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Abstract— Process variations in digital circuits make sequential
circuit timing validation an extremely challenging task. In this
paper, a Statistical Bellman-Ford (SBF) algorithm is proposed
to compute the longest path length distribution for directed
graphs with cycles. Our SBF algorithm efficiently computes the
statistical longest path length distribution if there exist no positive
cycles or detects one if the circuit is likely to have a positive
cycle. An important application of SBF is Statistical Retiming-
based Timing Analysis (SRTA), where SBF is used to check for
the feasibility of a given target clock period distribution for
retiming. Our gate and wire delay distribution model considers
several high-impact intra-die process parameters and accurately
captures the spatial and reconvergent path correlations. The
Monte Carlo simulation is used to validate the accuracy of
our SBF algorithm. To the best of our knowledge, this is the
first paper that propose the statistic version of the longest path
algorithm for sequential circuits.

I. INTRODUCTION

Process variations in digital circuits make circuit timing
validation an extremely challenging task. Variations on several
high-impact intra-die process parameters such as effective gate
length, wire width, and so forth, can easily invalidate the
timing predictions made before the fabrication [1]. Therefore,
statistical timing analysis tools that model gate and wire
delay as probability distribution function became increasingly
popular to tackle the timing validation under process variations
[2], [3], [4]. However, most of the existing works focus on
combinational circuits or sub-circuits (after FF removal) and
fail to address sequential circuit timing validation directly. Par-
titioning circuit into sub-circuits and solving the problem on a
sub-circuit by sub-circuit basis lead to a sub-optimal solution.
By considering the sequential circuit, timing analysis can be
done by using longest path algorithms that can handle graphs
with negative cycles such as the Bellman-Ford algorithm.
There are many CAD algorithms that adopt the Bellman-
Ford algorithm including scheduling[5], clock scheduling[6],
verification[7], and retiming [8]. A recent work on static
timing analysis for sequential circuits [8] allows the users to
model FFs and use them to predict the timing information
after retiming. This work achieves a significant performance
improvement by exploiting retiming-aware timing slack. Our
goal in this paper is to develop the Statistical Bellman-Ford
(SBF) algorithm. In addition, we show an application of SBF
on global placement using retiming [8].

In this paper, we first develop a Statistical Bellman-Ford
(SBF) algorithm to compute the longest path length distribu-
tion for directed graphs with negative cycles. We first prove
that a statistical extension of the original Bellman-Ford algo-
rithm correctly computes the longest path length distribution
for the true distribution, but it requires infinite amount of
time for the continuous distribution. Next, we show that two
straightforward extensions of the Bellman-Ford algorithm for
statistical analysis can not guarantee the correctness of the
results. Lastly, we propose our SBF algorithm that closely
approximates and efficiently computes the statistical longest
path length distribution if there exists no positive cycles or
detects one if the circuit is likely to have a positive cycle. Our
SBF algorithm is integrated into SRTA, where SBF checks for
the feasibility of a target clock period distribution for retiming.
We show that the final critical path delay distribution after
retiming is the statistical maximum among all primary outputs
and all feedback vertices. The Monte Carlo simulation is used
to validate the accuracy of our SRTA algorithm.

The remainder of the paper is organized as follows. Section
II presents our statistical Bellman-Ford algorithm. Section
III presents our statistical retiming-based algorithm and its
application in retiming. We present the experimental results
in Section IV and conclude in Section V.

II. STATISTICAL BELLMAN-FORD ALGORITHM

We first provide the analysis of statistical longest path algo-
rithm for the sequential circuit including its properties. Next,
we show that the simple modified Bellman-Ford algorithms
can not compute the statistical longest path correctly. Finally,
we propose a modified version of the Bellman-Ford algorithm
that closely approximates the statistical longest path length
distribution for the sequential circuit.

