
Minimal Period Retiming Under Process Variations ∗

Jia Wang and Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

ABSTRACT
With aggressive scaling down of feature sizes in VLSI fabri-
cation, process variations have become a critical issue in de-
signs. With process variations, timing optimization should
consider the randomness introduced in delays. This paper
considers how to retime a circuit under process variations.
A statistical retiming problem is defined on the concept of
a disutility function. Based on a new minimal period retim-
ing algorithm, two algorithms are presented for the statis-
tical retiming problem. Both theoretical and experimental
results are given.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS-Design Aids

General Terms
Algorithms, Design

Keywords
retiming, process variations, statistical timing analysis

1. INTRODUCTION
Retiming is an effective optimization technique in syn-

chronous circuit design. It was first proposed by Leiserson
and Saxe in [1]. Retiming optimizes the circuit by relocating
the flip-flops. Minimal period retiming targets at minimiz-
ing the clock period of a circuit which is equal to the longest
path delay between two consecutive flip-flops. Under the as-
sumption that the delays have fixed values, this problem has
been solved by a binary search over feasible periods through
fixed period checking[2, 3].

As the geometries in deep sub-micron technology keep de-
scending, process variations become significant and could

∗This work is supported by the NSF under CCR-0238484.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-853-9/04/0004 ...$5.00.

make the timing of fabricated circuits far from what is de-
signed. Many works focus on the timing analysis of combina-
tional circuits under process variations. Retiming becomes
more complicated when process variations are considered
because we need to optimize a circuit under uncertainty.
Variations could make a less critical path dominant, which
could make the result of retiming unreliable. Therefore, how
to incorporate process variations into retiming emerges as a
challenging problem.

In this paper, we study the problem of minimal period
retiming under process variations. We propose a disutility
function as a criteria for measuring the distribution of clock
period under process variations. After we present the statis-
tical retiming problem, two algorithms are given to solve the
problem and tested with the ISCAS89 benchmarks. Both al-
gorithms are based on a new pushing down minimal period
retiming algorithm discovered by us. Experimental results
show that our approaches are effective.

The rest of the paper is organized as following. In Sec-
tion 2, we introduce the disutility function and then define
the statistical retiming problem. In Section 3, we briefly dis-
cuss the methods for statistical timing analysis. In Section 4,
we present our algorithms to solve the statistical retiming
problem. Experimental results are given in Section 5 and
conclusions are drawn at the end.

2. PROBLEM DEFINITION

2.1 Model Circuit As Graph
A sequential circuit could be modeled as a directed graph

G = (V, E). Each vertex v ∈ V represents a gate with delay
d(v) and each edge (u, v) ∈ E represents a signal from u
to v. We define the weight of edge w : E → Z∗, where
Z∗ is the set of non-negative integers, as the number of the
flip-flops on the edges.

Following Leiserson and Saxe [2], a retiming is a labeling
of the vertices r : V → Z. The edge weights after retiming,
say w′, are given as

w′(u, v) = w(u, v) + r(v)− r(u),∀(u, v) ∈ E (1)

As w′(u, v) should be greater than or equal to 0, r should
satisfy

r(u) ≤ w(u, v) + r(v),∀(u, v) ∈ E (2)

In our pushing down retiming algorithm, we always move
flip-flops from the fan-outs of a gate toward its fan-ins. So
r(v) will be non-negative and represent the number of flip-
flops moved.

131

When we remove all the edges e satisfying w(e) > 0,
we get a directed acyclic graph (DAG) with the connected
components as the combinational parts of the sequential
circuit. Because this DAG depends on w, we write it as
Gw = (V, Ew). Define

FIw(v) = {u : (u, v) ∈ Ew} (3)

as fan-ins of v in Gw and

FOw(v) = {w : (v, w) ∈ Ew} (4)

as fan-outs of v similarly.
Denoting the gate arrival time by t : V →R, we have

t(v) = (max
u∈FIw(v)

t(u)) + d(v) (5)

where t(v) = d(v) if FIw(v) = φ. As Gw is a DAG, equation
(5) uniquely determines t. The clock period of the circuit
must be larger than or equal to t(v),∀v ∈ V . Thus the clock
period of the circuit should be

Tw = max
v∈V

t(v) (6)

Obviously, Tw could be expressed alternatively as below

Tw = max
l∈Lw

X
v∈l

d(v) (7)

where Lw is the set of the paths in Gw.

