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Abstract

VLSI circuit manufacturing may result in devices with different propagation delays. Hence, the
estimation of such delays during the design procedure may not prove totally accurate due to the fabrica-
tion process. This paper presents a new optimization methodology, called probabilistic retiming, which
transforms a circuit based on statistical data gathered from the production history. Such circuits are
modeled as graphs where each vertex represents a combinational element that has a probabilistic timing
characteristic. A polynomial-time algorithm, applicable to such a graph, is developed which retimes a
circuit in order to produce a design operating on a specified cycle time c within a given confidence level
0. In other words, the clock cycle of the retimed circuit is guaranteed to be less than or equal to ¢
with at least probability 8. Experiments show the effectiveness of the algorithm, subject to the designer
requirements and to the manufacturing information, which is able to significantly improve the confidence

in the fabrication yielding factors.

1 Introduction

In VLSI design, engineers are normally facing the problem of designing a circuit able to achieve a given
time constraint. The circuit transformation technique called retiming is an optimization tool commonly
used in achieving such a goal [8]. Nevertheless, the information about the execution time® of each circuit
component is uncertain since, in general, two equal elements may have different running time due to the
fabrication process. The use of estimated values of the execution time in the synthesis process, to guide
the design, may not always be correct and, therefore, the system may need to be redesigned. This paper
presents a polynomial-time circuit transformation algorithm, called probabilistic retiming, which considers
the probabilistic nature of the timing characteristic of the basic elements of the circuitry, producing a circuit
able to satisfy the time constraint specification within a given confidence level. As traditional retiming
has great impact to the optimization problem of various applications, this new technique may give similar

effectiveness to various applications with uncertain characteristics.
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INote that we will use the term execution time and propagation delay interchangeably.



In the traditional retiming, Leiserson and Saxe [8] presented a polynomial-time algorithm that transforms
a circuit into an equivalent one within a given and feasible clock period, preserving its functional behavior.
Malik et al. [12] generalized the idea of retiming and re-synthesis by allowing negative registers during the
optimization phase so that a larger portion of a circuit could be viewed as a single block. Such an operation
is legal as long as those negative registers were returned to the environment after re-synthesizing the circuit.
In [3,10], retiming algorithms were also developed to address the problem of multi-phase, level-clocked
circuitry. However, all of these contributions considered the propagation delay of the elements in the circuit

as a fixed value, ignoring the uncertainty of the manufacturing process.

Many other researchers implicitly adopted the worst case timing information as one of their design
assumptions. In particular, Ishii modified the retiming technique in such a way that it can also handle
precharged structures and gated clock signal circuitry [2]. Dey, Potkonjak and Rothweiler proposed a method
to enhance retiming by transforming sequential circuits [1]. A large number of applications of retiming were
explored, always making the use of the same assumption, such as the work of Shenoy and Brayton [16],
Lockyear and Ebeling [11], Liu et al. [9]. Lower bounds were computed, such as the work by Papaefthymiou,
based on the minimum clock period presented in terms of the delay-to-register ratio, which can be yielded

by retiming a circuit without considering the probabilistic behavior [14].

More comprehensive delay models were proposed by Soyata, Friedman and Mulligan [17,18], while Lalgudi
and Papaefthymiou [7] presented an efficient retiming algorithm based on monotonic programming. In their
studies, a more realistic timing behavior of reading from and writing to registers was presented. It does not,
however, demonstrate the variance of circuit delays due to the manufacturing process. Recently, Karkowski
and Otten introduced a model to handle the imprecise propagation delay of events [4]. In their approach, the
fuzzy set theory [19] was employed to model the imprecise delays with only three possible values. Multiple
objective linear programming [6] was chosen to reduce the uncertainty of such delays. Nonetheless, this
model is restrict to a simple triangular fuzzy distribution and does not consider probability values, usually

easy to obtain from the quality control of the fabrication process.