A. Statistical Longest Path Analysis

We first introduce a stochastic version of the Bellman-
Ford algorithm that correctly solves the stochastic longest
path problem for true distribution. Before we do so, we first
introduce some quantities in the probability theory that are
required to develop algorithms. For more precise definitions of
the quantities, see [9], [10]. Let Ω be the set of outcomes of a
fabrication process. A subset of Ω is called an event. Let P be
a function that assigns a probability to each event. A random



variable X : Ω → R
∗ maps each outcome � ∈ Ω to a number

in the extended real line R
∗ � [−∞,∞]. The probability that

a random variable X takes a value in a subset M of R
∗ is

P[�|X(�) ∈ M ]. Assume that the probability P determines
the joint (and hence, marginal and conditional) distributions
of all random variables of interest. Let G = (V,E) be a
directed graph with a source node s and a sink node t, and
w : E × Ω → R be an associated edge-length function,
which is a random variable for each edge (u, v) ∈ E. We
assume without loss of generality that there is no weight on
nodes (since we can push the weights on nodes to their fan-in
edges). Let K denote the number of directed simple (i.e., no
cycles) s − t paths in G, and li : Ω → R denote the length
of the ith path, i = 1, . . . , K. Also, let G(�) be the graph
G with length w(u, v)(�) on edge (u, v) ∈ E. If X is the
longest path of G, it is defined as follows: for each � ∈ Ω,
X(�) = max{l1(�), . . . , lK(�)}, if there is no positive cycle
in G(�), and X(�) = ∞, otherwise. The distribution of X is
determined by the probability measure P as mentioned above.
We define the Statistical Longest Path Problem as that of
finding the distribution of the longest s−t path in G = (V, E)
with edge length function w : E × Ω → R.

We extend the Bellman-Ford (BF) algorithm to obtain
the outcome-by-outcome Statistical Bellman-Ford algorithm
(oSBF). An illustration is shown in Figure 1. The algorithm is
similar to the original Bellman-Ford algorithm but it is called
for each outcome untill all possible outcomes are computed.
The algorithm starts by first initialize all variables in the
initialization step. The value of a[v] represents the arrival time
of node v. At the beginning, the arrival time of all nodes is set
to −∞, except the source node that has the value zero. After
that, the relaxation step is called. Similar to the Bellman-Ford
algorithm, the algorithm will stop when there is no update.
During the relaxation, for a given outcome, the algorithm
checks for all edges in the graph whether the value of sink
node of each edge is greater than the summation of the gate
delay of source node and the wire delay of that edge or not (the
delay contraint). The algorithm stops when there is no update
in the graph that is the value of sink node is greater than or
equal to the summation of the delay of source node and the
wire delay on the edge. During the positive cycles detection,
the algorithm checks for each edge whether, is there any edge
that violate the delay constraint. If there is an violation, the
algorithm return false, otherwise the algorithm returns true
with delay a[t] of the sink node.

As opposed to updating a certain set of constants (such
as arrival times a[i]) in the BF, at each step of the oSBF,
we are required to update certain random variables that are
functions on Ω by updating their values for each outcome
� ∈ Ω. As a result, the complexity of the oSBF is high
when the numbers of possible outcomes are large. In fact,
when random variables are continuous such as uniform random
variables, Ω has uncountably many elements, and the oSBF
cannot be carried out in practice (require infinite runtime).
However, its properties, which we prove here, are useful for
our approximation algorithm, presented in the next section.
Note that Monte Carlo simulation can be considered as an

oStatistical Bellman-Ford(G, w, s, t)

Initialization Step
for (each v ∈ V )

a[v](�) ← −∞, ∀� ∈ Ω;
a[s](�) ← 0, ∀� ∈ Ω;

Stop(�) ← NO, ∀� ∈ Ω;
g(�) ← −1, ∀� ∈ Ω;
iter ← 1;

Relaxation Step
while (Stop(�) = NO for some � ∈ Ω and iter < |V |)

iter ← iter + 1;eΩ ← {� ∈ Ω|Stop(�) = NO};
Stop(�) ← YES, ∀� ∈ eΩ;
for (each v ∈ V )

for (each � ∈ eΩ)
for (each edge (u, v) ∈ E)

if a[v](�) < a[u](�) + w(u, v)(�);
then a[v](�) ← a[u](�) + w(u, v)(�);

Stop(�) ← NO;

Positive Cycles Detection Step
for (each (u, v) ∈ E)

for (each � ∈ Ω)
if (a[v](�) < a[u](�) + w(u, v)(�))

g(�) ← +1;

Output Step
if (P[�|g(�) = +1] > 0)

then return FALSE;
else return TRUE and a[t];

Fig. 1. A description of outcome-by-outcome Statistical Bellman-Ford
(oSBF) algorithm

approximated version of the oSBF in which certain elements
of Ω are sampled according to probability P. The following
theorem proves the correctness of the oSBF algorithm.