2.2 Disutility Function
The clock period Tw becomes a random variable under

process variations. Suppose the price of a produced circuit
with clock period T is g(T), where g(T) is non-increasing
with T . Then E(g(Tw)) is the expectation of what we could
obtain by selling one circuit with the random clock period
Tw. Different retimings give different distributions of Tw.
We always prefer the distribution with larger E(g(Tw)). As
traditional retiming algorithm is looking for minimum, we
introduce a disutility function disu(Tw) as the measurement
of the distribution. The smaller the disu(Tw), the better the
distribution. It could be derived from g as

disu(Tw) = 1/E(g(Tw)) (8)

Or use disu(Tw) = −E(g(Tw)) if E(g(Tw)) could be 0.
Another way of defining the disutility function is to derive

it directly from the mean and the variance of Tw

disu(Tw) = E(Tw) + ω ∗
p

E(Tw − E(Tw))2 (9)

where ω is the weight of the variance.

2.3 Statistical Retiming
Based on the discussion above, we define the statistical

retiming problem as following,

Problem 1 (Statistical Retiming). In a directed
graph G representing a circuit, gate delays are given as ran-
dom variables due to process variations. Suppose the min-
imal clock period on which the circuit could function cor-
rectly is Tw. We are required to retime G to achieve minimal
disu(Tw) for a given disutility function disu that measures
the distribution of the random clock period due to process
variations.

3. STATISTICAL TIMING ANALYSIS
From Section 2.1, the clock period Tw of a sequential cir-

cuit is determined by the combinational parts separated by
consecutive flip-flops. Given gate delays as random vari-
ables, we could compute the distribution of Tw by statistical
timing analysis techniques on combinational circuits.

One way to perform such computation is using the Monte
Carlo method to collect the distribution information by sim-
ulation. However, as the number of gates could be tremen-
dous, it requires many iterations to get reliable results.

Another way is to compute the distribution of Tw directly
from the distributions of gate delays. The hardest part is to
handle the correlations. Even if the correlation between gate
delays could be omitted, the correlation due to reconvergent
paths is known to be a problem. The method proposed by
Chang and Sapatnekar [4] based on Clark [5] solves the prob-
lem consistently. We prefer to use this method because it
could compute the distribution of the arrival time of each
gate, which could be reused between iterations in our algo-
rithm to achieve efficiency and accuracy.

This method begins with approximating the gate delays
d(v) as multivariate normal distribution. Then by using
principal component analysis, which can reduce the num-
ber of variables to make the algorithm efficient, we find m
uncorrelated, or equivalently, independent random variables
pi, 1 ≤ i ≤ m with standard normal distribution so that
after constructing the set

P = {a0 +

mX
k=1

ak ∗ pk : ai ∈ R, 0 ≤ i ≤ m} (10)

we have d(v) ∈ P. Obviously when X, Y ∈ P, we have
X + Y ∈ P. We could also approximate max{X, Y } with
some Z ∈ P. Then, according to (5) and (6), the clock
period of the circuit, Tw, could be approximated with some
element in P.

Although this approach is only an approximation, [4] shows
that the result is acceptable compared to the result obtained
by the Monte Carlo method.

4. STATISTICAL RETIMING ALGORITHM

4.1 Pushing Down Retiming
Compared with the traditional retiming algorithms [2] [3],

the pushing down retiming algorithm discovered by us fo-
cuses on iteratively adjusting the longest combinational path
in the circuit instead of checking whether a given clock pe-
riod is feasible. At the end of each iteration, it gives a re-
timed circuit with smaller clock period or proves the current
retiming is optimum. Below is the simplified pushing down
retiming algorithm. We omit some details in the condition
checking at line 9 for simplicity but they will be explained
following the algorithm.

Algorithm Pushing Down Retiming

INPUTS: G, w, d(v)
OUTPUTS: optimal maxT, r(v)

1. Set all r(v) to 0
2. Compute t(v) using (5)

3. Set maxT to maxv t(v)
LOOP:

4. Save current maxT and r(v) as optimal

132

5. Initialize stack and push all v
satisfy t(v) = maxT into it

6. While stack is not empty

7. Pop v from stack
8. If t(v) ≥ maxT
9. If there is a cycle in Gm

10. report optimal maxT and r(v)
11. algorithm termination

12. Increase r(v) by 1
13. Set t(v) to d(v)
14. For each fan-out u of v
15. If r(v) > w(v, u) + r(u)
16. Increase r(u) by r(v)− w(v, u)
17. Set t(u) to t(v) + d(u)
18. Else if r(v) = w(v, u) + r(u)

and t(u) < t(v) + d(u)
19. Set t(u) to t(v) + d(u)

Else

20. Continue the for loop on line 14
21. If u is not in stack
22. Push u to stack
23. Set maxT to maxv t(v)
24. Goto LOOP

The algorithm starts with the original circuit as the ini-
tial feasible solution. The initial arrive time t(v) is computed
one by one according to the order determined by a topolog-
ical sort [6] on Gw. Then the initial maxT is calculated,
which is the clock period of the current circuit.