In order to generalize the idea of having imprecise delays, the probability theory must be applied to
model the variance of such delays. In this paper, propagation delays are assumed to be random variables
that are associated with their probability distributions. The retiming technique is, then, extended to optimize
circuits under probabilistic environments. In order to establish this methodology, a circuit is represented
as a graph where a vertex set V is a collection of combinational logic components, associated with random
variables representing the propagation delays. Edges in the graph represent the interconnections between
components which may route through zero or more registers. The probability distribution of the execution
time is denoted by P (X = x), where X represents the propagation delay for a component and x is one of the

possible values [5,13].

For example, Figure 1(a) illustrates a graph G in which the set of vertices has the nodes A, B, C, D, and

E. Assume such nodes have the following timing characteristics:



NodeA:P(XX){ (]7 gzi;’ NodeB:P(XX){ ?7’ ifii;’

and

Node E : P(X = x) { 2 Hx=1,

Figure 1(b) shows a graph which considers the execution time of each vertex based on the worst case
analysis of the propagation delays. The maximum propagation delay of the paths that contains no registers,
termed clock or cycle period of the graph G, ®(G), is 8. Based on the worst case scenario, the traditional
retiming gives the “best” circuit shown in figure Figure 1(c). But due to the variance of manufacturing, the
best retiming obtained by the worst-case scenario may produce less optimal circuits. One might wish to
retime G in order to obtain ®(G) = 3 with the consideration of the manufacturing uncertainty. It is obvious
that the desired cycle time cannot be achieved from the worst case analysis. However, since the propagation
delay associated with each component is a random variable, a designer might wish to produce a circuit in
such a way that, with at least 70% confidence, the final produced systems could operate at a cycle time less

than or equal to 3.
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(a) graph (b) worst case (c) traditional (d) probabilistic
Figure 1: An example of 5-node graph

Let us investigate the retimed graph presented in Figure 1(d). By using the probability theory, we
can calculate the probability distribution of the total execution time of the paths that go through zero
registers and compute the possible maximum values from them. If Y is the random variable representing
the mazimum of the cumulative propagation delays between any path that has no registers on it, then
P(Y = 2) =0.026,P(Y = 3) = 0.703, and P(Y > 4) = 0.271. Now after manufacturing, it is most likely
(approximately 80%) that the propagation delay of node A will be 3 and about 90% that node E will take
one time unit. Consider that the execution time of nodes B, C, and D is 2. Therefore, the configuration in
Figure 1(c) will have the clock period ®(G) = 5 while the clock period of the graph in Figure 1(d) will be 3.

Notice that the probability of the random variable to Y assume a value y > 3 is less than 0.3. Con-
sequently, the retimed graph in Figure 1(d) has satisfied the designer requirements that the probability of



®(G) < 3 is greater than or equal to 70%, i.e., the probability of ®(G) > 3 is less than 0.8. The algorithm
able to achieve such results is described in the remainder of this paper which is organized as follows: Sec-
tion 2 presents some basic fundamentals of the model. The probabilistic retiming is discussed in Section 3.
Some experimental results are presented in Section 4. Finally, Section 5 concludes the contribution of this

research.

2 Preliminaries

In this section we introduce the model used in the probabilistic retiming problem. The terminology and
some notations relevant to this work are also discussed. We begin by presenting the graph model which is

the representation of the circuit.

2.1 Graph model

A circuit that contains functional elements associated with probability distribution of propagation delays

can be modeled as a probabilistic graph (PG). The following gives the formal definition for a PG.

Definition 2.1 A probabilistic graph (PG) G = (V,E,d,t) is a vertex-weighted, edge-weighted, directed
graph where V is a set of nodes and each node represents one of the circuit functional elements, E is a set
of edges representing the circuit interconnections, d is a function d : E — Z representing the number of
register counts on an edge, and t is a function t : V +— R where R is a set of discrete random variables of

propagation delay.