Theorem 1: If P[�|G(�) has a positive cycle] = 0, then
a[i] from the oSBF has the same distribution as that of the
random variable representing the longest path from s to i,
i ∈ V . Otherwise, the oSBF returns FALSE.

Proof: For each outcome � ∈ Ω, the oSBF is equivalent
to the BF, which correctly calculates the lengths of the longest
s − i paths a[i](�), i ∈ V or correctly identifies a positive
cycle in G(�). Hence, when the oSBF terminates, the function
(random variable) a[i] and the longest s− i path are equal on
Ω1 � {� ∈ Ω|G(�) has no positive cycles} and are different
on Ω2 � {� ∈ Ω|G(�) has a positive cycle}. If P[Ω2] = 0,
then they are equal with probability one, and hence, have the
same distribution. Otherwise, there is a positive probability of
having a positive cycle. Therefore, the oSBF returns FALSE.

We define backward edges and nodes as follows:
Definition 1: For a given order of nodes P , (u, v) ∈ E is

a forward edge if u precedes v in P , and a backward edge
otherwise. In the latter case, node u is called a backward node.

Lemma 1: If a node order L = {s, v1, . . . , vn, t} is used in
the relaxation step of the oSBF, after j relaxation iterations,
a[i] from oSBF is the random variable representing the longest
(possibly not simple) s − i path in G that contains j − 1 or
fewer (possibly repeated) backward edges.1

1Similar proof was shown in [11]



Proof: Let B denote the set of all backward edges asso-
ciated with the order L. Then the subgraph GB � (V, E \B)
is a directed acyclic graph (DAG). Now we recall the update
step for node i in the relaxation step:

a[i] := max
u∈FI(i)

[
a[u] + w(u, i)

]
, (1)

where FI(i) � {u ∈ V |(u, i) ∈ E} is the set of fan-ins of
node i. At the first iteration of the relaxation step, when a[i] is
updated, a[u] = −∞ for all backward fan-ins u ∈ FIb(i) �
{u ∈ FI(i)|(u, i) ∈ B} because from Definition 1, nodes
u ∈ FIb(i) come after node i in the order, and hence, have
not been updated. Thus, at the first iteration of the relaxation
step, it is sufficient to perform relaxation on GB . Since GB

is a DAG, and L is a topological order of GB , a[i] represents
the longest s − i path that contains zero backward edge after
the first relaxation step.

Now suppose that the result of Lemma 1 is true up to some
j ≥ 1 (Induction Hypothesis 1: IH 1). At iteration j + 1 of
the relaxation step, we will show by induction that after a[i] is
updated using (1), it represents the longest s−i path containing
at most j backward edges. Consider the update for node v1.
Since s is the only node that precedes v1 in L, all other nodes
u ∈ FI(v1) are all updated after v1. By IH 1, a[u] represents
the longest s− u path with at most j − 1 backward edges for
all u ∈ FI(v1). From (1), the updated a[v1] is the longest
s−v1 path with at most j backward edges because any s−v1

path with c > 0 backward edges has the last edge being a
backward edge, and removing such an edge results in a path
with c − 1 backward edges.

Suppose that a[vi], i = 1, . . . , r are now the longest s − vi

paths with at most j backward edges for some r ≥ 1 (In-
duction Hypothesis 2: IH 2). Similarly, from (1), the updated
a[vr+1] is the longest s− vr+1 path with at most j backward
edges because any s − vr+1 path with c > 0 backward edges
either has the last edge being a backward edge and removing
such an edge results in a path with c − 1 edges (this case
corresponds to u ∈ FIb(vr+1), whose a[u] are, from IH 1,
the longest s−u paths with at most j−1 backward edges), or
has the last edge being a forward edge and removing such edge
results in a path with c backward edges (this case corresponds
to u ∈ FIf (vr+1) � {u ∈ FI(vr+1)|(u, vr+1) �∈ B} whose
a[u] are, from IH 2, the longest s − u path with at most j
backward edges). This completes the proof.

The following theorem improves the bound on the number
of iterations of the relaxation step when there is no positive
cycle. In the oSBF, the algorithm automatically terminates
once the number of relaxation iterations reaches this bound (by
the condition Stop(�) = YES for all � ∈ Ω). However, this
is not true when the distribution of each a[i] is approximately
updated. Hence, the bound from this theorem will be useful
for our approximation algorithm.

