
CHAPTER VIII

MICROARCHITECTURE-AWARE CIRCUIT

PLACEMENT WITH STATISTICAL RETIMING

Process variations in digital circuits make circuit timing validation an extremely challenging

task. Variations on several high-impact intra-die process parameters such as effective gate

length, thin-oxide thickness, wire width/height, and so forth can easily invalidate the timing

predictions made before fabrication [12, 80, 84, 77, 2]. Therefore, statistical timing analysis

tools that model the gate and wire delay as probability distribution functions have become

increasingly popular for tackling timing validation under these process variations [62, 37,

10, 20, 4, 90, 73, 125, 91, 71, 3, 23, 65]. However, most of the existing studies focus on

combinational circuits or subcircuits (after flip-flop removal) and fail to address sequential

circuit timing validation directly. Recent work on statistical timing analysis for sequential

circuits [36] allows the user to model flip-flops (FFs) and use them to predict the timing

information after retiming. This work achieves a significant performance improvement by

exploiting retiming-aware timing slack.

As pointed out in Chapter 6, retiming is an important technique that allows circuits to

meet the timing target. This is even more important for microarchitecture-aware physical

planning when the system assumes that the target clock period can be met. With process

variations, the deterministic retiming technique as discussed in the last two chapters must

be modified. In this chapter, Statistical Retiming-based Timing Analysis (SRTA) for the

timing verification and optimization of sequential circuits under process variations is de-

veloped. First, a Statistical Bellman-Ford (SBF) algorithm is proposed for computing the

longest path length distribution for directed graphs with negative cycles. It is proved in

Section 8.1 that a statistical extension of the original Bellman-Ford algorithm correctly com-

putes the longest path length distribution for the true distribution but at a very slow rate.

Next, it is shown that two straightforward extensions of the Bellman-Ford algorithm for
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statistical analysis cannot guarantee the correctness of the results. Then, a SBF algorithm

is proposed that closely approximates and efficiently computes the statistical longest path

length distribution if there exists no positive cycle or detects one if the circuit is likely to

have a positive cycle. The SBF algorithm is integrated into SRTA. SBF checks for the fea-

sibility of the target clock period distribution for retiming analysis. Finally, it is shown that

the final critical path delay distribution after retiming is the statistical maximum among

all primary outputs and all feedback vertices. Monte Carlo simulation is used to validate

the accuracy of the SRTA algorithm.

The SRTA algorithm is integrated into a mincut-based global placer to optimize sta-

tistical longest paths in sequential circuits. The placer performs multi-level bipartitioning

recursively until the desired number of partitions is obtained. Then, the SRTA algorithm

for computing statistical critical paths that considers retiming is performed. The placer

then tries to place these paths into a single partition.

The remainder of this chapter is organized as follows. Section 8.1 describes our statistical

Bellman-Ford algorithm. Section 8.2 presents the statistical retiming-based algorithm and

its application in mincut-based global placement. The experimental results are presented

in Section 8.3. Section 8.4 concludes this chapter.

8.1 Statistical Longest Path Analysis

8.1.1 Statistical Bellman-Ford Algorithm

First, some quantities in probability theory that are required to develop algorithms are

defined. For more precise definitions of these quantities, see [40, 11]. Then, a statistical

version of the Bellman-Ford algorithm that correctly solves the statistical longest path

problem defined below is introduced.

Let Ω be the set of outcomes of a fabrication process. A subset of Ω is called an event.

Let P be a function that assigns a probability to each event. A random variable X : Ω→ R
∗

maps each outcome to a number in the extended real line R
∗ , [−∞,∞]. The probability

that a random variable X takes a value in a subset M of R
∗ is P[$|X($) ∈ M ]. Assume

that the probability P determines the joint (and hence, the marginal and conditional)
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distribution of all random variables of interest.

Let G = (V,E) be a directed graph with a source node s and a sink node t, and

w : E × Ω→ R be an associated edge-length function, which is a random variable for each

edge (u, v) ∈ E. Without loss of generality, it is assumed that there is no weight on the

nodes (since the weights on nodes can be pushed to their fan-in edges). Let K denote the

number of directed simple (i.e., no cycles) s − t paths in G, and li : Ω → R denote the

length of the ith path, i = 1, . . . ,K. Also, let G($) be the graph G with length w(u, v)($)

on edge (u, v) ∈ E. If X is the longest path of G, it is defined as follows: for each $ ∈ Ω,

X($) = max{l1($), . . . , lK($)}, if there is no positive cycle in G($), and X($) = ∞,

otherwise. The distribution of X is determined by the probability P as mentioned above.