The notation P(T = x) is read “the probability that the random variable T assumes the value x”. Each
vertex v € V is weighted with a probability distribution function (pdf) of execution time, given by t(v) =
P(T, = x), where T, is a discrete random variable associated with the set of possible propagation delays of
the vertex v such that } P(T, =x) = 1. As an example, the set of vertices V = {A, B, C,D, E} in Figure 1(a)

Vx
have their pdfs presented in Table 1.

vev v=X P(Ty =x)
x1 | x2 | P(Tv=x1) | P(Ty=x2)
A 2 3 0.8 0.2
B 1 2 0.5 0.5
C 1 2 0.7 0.3
D 1 2 0.9 0.1
E 1 3 0.9 0.1

Table 1: pdf of the vertices in Figure 1(a)

An edge e € E from vertices u to v is denoted by u = v and a path p starting from a node u and

ending at a node v is indicated by the notation u ¥> v . The register count of a path p = vo@ > ey >>

k-1
vi@ >e; >>---@ > g1 >> v is d(p) = >_d(ei). As an example, Figure 1(a) has the set of edges
i-0



E=A3BABCAI3IDBIAECSBEDSE andE 35 A. The register counts of each edge e € E is
d(e;) =2, and d(ey) =0,fori=1...6.

2.2 Two-dimensional random variables

Since the propagation delay of a vertex is a random variable, an operation between two random variables of
two dependent vertices involves a function of two-dimensional random variables, i.e., two or more numerical
characteristics must be observed simultaneously. In this section, some notions about two-dimensional random

variables [5], which will be used extensively in probabilistic retiming, are discussed.

For a sample space S associated with an experiment £, and X = X(s) and Y = Y(s) being two one-
dimensional random variables that assign a real number to each outcome s € S, a two-dimensional discrete
random variable is denoted by (X,Y) if the possible values of (X,Y) are finite or countably infinite. Notice
that for an n-dimenstonal random variable, the n-tuple (Xy, ..., X,,) is applied where X; = X;i(s),i=1...n,

is a function mapping a real number to every outcome s € S.

If (xi,y;) is a possible outcome of a two-dimensional discrete random variable (X,Y), then p(xi,y;) =

P(X =xi,Y =yj) satisfies the following conditions:
(]) p(Xi>Uj) ZO V(X)U))

oo o0
(2) > D plx,y) =1
j=1i=1
We assume that the execution time T, associated with any vertex v € V is independent of the other.

Therefore, if X and Y are independent random variables, any possible outcome of X does not influence the

outcome of Y, i.e., the random variables X and Y are independent if and only if, for all 1,7,

P(X:Xi,Y:yj) ZP(XZXi) XP(Y:yj).

For instance, consider two independent combinational elements « and (3. Let T, and Tg be two random
variables describing the set of possible propagation delays for the elements o and {3 respectively. For the
circuit «, let P(Toe =1) = 0.3, P(T =4) = 0.7 while P(Tg =2) = 0.9, P(Tg =5) = 0.1 are the pdf of circuit
B. Thus P(Ta =1,Tpg=2)=P(Te=1) x P(Tg =2) =0.27.

Consider ©® = H(X,Y), a function of two random variables X and Y. Hence, ©® = O(s) is also a random
variable. In order to compute a function of two random variables, H(X,Y), the following sequence of steps
must be considered: first, evaluate the possible outcome s of the experiment £. Then compute the values
for X(s) and Y(s). Finally, we can compute the number ® = O(s) = H(X,Y).

Note that O is now a one-dimensional random variable. If X and Y are both independent of each other, we
can simply calculate the pdf of ©. As a demonstration, consider A = X+Y, a one-dimensional discrete random
variable that is computed by the addition of the discrete random variables X and Y, and M = max(X,Y),

obtained from finding the greatest value among all pairs of items of X and Y. As an example, consider the



X X
1 2 7| ply) () 1 2 7| ply)
2 3(0.16) | 4(0.40) | 9(0.24) | 0.8 2 2(0.16) | 2(0.40) | 7(0.24) | 0.8
Y 3 4(0.02) | 5(0.05) | 10(0.03) | 0.1 Y 3 3(0.02) | 3(0.05) | 7(0.03) | 0.1
4 5(0.02) | 6(0.05) | 11(0.03) | 0.1 4 4(0.02) | 4(0.05) | 7(0.03) | 0.1
p(x) 0.2 0.5 03| 1.0 p(x) 0.2 0.5 03| 1.0

(a) Example of P(A =X+Y) (b) Example of P(M = max(X,Y))

Table 2: Results from computing A and M

assignments for X and Y as following:

02 ifx=1, 0.8 ify=2,
px)=P(X=x)=<¢ 05 ifx=2, py)=P(Y=y)=< 0.1 ify=3,
03 ifx=7 0.1 ify=4.