Theorem 2: If P[�|G(�) has a positive cycle] = 0, and a
node order L = {s, v1, . . . , vn, t} is used in the relaxation step
of the oSBF; then after k+1 iterations, a[i] from oSBF has the
same distribution as that of the random variable representing
the longest path from s to i, i ∈ V , where k is the maximum

number of connected backward nodes that can be in a simple
s − t path in G.

Proof: Since G has no positive cycles with probability
1, the longest s − t path is a simple path with probability 1.
According to the definition of k, the longest path has at most
k backward nodes and hence, at most k backward edges. The
theorem follows from Lemma 1.
The result from Theorem 2 can be applied to approximation
methods that are similar to the oSBF, except at each iteration
a[i], i ∈ V are approximately updated. More specifically, if
a[i] is a good approximation to the actual a[i] obtained from
the oSBF, then after k + 1 iterations, a[i], obtained from the
approximation method, is also a good approximation to the
actual longest s − i path. Hence, when there is no positive
cycle with probability one, we can stop the approximation
algorithm after k + 1 iterations.

B. Limitation of the Bellman-Ford Extensions

To the best of our knowledge, all proposed analytical models
for statistical timing analysis suffer from the error introduced
by the maximum function. This is because the output of
the maximum function results in a new form of distribution.
Unlike the true distribution, Bellman-Ford can return incorrect
results because of the error from approximated distributions
(such as the normal distribution approximation for the delay
distribution). This is because the original Bellman-Ford algo-
rithm is not designed to tolerate such error from stochastic
computation. More precisely, it is typically assumed that the
joint distribution of arrival times is fully characterized by
vectors of parameters θi, i ∈ V , which belong to a certain set
Θ, which is closed under addition2. For example, when each
node is assumed to be independently normally distributed, a
two-dimensional vector [µi, σ

2
i ]′ ∈ R × [0,∞) can be used to

describe the mean and variance of the arrival time of node i.
Let fmax : Θ × Θ → Θ denote the maximum function that
approximates the distribution of the maximum by a distribution
characterized by a vector in Θ. In this section, two examples
are used to demonstrate the drawback of simple extensions of
Bellman-Ford algorithms.

The first extension is to use the Bellman-Ford algorithm to
compute longest path length distribution as it is in a statistical
timing analysis. Based on the Bellman-Ford algorithm, after
all vertices are visited and there is still an updated edge, the
algorithm will report a positive cycle. Because of the error
from the approximation, it is possible that the algorithm can
keep update the graph after |V | iterations even when there
is no positive cycle. Given two distributions of the same
type, e.g., Gaussian distribution, the maximum function of two
distributions is likely to exhibit the new distribution which
is different from the input distributions. To make the timing
analysis simple, the approximated maximum function is used
instead that is assuming that the output of maximum distri-
bution results in the same distribution as the input. Note that
the good approximated maximum function should result in the

2A set A is closed under addition if for any a, b ∈ A, we have a+ b ∈ A.
This assumption leads to efficient propagation procedure which, however, can
be relaxed.
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Fig. 2. Illustration of Bellman-Ford update

new distribution that is greater than both input distributions.
If the graph has at least a cycle, it is possible that the error
from the approximated maximum distribution can result in the
repeatly update of the graph over the cycle even though there
is no new information propagated from that path or positive
cycle. An illustration is shown in Figure 2(a). At the first
iteration, an input arrives at node A with value a. Flip-flop B,
buffer C, and gate D have delay b, c, and d, respectively. The
output value of node D is D(1) = fmax(a,C(0)) + d = a + d,
where C(0) denotes the vector describing the distribution of
the arrival time of gate C at iteration 0. After the signal
propagates through flip-flop B and gate C, the new value of
node D becomes D(2) = fmax(a, a + d + b + c) + d. Let
�(2) = D(2) − D(1) denote the change in the value of node
D. Now if d+b+c is originally negative with probability one,
but its distribution is approximated by that of a negative-mean
random variable with a small probability of being positive
(for example, a normal random variable with mean -10 and
variance 9), then we cannot guarantee that �(2) will be a zero
vector. Alternatively, even if the true distribution is initially
used, the error from the maximum function could result in the
same situation. After one more iteration of the Bellman-Ford,
D(3) = fmax(a,D(2) + b + c) + d = D(2) + �(3). A similar
argument shows that �(3) may not be a zero vector either.
We observe from related experiments that �(i), i = 1, 2, . . .
are small but might not become zero vectors after the |V |
iterations; consequently the algorithm reports a positive cycle.