In each iteration started at line 4, we find all the nodes
with the arrival time maxT and putting them into stack for
updating in the following While loop. Those nodes are the
end-points of the critical paths. In each loop, we adjust a
path with delay not less than maxT by moving a flip-flop
from the fan-outs toward the fan-ins. However, this may
change the arrival time of the fan-outs. So we update the
arrival time of such nodes and put them into the stack for
later updating if that is needed.

If we can retime the circuit to yield a smaller clock period,
we will leave the While loop with an empty stack and start
a new iteration. If not, we will stop the loop and report
the optimal solution. We perform the checking at line 9 as
follows. Let p(v) be the starting gate of the longest com-
binational path to v. Let m(v) be one of the gates which
satisfy δr(m(v)) < δr(v), where δr(v) stands for the increase
of r(v). When no such gate exists, we set m(v) to nil. The
graph Gm is constructed with the vertices as V and the edges
as v → m(v) when m(v) is not nil. The p(v)s are initialized
when we initialize t(v) on line 2. The m(v)s are set to nil
at the beginning. Then p(v) will be updated whenever we
change t(v) and m(v) will be updated whenever we change
r(v).

We proved the following result.

Theorem 1. When the pushing down retiming algorithm
terminates, we achieve the minimal clock period.

Furthermore, this algorithm is more efficient than the tra-
ditional ones based on binary search.

As this algorithm only needs local information when mak-
ing decisions on how to move the flip-flops and keeps valid
arrival time of each gate across iterations, we could com-
bine the method in [4] into such steps. That is the following
statistical retiming algorithm.

4.2 Statistical Retiming Algorithm
As stated in Section 2.3, we are required to minimize

disu(Tw). However, as we could not identify the longest
combinational paths when considering random delays, we
need to find the combinational paths so that after adjusting
them, disu(Tw) could be smaller. Because Tw = maxv t(v)
according to (6), we could adjust the gates with the max-
imum disu(t(v)). As maxv disu(t(v)) is not disu(Tw), the
chance we could get any improvement on disu(Tw) actu-
ally depends on whether the decreasing of maxv disu(t(v))
means the decreasing of disu(maxv t(v)) = disu(Tw). When
the algorithm terminates, we need to compute the distribu-
tion of Tw and then disu(Tw) so that we could check if we
get any improvement.

Algorithm Statistical Retiming

INPUTS: G, w, d(v)
OUTPUTS: optimal max disu and r(v)

1. Set all r(v) to 0 and all inc(v) to 0
2. Compute t(v) using (5)

3. Set max disu to maxv disu(t(v))
LOOP:

4. Save current max disu and r(v) as optimal

5. Initialize stack and push all v
satisfy disu(t(v)) = max disu into it

6. Set n to the number of element in stack
7. While stack is not empty

8. Pop v from stack
9. If disu(t(v)) ≥ max disu
10. If inc(v) > 2 ∗ n
11. report optimal maxT and r(v)
12. algorithm termination

13. Increase r(v) and inc(v) both by 1
14. Set t(v) to d(v)
15. For each fan-out u of v
16. If r(v) > w(v, u) + r(u)
17. Increase r(u) by r(v)− w(v, u)

and inc(u) by 1
18. Set t(u) to t(v) + d(u)
19. Else if r(v) = w(v, u) + r(u)
20. Compute t(u) by (5)

Else

21. Continue the for loop on line 15
22. If u is not in stack
23. Push u to stack
24. Set max disu to maxv disu(t(v))
25. Goto LOOP

In this algorithm, the sums and maximums of random
variables are computed by using the method in [4]. On the
line 19 and 20 of the algorithm, we need to compute t(u)
using (5) but not simply update it as in the counterpart of
the pushing down retiming algorithm.

This algorithm uses a different method from the push-
ing down retiming algorithm as shown on line 10 to check
whether max disu could be smaller. The method is based
on the observation that if max disu could not be smaller,
stack will never be empty so that r(v) will be increased to
infinity. Thus we use inc(v) to record the increase of r(v)
and 2∗n as the upper bound of such increasing. This method
may terminate the algorithm too early so that we could not
reach at global minimum. However, the experimental results
in Section 5 show we could gain much with it.