We demonstrate the calculation of the discrete random variable A by using Table 2(a). Note that o(m), in
each entry represents a possible addition output o and its probability 7t. Since both X and Y are independent,
the probability 7, then, is calculated from P(X = x) x P(Y = y). Table 2(b) presents the results of the
maximum of the two random variables X and Y. The pair of numbers p(7t) in each entry represents the
possible maximum result p, and 7 is the probability associated with p. The pdf associated with A and M

are presented in Table 3.

Possible values (o, 1)
2 3 4 5 6 7 8 9 10 11
P(A =o0) 0.00 | 0.16 | 0.42 | 0.07 | 0.05 | 0.00 | 0.00 | 0.24 | 0.03 | 0.03
P(M =) | 0.46 | 0.07 | 0.07 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 [ 0.00

Table 3: The pdf of A and M

3 Probabilistic Retiming

Since the propagation delay of each vertex is now a random variable, the traditional notion of a global clock
period, ®(G), for a graph G is no longer valid. Therefore, we define a new concept, maximum reaching time
(mrt) which represents the maximum possible clock period? for a node in the probabilistic graph (PG). This
notion is essential in deciding the retiming function r. The algorithm for computing mrt is presented as a

basic tool for the probabilistic retiming algorithm.

3.1 Retiming with maximum reaching time

In the traditional retiming, the clock period is given by ®(G) = max{t(p) : d(p) = 0}, where t(p) is the total
execution time of the path p, and d(p) is the number of registers along that path. In this paper, since the

2We can call mrt “clock period” if all random variables are replaced by some exact values.



execution time of each vertex along the path is a discrete random variable, the sum of propagation delays of
all dependent vertices that are connected by a path u %, v which contains no registers establishes a varying

clock period due to the several possible propagation delays.

First of all, let us introduce two basic functions of random variables, summation and maximum, which

are needed in computing the maximum reaching time (mrt).

Definition 3.1 Let Ty and T, be two random variables of propagation delay associated with two vertices v

and v, where vi — v, . The summation function is defined as A. = T + Ta.

Note that the summation function can be extended to handle n random variables of vertices along a path p,
Ap, by applying the function successively to each pair of the random variables, i.e., the summation is closed
under associativity property. The probability associated with the summation function can be computed by

the following lemma:

Lemma 3.1 Let T, and T, be two independent discrete random variables representing the propagation delays
of nodes u and v, and A = T, + T,. Then the pdf of A is computed by P(A =x) =} s, P(Tw =

Xm) X P(T, = xn ), where X,y + Xn, = X.

Proof: Immediate from the definition of function of two independent random variables. a

As an example, let x; = 1,x, = 2 be the possible values of T,, and y; = 2,y> = 3 be the possible
numbers of T, with the pdfs, P(T. =1) = 0.5, P(T, =2) =05, P(T, =2) = 0.3, and P(T, = 3) = 0.7.
If A=T,+T,, then P(A = 3) = 0.15,P(A =4) = 0.5, and P(A = 5) = 0.35. The following function
determines the maximum possible values between two random variables computed from the summation

function.

Definition 3.2 Let A7 and A, be two random variables. The maximum function is defined as M =

max(Aq,A>), where M is the set of possible greatest values produced from A7 and A,.

The definition for the maximum function can be easily generalized for computing the maximum among n
random variables, Aq,..., A, by computing the function in pairs, repeatedly. Consider the case where edges
a3d,b3d,and c 3 d are associated with the random variables A, A, and Az, computed according
to Definition 3.1. Let hi(x) = P(A; = x) such that
_ ) 05 ifx=1, _ ) 04 ifx=2, _} 02 ifx=3,
mix) = { 05 ifx=2 = { 06 ifx=5 mX= { 08 ifx =4,
The possible greatest values M = max(A1, Az, As) are 3,4, or 5. The probability associated to the maximum

function can be computed by the lemma below:

Lemma 3.2 Let A and A, be two indepedent discrete random variables and M = max(A,A;). Then the
pdf of M is given by P(M =x) =} . P(A1 =xm) X P(A2 =Xy ), where max(Xm,Xn) = X.