The second extension is to introduce error bound on longest
path length distribution updates, which is named eSBF (error-
bounded Statistical Bellman-Ford) algorithm.3 Specifically,
when the change in the distribution (for example the norm
of �(i)) is less than such a bound, we consider it as no
update. Although, imposing a positive error bound δ can help
the Bellman-Ford algorithm terminate when the graph has no
positive cycle, it could cause the Bellman-Ford to stop too
early when δ is too large. Consequently, from Lemma 1, some
paths are not considered if it stops before k + 1 iterations.
Figure 2(b) shows an example in which the delay from path
A is ignored as follows: Assume that the arrival time value of
node D at iteration i is Di. The total delay on path A,B, C,
and gate D are a, b, c, and d respectively. If the change of the

3We use this algorithm in comparison with other Bellman-Ford extensions.

Statistical Bellman-Ford(G, w, s, t,Pa)

Reachability Check Step
DFS(s); // find all backward edges
backward node ← 1;
for (each v ∈ V )

if (backward edge connected to v)
backward node ← backward node + 1;
list backward node ← v;

max k ← 0;
for (each v ∈ list backward node)

k ← DFS’(v); // backward nodes connected with v
if (max k < k)

k ← max k;

Initialization Step
for (each v ∈ V )

a[v] ← −∞;
a[s] ← 0;

Relaxation Step
for (iter ← 1 to k + 1)

for (each v ∈ V )

a[v] ← maxu∈FI(v)

h
a[u] + w(u, v)

i
;

Checking Positive Cycles Step
P(cycle) ← check pos cycle();

Output Step
if (P(cycle) ≤ Pa)

then return FALSE;
else return TRUE and a[t];

Fig. 3. k-Statistical Bellman-Ford algorithm (kSBF) used in our SRTA
(statistical retiming-based timing analysis)

arrival time at D resulting from delay propagated through A,
which is �(i+1) = fmax(fmax(D(i) + c, b), a) + d − D(i), is
considered to be small with respect to the error bound δ, and
the arrival time of node A has no further update, the algorithm
could terminate without updating D. The information from
path A is hence not propagated to the calculation of some other
arrival times. As a consequence, the distribution of some s− t
paths that contain path A is not accounted for. Depending on
the circuit structure, the total error due to this early termination
could result in large error in the arrival times.

C. Statistical Bellman-Ford Algorithm

Our last extension of Bellman-Ford algorithm, named k-
Statistical Bellman-Ford (kSBF), is shown in Figure 3. This
is an algorithm that closely approximates and efficiently
computes the longest path length distribution of directed
graphs with negative cycles. We thus use kSBF in our SRTA
(statistical retiming-based timing analysis) introduced in the
next section. First, a depth first search algorithm is called to
identify all backward edges and sort the nodes in a topological
order. For each backward node, we call the depth first search
DFS′ by setting this backward node as a source node.
DFS′ returns the maximum number of connected backward
nodes reachable by a simple path from the given source. The
maximum number of connected backward nodes of the graph
(=k) is the largest number obtained by the DFS′ algorithm.
Note that this reachability algorithm needs to be performed
only once. If all backward nodes are likely to be connected, the
reachability step is not required, and instead, the total number



of backward nodes can be used.
After the maximum number of connected backward nodes

of the graph is found, we initialize the arrival times of all
nodes. Next, the relaxation step is called. For stochastic longest
path, k + 1 iterations are required (from Theorem 2). After
the relaxation is done, all simple paths from source to sink
are considered according to Theorem 2. Then the stochastic
positive cycle detection algorithm is used. We implement a
stochastic positive cycle detection algorithm proposed in [12].
The positive cycle detection algorithm starts by first finding
all backward edges. Then, it randomly pick a backward edge.
Then, it creates a new graph G′ by assigning sink node of
the backward edge to be a new source node of G′ and a
source node of that backward edge to be a new sink node
of G′. Then, depth first search is performed on G′ to find the
new set of backward edges and then remove this new set of
backward edges from G′. After that, the maximum delay of
G′ is computed from source node to sink node of the graph
(G′). The algorithm is randomly performed for M iterations,
when M is an input parameter. Finally, the algorithm computes
the probability of having positive cycle, the probability of
the maximum of the delay distribution of all new M sink
node greater than zero. If the probability of having no positive
cycle is less than an acceptable probability, it returns FALSE,
otherwise returns TRUE.