133

4.3 Alternative Algorithm
If the disutility function disu satisfies

disu(X + Y) = disu(X) + disu(Y) (11)

disu(max{X, Y } = max{disu(X), disu(Y)} (12)

where X and Y are random variables, according to (7) we
have

disu(Tw) = disu(max
l∈Lw

X
v∈l

d(v))

= max
l∈Lw

X
v∈l

disu(d(v))

Thus, we could compute disu(d(v)) at the beginning as gate
delays and use pushing down retiming algorithm to achieve
global minimum. We use this approach as our alternative
algorithm.

As (11) and (12) do not hold for most disutility func-
tions, the alternative algorithm may not give a global opti-
mum for them. However, when we use the disutility function
that makes (11) and (12) hold approximately, such as the
functions defined in (9), the alternative algorithm could still
optimize the circuit. But if we use the disutility function
like those defined in (8), the alternative algorithm will not
work. The experimental results shown in Section 5 confirm
our judgment.

4.4 Lowerbound on Disutility Functions
With the alternative algorithm above, we could give a

lowerbound of the disu(Tw) as Theorem 2.

Theorem 2. When the disutility function disu satisfies

disu(X + Y) ≥ disu(X) + disu(Y) (13)

disu(Z) ≥ 0 (14)

where X, Y , Z are random variables and Z is always larger
than 0, the lowerbound of disu(Tw) could be given as

min
w∈W

disu(Tw) > minT (15)

where W is the set of the locations of flip-flops after different
retimings and minT is the optimum obtained by the pushing
down algorithm with gate delays as disu(d(v)).

Proof. First, taking two random variables X and Y ,
from (13) we have

disu(max{X, Y }) = disu(X + (max{X, Y } −X))

≥ disu(X) + disu(max{X, Y } −X)

Then as the random variable max{X, Y }−X is always larger
than 0, from (14) we have

disu(max{X, Y }) ≥ disu(X)

Similarly we get disu(max{X, Y }) ≥ disu(Y). So,

disu(max{X, Y }) ≥ max{disu(X), disu(Y)} (16)

Thus with (13) and (16) and according to (7), we have

min
w∈W

disu(Tw) = min
w∈W

disu(max
l∈Lw

X
v∈l

d(v))

≥ min
w∈W

max
l∈Lw

disu(
X
v∈l

d(v))

≥ min
w∈W

max
l∈Lw

X
v∈l

disu(d(v))

= minT

When we use the disutility function by setting ω = 0
in (9), conditions (13) and (14) will be satisfied. So the
lowerbound minT is the minimum mean value of the Tw. We
will compare the results of our statistical retiming algorithm
and the alternative algorithm to this lowerbound in Section
5.

Because we only relies on the selection of the disutility
function but not the distribution of the delays, this lower-
bound holds for distributions other than the multivariate
normal distribution. And the lowerbound of the minimum
mean value of Tw could be computed according to the dis-
cussion above.

5. EXPERIMENTAL RESULTS
We implement the algorithms in standard C++ and run

them under RedHat Linux 9.0 with two 933MHz Pentium
III processor and 512M memory. The program itself could
only uses one cpu at a time. It could handle both the fixed
delays as well as random delays. The benchmark is selected
from ISCAS89.

The random gate delays are generated as following. m
is the square root of the number of the gates. a0 are uni-
form distributed on [1, 2]. Then ai, 1 ≤ i ≤ m are uniform
distributed such that

Pm
i=1 a2

i ≤ a0/3.
For every circuit, we retime it with both the statistical re-

timing algorithm and the alternative algorithm. The results
are divided into two tables by different types of disutility
functions. The resulting clock period Tw is computed using
the same method as the initialization in section 4.2. The
distribution of Tw is shown as E(Tw) +

p
E(Tw − E(Tw))2.

The running time of each test case depends on the size of
the circuit and ranges from several seconds to a few minutes.

Table 1 shows the results when we select the disutility
function as (9) and set ω to 0,1 and 3. The lowerbound
of the mean value is obtained when we set ω = 0 in the
alternative algorithm as stated in Section 4.4. From the
table we could see both algorithms give almost the same
results except for s15858, which may be caused by sticking
into a local minimum. And as the results are closed to the
lowerbound, the optimization is acceptable.