Proof: Immediate from the definition of function of two independent random variables. a



To illustrate this lemma, consider the previous example, if p(x) = P(M = x), then, p(3) =1x04x0.2 =
0.08, p(4) =1 x 0.4 x0.8=0.32, and p(5) =1 x 0.6 x 1 =0.6. Having defined the basic operations above,

we can now state the definition of mrt as following:

Definition 3.3 Let u X} v, i = 1...n, be the possible paths between two nodes u and v containing zero
register count, and A,,, be the summation of propagation delays of the vertices along the path p;. The

maximum reaching time (mrt) among the paths p; from u to v is ¥(v) = mrt(u,v) = n@ax(Ap.l ).
1

As in the original retiming, we want to optimize the clock period of PG. Since the propagation delay of each
vertex is uncertain, the goal of retiming the graph must be extended in such a way that the probability of
WY(v) < ¢, where c is the desired clock period, is larger than the confidence level 0, i.e., the probability of
W(v) < c is strictly less than some acceptable probability value 6 = 1—0 for all nodes v in the graph. In other
words, the probability of the greatest possible value of mrt with respect to each path will be minimized.

The following theorem expresses such a condition.

Theorem 3.3 Given a PG G = (V,E,d,t), u %, v, and a desired clock period ¢ within a confidence prob-
ability 8 = 1 — 35, i.e., P(¥(v) > ¢) < §, is equivalent to having at least one register in the path u % v if
P(W¥(v) >c)>b.

Proof: Consider the case of a path u -~ v such that P(¥(v) > ¢) < 5. Therefore, there is no need to insert
any register into the path p. If P(W(v) > ¢) > 9, then at least one register must be moved into the path p
in order to relax the timing constraint such that P(¥(v) > ¢) < 8. a

3.2 Implementation of the algorithm

In this section, we present an algorithm implementing the concept described in Theorem 3.3. We begin
by presenting the algorithm that computes the mrt. Since the mrt is defined as the maximum of the total
execution time of any path routing through zero registers to the same destination node, one can calculate the
mrt by operating on a graph that has only no-register edges, i.e., a directed acyclic graph (DAG). Assume
that a dummy node vy which has zero execution time is connected by no-register edges to every other nodes
in the graph. The following algorithm computes the mrt(vgy,v), or ¥(v) for short, with respect to the dummy

node vy, and any node v € V.

Algorithm 3.1 (Maximum reaching time)
Input : PG G = (V,E,d, 1)
Output: ¥(v)
1 begin
2  Go= (Vo Ep,d,t) such that
Vo=V+4+{voh,Eo=E—{ecE:d(e) 0} +{vo 2 v,ve V,d(e) =0}
Yu € Vo, ¥(u) = 0, Queue = vy
while Queue # ) do
get(u, Queue)
foreach u 5 v do
indegree(v) = indegree(v) — 1

O I D O W



9 Y(v) =max(¥(u) + T,,¥(v)) /* using Lemma 3.1, 3.2 */

10 if indegree(v) = 0 then put(v, Queue) fi
11 od

12 od

13 end

Line 2 produces a DAG Gy from G containing only edges e € E, with d(e) = 0, and the additional edges
connecting vy to every other node v € V. Line 4 initializes the W(v) value for each vertex v. Lines 5-12
compute the mrt by calculating the summation and the maximum operations. The time complexity of
calculating the sum, and max in Line 9 is @(n?) where n is the maximum number of values in the random
variable representing distribution of the execution time T,. Therefore, the running time of Algorithm 3.1 is
O(n2|V[E]).

Since we want to reduce the chance that the maximum reaching time of a vertex is greater than a desired
clock period c, i.e., to maximize the probability that the maximum reaching time of a vertex is less than
¢, we implement Algorithm 3.2 to determine whether there exists such a retiming that yields an equivalent

circuit with the desired clock period ¢ within an acceptable confidence level 6.