The Statistical Longest Path Problem is defined as that of finding the distribution of the

longest s− t path in G = (V,E) with edge-length function w : E × Ω→ R.

First, the Bellman-Ford (BF) algorithm is extended to obtain the outcome-by-outcome

Statistical Bellman-Ford algorithm (oSBF). An illustration is shown in Figure 60. As op-

posed to updating a certain set of constants (such as arrival times a[i]) in the BF, at each

step of the oSBF, updating certain random variables that are functions of Ω is required by

updating their values for each outcome $ ∈ Ω. As a result, the complexity of the oSBF is

high when the number of possible outcomes is large. In fact, when the random variables

are continuous, such as uniform random variables, Ω has uncountably many elements and

the oSBF cannot be carried out in practice. However, its properties, which are proved next,

are useful for the approximation algorithm that is presented in the following section. Note

that the Monte Carlo simulation can be considered as an approximated version of the oSBF

in which certain elements of Ω are sampled according to the probability P. The following

theorem proves the correctness of the oSBF algorithm.

Theorem 2 If P[$|G($) has a positive cycle] = 0, then a[i] from the oSBF has the same

distribution as that of the random variable representing the longest path from s to i, i ∈ V .

Otherwise, the oSBF returns FALSE.

Proof: For each outcome $ ∈ Ω, the oSBF is equivalent to the BF, which correctly
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oStatistical Bellman-Ford(G,w, s, t)

Initialization Step
for (each v ∈ V )
a[v]($)← −∞,∀$ ∈ Ω;
a[s]($)← 0,∀$ ∈ Ω;

Stop($)← NO,∀$ ∈ Ω;
g($)← −1,∀$ ∈ Ω;
iter ← 1;

Relaxation Step
while (Stop($) = NO for some $ ∈ Ω and
iter < |V |)
iter ← iter + 1;
Ω̃← {$ ∈ Ω|Stop($) = NO};

Stop($)← YES, ∀$ ∈ Ω̃;
for (each v ∈ V )

for (each $ ∈ Ω̃)
for (each edge (u, v) ∈ E)

if a[v]($) < a[u]($) + w(u, v)($);
then a[v]($)← a[u]($) + w(u, v)($);

Stop($)← NO;

Positive Cycles Detection Step
for (each (u, v) ∈ E)

for (each $ ∈ Ω)
if (a[v]($) < a[u]($) + w(u, v)($))
g($)← +1;

Output Step
if (P[$|g($) = +1] > 0)

then return FALSE;
else return TRUE and a[t];

Figure 60: A description of outcome-by-outcome Statistical Bellman-Ford (oSBF) algo-
rithm

calculates the lengths of the longest s − i paths a[i]($), i ∈ V or correctly identifies a

positive cycle in G($). Hence, when the oSBF terminates, the function (random variable)

a[i] and the longest s − i path are equal on Ω1 , {$ ∈ Ω|G($) has no positive cycles}

and are different on Ω2 , {$ ∈ Ω|G($) has a positive cycle}. If P[Ω2] = 0, then they are

equal with probability one and hence have the same distribution. Otherwise, there is a high

probability that there is a positive cycle, and therefore the oSBF returns FALSE.

Backward edges and backward nodes are defined as follows:

Definition 1 For a given order of nodes P , (u, v) ∈ E is a forward edge if u precedes v in

P , and a backward edge, otherwise. In the latter case, node u is called a backward node.
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Lemma 3 If a node order L = {s, v1, . . . , vn, t} is used in the relaxation step of the oSBF,

after j relaxation iterations, a[i] from oSBF is the random variable representing the longest

(possibly not simple) s−i path in G that contains j−1 or fewer (possibly repeated) backward

edges.

Proof: Let B denote the set of all backward edges associated with the order L. Then

the subgraph GB , (V,E \B) is a directed acyclic graph (DAG). The update step for node

i in the relaxation step is

a[i] := max
u∈FI(i)

[
a[u] + w(u, i)

]
, (68)

where FI(i) , {u ∈ V |(u, i) ∈ E} is the set of fan-ins of node i. At the first iteration of

the relaxation step, when a[i] is updated, a[u] = −∞ for all backward fan-ins u ∈ FIb(i) ,

{u ∈ FI(i)|(u, i) ∈ B} because from Definition 1, nodes u ∈ FIb(i) come after node i in the

order and hence have not been updated. Thus, at the first iteration of the relaxation step,

it is sufficient to perform relaxation on GB. Since GB is a DAG, and L is a topological

order of GB, a[i] represents the longest s− i path that contains zero backward edges after

the first relaxation step.