Table 2 shows the results when we use the disutility func-
tion as (8) with the following g(t)

g(t) =

8>><>>:
4.0, if t <

Tref

4

2.0, if
Tref

4
≤ t <

Tref

2

1.0, if
Tref

2
≤ t < Tref

0.5, if Tref ≤ t < Tref ∗ 2

where Tref is the reference clock period obtained as the sum
on the column* in Table 1. We also compute the Tw before
the retiming for comparing the algorithms. The results of

134

Table 1: Results when using disutility functions as (9)
circuit lowerbound alternative algorithm statistical retiming algorithm

ω = 0 ω = 1* ω = 3 ω = 0 ω = 1 ω = 3
s1196 36.89 37.92+1.60 37.92+1.60 37.92+1.60 37.92+1.60 37.92+1.60 37.92+1.60
s13207 81.51 83.17+1.99 83.17+1.99 83.17+1.99 83.17+1.99 83.17+1.99 83.17+1.99
s15850 63.37 67.69+1.28 67.64+1.27 67.67+1.27 102.56+2.17 102.18+2.14 101.35+2.15
s27 8.37 8.52+0.69 8.52+0.69 8.52+0.69 8.52+0.69 8.52+0.69 8.46+0.67
s38417 50.38 55.59+0.42 55.56+0.43 55.60+0.42 55.32+0.44 55.37+0.39 55.20+0.39
s38584 63.82 67.24+1.59 67.30+1.56 67.30+1.56 68.12+1.54 68.16+1.53 67.90+1.54
s400 10.33 11.77+0.55 11.88+0.56 12.17+0.62 11.77+0.55 11.86+0.54 11.82+0.50
s510 17.38 19.06+0.82 19.04+0.85 18.96+0.83 18.52+0.85 18.24+0.73 19.40+0.79
s5378 32.48 35.52+0.77 35.46+0.80 35.37+0.78 36.59+0.87 36.12+0.80 35.31+0.75
s9234 61.20 64.92+1.25 65.17+1.23 65.32+1.23 65.86+1.27 66.00+1.24 64.44+1.21

Table 2: Results when using disutility functions as (8)
circuit Tref alternative algorithm statistical retiming algorithm before retiming

Tw disu(Tw) Tw disu(Tw) Tw disu(Tw)
s1196 37.92+1.60 37.92+1.60 1.09 37.92+1.60 1.09 37.92+1.60 1.09
s13207 83.17+1.99 83.99+1.99 1.16 83.17+1.99 1.09 94.70+2.25 2.00
s15850 67.64+1.27 105.36+2.24 2.00 67.36+1.21 1.05 133.56+2.80 2.14
s27 8.52+0.69 8.52+0.69 1.09 8.52+0.69 1.09 8.52+0.69 1.09
s38417 55.56+0.43 56.80+0.79 1.73 55.21+0.41 1.01 70.30+2.49 2.00
s38584 67.30+1.56 79.36+2.32 2.00 67.84+1.55 1.15 89.02+2.41 2.00
s400 11.88+0.56 13.03+0.90 1.59 11.82+0.50 1.06 16.24+1.55 1.99
s510 19.04+0.85 19.30+0.90 1.15 19.06+0.81 1.08 18.08+1.41 1.05
s5378 35.46+0.80 38.27+0.88 1.98 35.74+0.73 1.14 41.22+1.48 2.00
s9234 65.17+1.23 66.54+1.37 1.37 64.58+1.22 1.04 68.07+1.58 1.74

the statistical retiming algorithm are optimized compared to
the original circuits. The results of the alternative algorithm
are not as good as the statistical retiming. That matches
our expectation in Section 4.3.

6. CONCLUSION
In this paper, we present a criteria called disutility func-

tion for measuring the distribution of clock period of fab-
ricated circuits and define the statistical retiming problem.
We propose a statistical retiming algorithm and an alterna-
tive algorithm to solve the minimal period retiming prob-
lem under process variations. For some kinds of disutility
functions, both of the algorithms give nearly the same opti-
mization results. For other kinds of disutility functions, the
statistical retiming algorithm is superior to the alternative
algorithm.

7. REFERENCES
[1] C. E. Leiserson and J. B. Saxe. Optimization

Synchronous Systems. Journal of VLSI and Computer
Systems, 1:41–67, 1983

[2] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6(1), 1991

[3] N. Shenoy and R. Rudell. Efficient Implementation of
Retiming. Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
pages 226-233, 1994.

[4] H. Chang, S. S. Sapatnekar. Statistical Timing
Analysis Considering Spatial Correlations Using A
Single PERT-like Traversal. Proceedings of the
IEEE/ACM International Conference on
Computer-Aided Design, pages 621-625, 2003

[5] C. E. Clark. The Greatest of a Finite Set of Random
Variables. Operational Research, Vol.9, No.2
(Mar.-Apr., 1961), 145-162

[6] T. H. Cormen, C. E. Leiserson, and R. H. Rivest.
Introduction to Algorithms. MIT Press, 1989

135