Algorithm 3.2 (Probabilistic retiming)
Input: PG G = (V,E, d,t), a desired clock period ¢, and probability 6.
Output: Retiming function r if one exists.

1 begin
2 foreach vertex v e V do r(v) =0 od /* initialize retiming r */
3 fori=1to |V|do
4 G, = Retime(G, 1); flag = true /* retime graph G with the value r */
5 Go = (Vo, Eo, d, t) such that Vo =V 4 {vo,va}; t(vo) =t(va) =0
6 Eo=E—{ecE:d(e) £0}+{vo 3v,vBvg,veV,d(e)) =d(e) =0}
7 Yu € Vo, ¥(u) =0, Queue = vy
8 while Queue # () do
9 get(u, Queue)
10 foreach u 5 v do
11 indegree(v) = indegree(v) — 1
12 Y(v) = max(¥Y(u) + T,,¥(v)) /* using Lemma 3.1, 3.2 */
13 if P(W(v) >c)>bandv=v4 /* user-defined condition */
14 then r(u) =r(u) —1; flag = false
15 elsif indegree(v) = 0 then put(v, Queue) fi od
16 if flag = true then break fi
17 od
18 if flag = true then Report r else no feasible solution fi
19 end

Algorithm 3.2 retimes a vertex, whose probability of propagation delay greater than c, is larger than the
acceptable probability value. The algorithm adds a dummy node v4 that works as a joining point for all
possible paths in the graph which guarantees that the computed mrt is the combination of the mrt of all

those paths. Line 14 updates the retiming® function of such vertices. This process is equivalent to deleting

3Note that the retiming operation on edge u —» v is given by dr(e) = d(e) + r(u) — ¥(v), where d;(e) is the number of

registers on edge e after retiming.



a register from the outgoing edge(s) of vertex v and inserting it into the incoming edge(s) of the vertex v.
The algorithm stops when there exists a retiming function satisfying the requirement, i.e., P(¥(v) > c) < 6.
Otherwise, the algorithm repeats for at most [V|times. The time complexity of this algorithm is C’)(n2|V|2|E|).

The following theorem presents the correctness of Algorithm 3.2.

Theorem 3.4 Given a PG G = (V,E,d, 1), a desired clock period ¢, and a confidence level 0, if the retiming
T exists such that the desired clock period ¢ occurs with the probability 6 = 1 — 0 then the Algorithm 3.2

computes such a retiming on at most |V| iterations.

Proof: Recall that Theorem 3.3 imposes the constraint that for every zero-register path u ~ v satisfying
P(W(v) > c) > b, at least one register must be inserted. Notice again that, in Line 13, the computation of
W(v) is equivalent to testing W(vq) for all paths from a dummy node vy to the node v4 assuming that the
node vy has T,, = 0 and zero-register paths connect vy to v4. For every iteration, in Line 13, Algorithm 3.2
attempts to preserve the condition P(¥(vq) > c¢) > 6 by retiming the vertex u once (r(u) = r(u) —1). This
is equivalent to satisfying the constraint in Theorem 3.3. Since, for every iteration, Algorithm 3.2 always
reallocates one register with respect to a node in such a way that one register is deleted from all outgoing
edges and added to all incoming edges of that node, and the longest path in the graph has a maximum of
V| — 1 edges, Algorithm 3.2 needs at most [V| iterations to satisfy the constraint imposed by Theorem 3.3

before repeating the same register configuration pattern. a

Choosing the desired clock period

The algorithm presented previously is neccessary to tell us whether a selected desired clock period is
feasible. When a desired clock period is not specified, one might wish to know the approximate value that
we should begin with. In order to establish a possible target c, some criterion must be considered. The
shape of the pdf is an important factor that should be investigated. Figure 2 show some possible distribution
shapes. Figures 2(b) and 2(c) present two skewed distributions. Figure 2(b) represents higher probability
for most of the possible lower values. On the other hand, Figure 2(c) illustrates the mirror of the previous

one. These two shapes should be carefully handled.

