1 (original version from C.E. Leiserson, algorithmica’91, I modified it for delay associated in edges instead of nodes)

Ojb: the same as my last formulation
Constraint:

1) –s(v) <= -d(u, v), for all timing node v in edge (u,v)
2) s(v) <= P, for all timing node v

3) r(u) – r(v) <= FF(u,v), for all edge (u,v)

4) s(u) – s(v)<=-d(u,v), for all edge (u,v) and r(u) – r(v)=FF(u,v)

In fact, this formulation intends to find a set of retiming values r(v) and a set of arrival times s(u) simultaneously.

If we do the following substitution:

Let R(v) = r(v)+s(v)/P

Then formula-1 can be re-written as:

Forumla-2 (original version from C.E. Leiserson, algorithmica’91, I modified it for delay associated in edges instead of nodes)

Ojb: obj2
Constraint:

1) r(v) – R(v) <= -d(u, v)/P, for all timing node v in edge (u,v)

2) R(v) – r(v) <= 1, for all timing node v

3) r(u) – r(v) <= FF(u,v), for all edge (u,v)

4) R(u) – R(v)<= FF(u,v) -d(u,v)/P, for all edge (u,v)

Note that Formula-2 is a MIP and the slack in edge (u, v) can be expressed as
slack(u,v) = s(v) – s(u) – d(u,v) = P(R(v) – R(u) - r(v) + r(u)) + d(u,v), hence,
obj2 = \sum delta_Pwr*slack(u,v)

Additionally, FF# constraints should be added to make sure that all FFs are assigned to available slots:

5) r(u) – r(v) =0, for all edges containing no FF slots.
This formulation is more controllable as we explicitly consider retiming values r(v), which is discrete variables in it. Due to the time limitation, I haven’t got result of this formulation. I’ll do it in the next week.