III. STATISTICAL RETIMING ANALYSIS

The reason that global placement is employed because the
process variations can affect both gate and wire. With the in-
creasingly important of wire delay, any optimization/modelling
technique should target both gate and wire delay. In addition,
spatial correlation information will be available only after
placement. Note that Statistical Retiming based Timing Anal-
ysis (SRTA) is used to compute the timing solution of final
placement only.

A. Modelling Delay Distribution

In this paper, the delay distribution model is based on the
first order delay model from [4]. We assume that each gate
and wire has the Gaussian distribution. Elmore delay model
is used for wire delay computation based on the following
equation (similar to [2]):

dint = d0
int +

∑
i∈Γg

[
∂d

∂Li
g

]�Li
g +

∑
i∈Γg

[
∂d

∂W i
g

]�W i
g

+
∑

i∈Γint

[
∂d

∂T i
int

]�T i
int

where d0
int is expected value of wire delay. Γg and Γint

are the set of grids where all the receiver reside and the
interconnect tree traverses, respectively. �Li

g , �W i
g , and

�T i
int are random variables representing the variation over

the expected value of transistor length, transistor width, and
metal thickness respectively. The differentiations are derived
based on transistor and wire delay model from [13], [14].

Principal component analysis technique (PCA), similar to
[2], is used to derived the first-order form for arrival time
delay distribution. The basic idea of PCA is to classify input

coefficient into orthogonal terms so that each coefficient term
is uncorrelated. Reconvergent correlation can be efficiently
handled by PCA. We use a grid hierarchical model for spatial
correlation [2]. If two gates are located near each others, they
are more correlated than putting them far apart.

There are four operations involved during statistical sequen-
tial arrival time computation: maximum, minimum, addition,
and subtraction operations. The addition and subtraction of two
Gaussian distributions result in another Gaussian distribution.
The coefficient of each term in the first order model can be
added and subtracted directly. Maximum and minimum func-
tions require the tightness probability calculation [4], which
is derived from [15]. Based on this model and the assumption
that the maximum and/or minimum of two Gaussian distri-
butions result in a new Gaussian distribution, the coefficient
results can be expressed as the summation of product between
input distributions and tightness probabilities.

In this paper, wire delay is computed based on Elmore
delay model. Since the actual wire distance is not known
until routing has been done, the approximated analytical model
similar to [16] is used instead. We assume 10% variations in
each process parameter terms.

B. Bounds on Target Clock Period

Here, we provide a theoretical result on the bounds of the
target clock period, φ, which will be useful in the binary search
procedure. Recall that the target clock period is set to the
smallest value for which the graph G = (V, E) has no positive
cycle, and the arrival time of the sink node, a[t], is no larger
than φ. Let the delay of the ith directed simple s−t path in G
be represented by li = ψi−κiφ, where ψi denotes the sum of
gate and wire delays along path i, and κi denotes the number
of flip-flops in path i. Let C denote the number of directed
cycles in G, and ζj = ξj − σjφ denote the total delay of the
jth directed cycle, where ξj denotes the sum of gate and wire
delays along cycle j. σj denotes the number of flip-flops in
cycle j. Now φ is the smallest number that satisfies

φ ≥ a[t] = max
i=1,...,K

{ψi − κiφ} (2)

ζj = ξj − σjφ ≤ 0 j = 1 . . . , C. (3)

Equivalently, the target clock period is given by

φ = max
[

max
i=1...,K

{
ψi

κi + 1

}
, max
j=1...,C

{
ξj

σj

}]
(4)

Recall that each gate and wire delay is a random variable, and
hence, ψi and ξj , which are sums of gate and wire delays,
are random variables. Let φl

d, φ
m
d , φu

d denote the values of φ
obtained from (4) when all gate and wire delays are replaced
by their lower bounds (best case), means (average case), and
upper bounds (worst case), respectively. It is obvious that φ,
which is a random variable, is in [φl

d, φ
u
d ] with probability one.

Moreover, as we show in the theorem below, the mean of φ
is bounded below by φm

d .
Theorem 3: Let E[φ] be the mean (expected value) of φ.