In the literature, the lower bound on clock period ®(G) was presented by Renfors and Neuvo [15]. Such
a bound is simply obtained from calculating the maximum ratio of execution time to register count for all
loops in a circuit. The lower bound is given by
> tlvel)
B(G) = =—
(G) VeydelecY dleel)’
where ) t(v € 1) is the sum of propagation delays in loop |, and ) d(e € 1) is the sum of register counts in

loop L. In order to use this bound to calculate the desired clock period, we need to transform our probabilistic

propagation delays to some exact values.

Since the distribution in Figure 2(c) has higher probabilities for the higher possible value range, these
numbers should be initialized to the maximum possible number of the distribution, i.e., worst case analysis.

For the distributions in Figures 2(b) and 2(a), one might wish to initialize the propagation delays by using

10



the expected value,

E(T,) =) P(Ty=xi) x xi.

After obtaining the graph with exact values of propagation delays, the approximate desired clock period can
be computed. However, it is the designer decision to determine a proper acceptable probability 6 to restrict
the constraint, P(¥(v) > c) < & , of Algorithm 3.2.

(a) normal (b) p-skewed (c) n-skewed

Figure 2: Distribution shapes of pdf

4 Experimental Results

In this section we discuss some experimental results obtained from the algorithm proposed in Section 3.2.
In order to illustrate the effectiveness of our algorithm, the results from the traditional retiming and the
probabilistic retiming techniques are compared. First of all, let us demonstrate how the probabilistic retiming

algorithm work.

4.1 Demonstration of the algorithm

Let us revisit the example presented in Section 1 with different propagation delay configurations. Figure 3
illustrates the 5-node PG to be optimized. For simplicity, the dummy nodes vy and v4 are not shown. Since
the shapes of the pdf of these vertices are either normal or p-skewed, we can choose the desired clock period
¢ by initializing those random variables using an expected value method. For this experiment, we obtain
c = 3. Let 6 = 0.3 be an acceptable probability. Algorithm 3.2 works by first checking the mrt W(v), for

each vertex. Four iterations of the results of the maximum reaching time are tabulated in Figure 4.

Algorithm 3.2 reduces ¥(v) of the vertex that has the possible maximum reaching time greater than the
desired cycle period. For example, in Figure 4(a), the mrt of vertices B and E have the value p(> c¢) > 0.3.
Therefore, according to Line 14 in the algorithm, these vertices are retimed, r(B) = v(E) = —1. The retimed
graphs corresponding to the following iterations are presented in Figure 5. Figures 5(a), 5(b), and 5(c) result

in the maximum reaching time shown in Figures 4(b), 4(c), and 4(d) respectively.

As shown in Figure 4(d), all vertices that have an mrt value greater than 3 have a probability less than

0.3 for such an occurrence, which is satisfying the initial specification.

11



0.8
0505
e B B W
1 2 2 3 1 2
@ 0.9
0505
DT ot ET ||
® E) 1 5 12
(a) PG (b) pdf
Figure 3: Revisited example
vevVv p(Y) =PW() =) T(v) vevV p(P) =PW(V) =) T(v)
p(1) | p(2) | P3) | p(>c) p(1) | p(2) | P(3) | P(>c)
A 0.5 0.5 0 0 0 A 0.5 0.5 0 0 0
B 0 0| 025 0.75 | —1 B 0 0.5 0.5 0| —1
C 0 0.4 0.5 0.1 0 C 0 0.4 0.5 0.1 0
D 0| 0.45 | 0.45 0.1 0 D 0| 0.45 | 0.45 0.1 0
E 0 0 0 10 | —1 E 0 0| 025 0.75 | —2
(a) first (b) second
vev () =P(Y(v) =) T(v) vev () =P(Y(v) =)
p(1) | p(2) | P(3) | p(>c) p(1) | p(2) | P(3) | p(>c)
A 0| 025 0.5 0.25 0 A 0| 025 0.5 25
B 0 0.5 0.5 0| —1 B 0 0.5 0.5
C 0 0 0.2 0.8 | —1 C 0.8 0.2
D 0 0| 225 775 | —1 D 0.9 0 0.1
E 0.5 0.5 0 0| —2 E 0.5 0.5 0
(c) third (d) forth