Now suppose that the result of Lemma 3 is true up to some j ≥ 1 (Induction Hypothesis

1: IH 1). At iteration j + 1 of the relaxation step, it can be proved by induction that after

a[i] is updated using (68), it represents the longest s−i path containing, at most, j backward

edges. Consider the update for node v1. Since s is the only node that precedes v1 in L, all

other nodes u ∈ FI(v1) are all updated after v1. By IH 1, a[u] represents the longest s− u

path with, at most, j − 1 backward edges for all u ∈ FI(v1). From (68), the updated a[v1]

is the longest s − v1 path with, at most, j backward edges because any s − v1 path with

c > 0 backward edges has the last edge being a backward edge, and removing such an edge

results in a path with c− 1 backward edges.

Suppose that a[vi], i = 1, . . . , r are now the longest s−vi paths with, at most, j backward

edges for some r ≥ 1 (Induction Hypothesis 2: IH 2). Similarly, from (68), the updated

a[vr+1] is the longest s− vr+1 path with, at most, j backward edges because any s − vr+1

path with c > 0 backward edges either has the last edge being a backward edge or or has
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the last edge being a forward edge. If the last edge is a backward edge, then removing such

an edge results in a path with c − 1 edges (this case corresponds to u ∈ FIb(vr+1), whose

a[u] are, from IH 1, the longest s − u paths with, at most, j − 1 backward edges), If the

last edge is a forward edge, then removing such an edge results in a path with c backward

edges (this case corresponds to u ∈ FIf (vr+1) , {u ∈ FI(vr+1)|(u, vr+1) 6∈ B}, whose a[u]

are, from IH 2, the longest s − u path with, at most, j backward edges). This completes

the proof.

The following theorem improves the bound on the number of iterations of the relaxation

step when there is no positive cycle. oSBF automatically terminates once the number of

relaxation iterations reaches this bound (by the condition Stop($) = YES for all $ ∈ Ω).

However, this is not true when the distribution of each a[i] is approximately updated. Hence,

the bound from this theorem will be useful for our approximation algorithm.

Theorem 4 If P[$|G($) has a positive cycle] = 0, and a node order L = {s, v1, . . . , vn, t}

is used in the relaxation step of the oSBF, then after k + 1 iterations, a[i] from oSBF has

the same distribution as that of the random variable representing the longest path from s

to i, i ∈ V , where k is the maximum number of connected backward nodes that can be in a

simple s− t path in G.

Proof: Since G has no positive cycles with probability 1, the longest s − t path is a

simple path with probability 1. According to the definition of k, the longest path has, at

most, k backward nodes and hence, at most, k backward edges. The theorem follows from

Lemma 3.

The result from Theorem 4 can be applied to approximation methods that are similar to

the oSBF, except at each iteration, a[i], i ∈ V is approximately updated. More specifically,

if a[i] is a good approximation to the actual a[i] obtained from the oSBF, then after k + 1

iterations, a[i], obtained from the approximation method, is also a good approximation of

the actual longest s− i path. Hence, when there is no positive cycle with probability 1, we

can stop the approximation algorithm after k + 1 iterations.
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8.1.2 Limitation of the Bellman-Ford Extensions

To the best of our knowledge, all proposed analytical models for statistical timing analysis

suffer from the error introduced by the maximum function. This is because the output

of the maximum function results in a new form of distribution. Unlike the true distribu-

tion, the Bellman-Ford algorithm can return incorrect results because of the error from

approximated distributions (such as the normal distribution approximation for the delay

distribution). This is because the original Bellman-Ford algorithm is not designed to toler-

ate errors resulting from statistical computation.

More precisely, it is typically assumed that the joint distribution of arrival times is fully

characterized by vectors of parameters θi, i ∈ V , which belong to a certain set Θ, which

is closed under addition1. For example, when each node is assumed to be independently

normally distributed, a two-dimensional vector [µi, σ
2
i ]

′ ∈ R× [0,∞) can be used to describe

the mean and variance of the arrival time of node i. Let fmax : Θ × Θ → Θ denote the

maximum function that approximates the distribution of the maximum function by the

distribution characterized by a vector in Θ. In this subsection, two examples are used to

demonstrate the drawback of simple extensions of the Bellman-Ford algorithms.