Then φl
d ≤ φ ≤ φu

d with probability one, and φm
d ≤ E[φ].



Proof: Only the mean case needs a proof. Equation (4)
implies

φ ≥ ψi

κi + 1
, i = 1, . . . , K φ ≥ ξj

σj
, j = 1, . . . , C

Since the ψi and ξj are the sum of gate and wire delays,
and κi and σj are constants, the expected values of the right-
hand-side terms of the inequalities above can be obtained by
replacing all gate and wire delays by their means. As a result,
taking the expectation on both sides of the inequalities shows
that the mean of φ is greater than each right hand side term
under a deterministic average case. This implies that the mean
of φ is greater than the maximum of all such terms (φm

d ).
Note that the bounds φl

d, φ
m
d , φu

d can be obtained by solving
deterministic longest path problems.

IV. EXPERIMENTAL RESULTS

Our algorithms are implemented in C++/STL, compiled
with gcc v3.2.2, and run on a Pentium IV 2.4 GHz machine.
The benchmark set consists of six big circuits from ISCAS89
and five big circuits from ITC99 suites.

Table I shows a comparison of the results obtained by using
Monte Carlo simulation, the modified Bellman-Ford algorithm
with the error bound (eSBF), and the modified Bellman-
Ford with k + 1 iterations (kSBF) on 8x8 dimension. Monte
Carlo simulations are performed using 10,000 samples. We
report the expectation (mean) and standard deviation (sigma)
of the retiming delay distribution. We note that both eSBF
and kSBF provide close results to Monte Carlo simulation
results, especially in terms of the mean value. kSBF provides
more accurate results than eSBF because, as pointed out in
section II, eSBF can ignore some paths during its computation.
Note that it is possible that eSBF can outperforms kSBF since
kSBF may require more iterations than necessary. Because
of the error arising from the analytical model, the higher the
number of iterations, the more the error that is accumulated.
However, most of the cases, kSBF is more accurate that
eSBF. Both eSBF and kSBF substantially outperform Monte
Carlo simulations in terms of runtime. The runtime reported is
average runtime. Note that before using the bounds on target
clock period, average runtime of kSBF is 9.4 hours. The bound
can help reduce runtime substantially. Thus, we conclude
kSBF, however, requires longer runtime than eSBF because
of the higher the number of iterations required compared to
eSBF. Figure 4 shows the comparison among Monte Carlo
simulations, eSBF, and kSBF on s5378 benchmark. The solid,
dotted, and dashed lines represent Monte Carlo simulation,
eSBF, and kSBF, respectively. Results show that kSBF can
provide a distribution similar to that of Monte Carlo simula-
tions. In this case, it shows that kSBF is better since eSBF
stops early and can ignore some paths.

V. CONCLUSIONS

In this paper, a Statistical Bellman-Ford (SBF) algorithm
is proposed to compute the longest path length distribution
for directed graphs with cycles. We use SBF in our Statistical
Retiming-based Timing Analysis (SRTA), where SBF is used
to check for the feasibility of a given target clock period

TABLE I

THE COMPARISON BETWEEN DETERMINISTIC MONTE CARLO

SIMULATION, ESBF, AND KSBF ON 8X8 DIMENSION

ckt monte eSBF kSBF
mean std.dev. mean std.dev. mean std.dev.

s5378 179.65 6.27 163.29 5.49 179.47 6.51
s9234 229.24 16.18 164.58 7.14 225.53 10.51

s13207 304.93 13.27 279.47 8.72 305.76 13.05
s15850 363.16 15.83 317.32 7.57 363.37 15.72
s38417 187.11 4.53 184.95 5.28 189.00 8.41
s38584 437.02 19.41 399.62 10.45 436.75 19.33
b14o 161.19 10.70 117.42 5.37 160.43 5.31
b15o 247.00 10.00 212.72 18.45 247.88 10.23
b20o 259.68 9.03 229.16 6.12 267.12 9.33
b21o 267.57 6.18 240.01 4.08 267.98 9.24
b22o 286.63 18.92 300.49 25.17 320.62 15.26

runtime 21 days 2.7 hours 3.7 hours
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Fig. 4. The Distribution Comparison among Monte Carlo simulation (solid),
eSBF (dotted), kSBF(dashed)

distribution for retiming. Our Monte Carlo simulation validates
the accuracy of our SRTA algorithm.
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