NN
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Figure 4: pdf of ¥(v),veEV
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Figure 5: Retimed graph corresponding to Figure 4
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4.2 Benchmarks

In this section we presents the experimental results obtained from using our algorithm to optimize some
well-known benchmarks. These benchmarks include the Biquadratic IIR filter, 3-stage direct from IIR filter,
4*h_order Jaunmann wave digital filter, 5*2-elliptic filter*, All-pole lattice filter, Differential equation solver
and Volterra filter. In order to perform the simulation, the distributions of the execution time for the basic
components in those circuits were randomly selected. Tables 4 and 5 present the possible pdf of execution

time for the adders and multipliers found in those filters.

P(Tz = X)
1 2 3 4 5 6 7
Tz1 0.4 | 0.3 0 0.1 0.1 0 0.1
Tzz 0.1 0.1 0.2 0.2 0.2 0.1 0.1
Tzs 0.1 0 0.1 0 0.4 0 0.4

Table 4: Possible pdfs of execution time for addition

1 2 3 4 5 6 7 8 9
Tr, | 0.5 0 0| 0.2 0 0(01]01]|0.1
Tp, (01 (01|01 |01 02]|02]0.1 0| 0.1
Ty | 01 | 0.1 0 0 0 0] 03 0] 05

Table 5: Possible pdfs of execution time for multiplication

We used our technique to optimize those benchmarks. The results shown in Table 6 discuss the difference
between considering the worst case of the propagation delays (column worst) and considering the probabilistic
model. Column worst in the table presents the optimized clock period obtained from applying the traditional
retiming to those filters while considering the possible worst execution time of each adder (7) and multiplier

(9). Columns 4-8 show the feasible desired clock period ¢ with respect to the confidence level 1 — & = 6.

num. [¢ PYv)<c)>1—-6=06

Benchmark nodes | worst 0=05 0 =0.6 0=0.7 0=0.8 0=0.9

c| % c| % c| % c| % c| %
Biquad IIR 8 23 11 52 12 48 13 43 14 39 16 30
Diff. Equation 11 32 18 44 19 41 20 37 22 31 24 25
3-stage direct IIR 12 16 8 50 9 44 10 37 11 31 13 19
All-pole Lattice 15 46 28 | 39 30 | 35 31 | 33 32 | 30 35 | 24
4%t order WDF 17 46 23 50 25 46 26 43 28 39 30 35
Volterra 27 81 44 | 46 46 | 43 49 | 40 50 | 38 53 | 35
5th Elliptic 34 97 60 38 62 36 63 35 66 32 69 29
5th Elliptic (uf=4) 170 485 322 | 34 | 323 | 33 | 324 | 33 | 325 | 33 | 331 | 32
5th Elliptic (uf=9) 340 970 644 34 646 33 648 33 650 33 662 32

Table 6: Probabilistic retiming versus worst case analysis

Notice that, for all benchmarks, the smallest feasible clock periods with 0 = 0.9 are still smaller than

the number listed in Column 3. In order to illustrate the effectiveness of the algorithm, the column “%”

4We experimented Algorithm 3.2 on the original graph and the unfolded version by using unfolding factor (uf) 4 and 9.
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presents the percent of the feasible clock period reduction with respect to the worst case analysis of c. With
® = 0.5, all benchmarks have the percent reduction greater than 34% and larger than 19% for 6 = 0.9.

5 Conclusion

VLSI circuit manufacturing may result in devices with different propagation delays. Hence, the estimation
of such delays during the design procedure may not prove totally accurate due to the fabrication process. We
have presented the theoretical foundation and experimental results for a new transformation technique, called
probabilistic retiming, which can be computed in O(n?|V|?E|). Considering the realistic case, our algorithm
can effectively optimize those circuits while utilizing the manufacturing probability information and the
designer requirements which are a desired clock period ¢ and the confidence level 0. This methodology are
expected to have similar impact to many areas, e.g., high-level synthesis, loop scheduling, testing, etc., as

the traditional retiming does.
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