
Statistical Retiming Based Timing Analysis and

Application to Placement

Yu Hu

January 15, 2006

1 Introduction

[1] proposed the conception of retiming based timing analysis (RTA) for sequen-
tial circuits performance optimization in deterministic scenario. A sequential
arrival time (SAT) and required time (SRT) are found in RTA and the sequential
slacks (SRT-SAT) are calculated for each timing edge and used as the weight in
the placement. The minimal clock period is found by binary search. If the in-
terconnect delay is considered, the possible clock periods change in a continuous
range, which means that the binary search approach can not obtain an accu-
rate solution. To attach this problem, a push down based approach is proposed
in [3], which calculates the optimal clock period and retiming without binary
search. The basic idea is to move FFs from the downstream to upstream itera-
tively, which has been proved to has a worse complexity of O(|V |2|E| · (N +1)),
where V and E is vertices and edges set in retiming graph and N is the total
FF number. However no process variations are considered in [3].

In the statistical scenario, [4] is the first work attack the statistical retim-
ing. Unfortunately, interconnect delay is not considered and the retiming is
not leveraged with other design process, e.g. placement and routing. The most
recently work [2] follows the RTA model in [1] and performs it with statistical
calculation. However, this work suffers from the following weakness. Firstly, it
can not be performed in an incremental fashion as binary search is employed
to find an optimal clock period. Secondly, the timing weight in the proposed
work is based on the sequential slack. However, it is hard to compare the slacks
when they become random variables in the statistical scenario. Of course we
can compare two slacks by employ a certain function, e.g. f(a) = a0 + 3σ2,
but it is a heuristic way. Thirdly, the retiming values can not be obtained as
the ceiling and dividing operation in the deterministic scenario are not easy to
extend to handle random variables.

In this paper, we study on the statistical simultaneously retiming and place-
ment for performance optimization. The simulated annealing based placer is
used. In each temperature, a statistical retiming based timing analysis (will be
detailed in the next section) is performed to calculate the statistical criticality

1



of each timing node1. The edge cost will be updated according to the statis-
tical criticality so that the placer will be expected to improve the timing yield
iteratively.

2 Statistical Push Down Based Retiming Algo-
rithm

In the retiming graph G = (V, E), each edge e(u, v) is associated with a delay
value d(u, v), which is a random variable in statistical scenario, and a weight
w(u, v) denoting the number of FFs in this edge. Each node v is associated
with a retiming value r(v) and a arrival time t(v). Based on [3], we improve the
algorithm to handle statistical delay. The following is the pesudo-code for the
proposed algorithm and the underlined lines are statistical operations that we
need to pay attention to.

Algorithm 1 INIT(G,r)
1: wr(u, v) ← w(u, v) + r(v)− r(u),∀(u, v) ∈ E;
2: t(v) ← 0,∀v ∈ V ;T ← 0;Q ← V ;
3: while Q 6= ∅ do
4: u ← dequeue(Q);
5: for each (u, v) ∈ E do
6: if wr(u, v) = 0 then
7: t(v) ← max(t(v), t(u) + d(u, v));
8: T ← max(T, t(u) + d(u, v);

References

[1] J. Cong and S. K. Lim, “Retiming-based timing analysis with an application
to mincut-based global placement,” TCAD, 2004.

[2] M. Ekpanyapong, T. Watewai, and S. K. Lim, “Retiming-based timing anal-
ysis with statistical bellman-ford algorithm,” in ASPDAC, 06.

[3] C. Lin and H. Zhou, “Optimal wire retiming without binary search,” in
iccad, 04.

[4] J. Wang and H. Zhou, “Minimal period retiming under process variations,”
in GLSVLSI, 04.

1The statistical criticality means the probability of the edge lying on the critical path

2



Algorithm 2 SRTA(G) INPUT: A retiming graph G = (V, E), OUTPUT:
Retiming values, criticality and statistical minimal clock period
1: INIT(G,0); T opt ← T ; ropt(u) ← 0,∀u ∈ V ;
2: while true do
3: {Identify critical edges in E}
4: Ec ← {(u, v) ∈ E|t(v) = t(u) + d(u, v)− wr(u, v)T};
5: if Ec contains a cycle then
6: Report T , r and exit;
7: Topological sort Gc = (V, Ec);
8: {Compute max FF number on paths from roots in Gc}
9: for v ∈ V in topological sort order of Gc do

10: if v is a root in Gc then
11: ∆(v) ← 0;
12: else
13: for each (u, v) ∈ Ec do
14: ∆(v) ← max(∆(v),∆(v) + wr(u, v))
15: θ ←∞;
16: for each (u, v) ∈ E do
17: if (∆(u) + wr(u, v) > ∆(v)) then
18: θ ← min{θ, t(v)−t(u)−d(u,v)+wr(u,v)T

∆(u)+wr(u,v)−∆(v) };
19: for each v ∈ V do
20: θ ← min{θ, T−t(v)

∆(v)+1};
21: if (θ = 0) then
22: r(v) ← r(v) + 1;
23: ADJUST(G, v);
24: if ∀r > 0 ∨ ∃r =

∑
(u,v)∈E w(u, v) then

25: Report T opt, ropt and exit;
26: INIT(G, r);
27: {Update t and T};
28: if (θ > 0) then
29: T ← T − θ;
30: for each θ ∈ V do
31: t(v) ← t(v) + θ ·∆(v);
32: if T < T opt then
33: Update T opt and ropt with T and r;

3