The first extension is to use the Bellman-Ford algorithm to report positive cycles, as in

statistical timing analysis. An illustration of the oSBF algorithm is shown in Figure 61(a).

In this case, it reports a positive cycle when the original graph has no positive cycle. At the

first iteration, an input arrives at node A with value a. Flip-flop B, buffer C, and gate D

have delay b, c, and d, respectively. The output value of nodeD isD(1) = fmax(a,C
(0))+d =

a+ d, where C(0) denotes the vector describing the distribution of the arrival time of gate

C at iteration 0. After the signal propagates through flip-flop B and gate C, the new value

of node D becomes D(2) = fmax(a, a + d + b + c) + d. Let 4(2) = D(2) −D(1) denote the

change in the value of node D. Now if d+ b+ c is originally negative with probability 1, but

its distribution is approximated by that of a negative-mean random variable with a small

probability of being positive (for example, a normal random variable with mean equals

1A set A is closed under addition if for any a, b ∈ A, we have a + b ∈ A. This assumption leads to an
efficient propagation procedure which, however, can be relaxed.
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Figure 61: Illustration of Bellman-Ford update

-10 and variance equals 9), then it cannot be concluded that 4(2) will be a zero vector.

Alternatively, even if the true distribution is initially used, the error from the maximum

function could result in the same situation. After one more iteration of the Bellman-Ford,

D(3) = fmax(a,D
(2) +b+c)+d = D(2) +4(3). A similar argument shows that 4(3) may not

be a zero vector either. It can be concluded from related experiments that 4(i), i = 1, 2, . . .

are small but might not become zero vectors after the |V | iterations; consequently, the

algorithm reports a positive cycle.

The second extension to the Bellman-Ford algorithm is to introduce the error bound on

the longest path length distribution updates, which is referred to as the error-bounded Sta-

tistical Bellman-Ford (eSBF) algorithm.2 Specifically, when the change in the distribution

(for example the norm of 4(i)) is less than such a bound, it is considered as no update.

Although imposing a positive error bound δ can help the Bellman-Ford algorithm terminate

when the graph has no positive cycle, it could cause the Bellman-Ford algorithm to stop

too early, when δ is too large. Consequently, from Lemma 3, some paths are not considered

if the algorithm stops before k + 1 iterations. Figure 61(b) shows an example in which the

delay from path A is ignored as follows: if the change of the arrival time at D resulting

from delay propagated through A, which is 4(i+1) = fmax(fmax(D
(i) + c, b), a) + d −D(i),

is considered to be small with respect to the error bound δ, and the arrival time of node

A has no further update, the algorithm could terminate without updating D. Hence, the

2We use this algorithm in comparison with other Bellman-Ford extensions.
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information from path A is not propagated to the calculation of some other arrival times.

As a consequence, the distribution of some s− t paths that contain path A is not accounted

for. Depending on the circuit structure, the total error resulting from this early termination

could result in large error in arrival times.

8.1.3 Statistical Bellman-Ford Algorithm

The last extension of the Bellman-Ford algorithm, referred to as the k-Statistical Bellman-

Ford (kSBF) algorithm, is shown in Figure 62. This is an algorithm that closely approxi-

mates and efficiently computes the longest path length distribution of directed graphs with

negative cycles. kSBF is used in the statistical retiming-based timing analysis (SRTA) in-

troduced in the next section. First, a depth-first search algorithm is called to identify all

backward edges and sort all nodes in a topological order. For each backward node, the

depth-first search DFS ′ is called by setting this backward node as a source node. DFS ′

returns the maximum number of connected backward nodes reachable by a simple path

from the given source. The maximum number of connected backward nodes of the graph

(=k) is the largest number obtained by the DFS ′ algorithm. Note that this reachability

algorithm needs to be performed only once. If all backward nodes are likely to be connected,

the reachability step is not required, and instead, the total number of backward nodes can

be used.

After the maximum number of connected backward nodes of the graph is found, the

arrival times of all nodes are initialized. Next, the relaxation step is called. For the statistical

longest path computation, k + 1 iterations are required. After the relaxation is done,

all simple paths from source to sink are considered according to Theorem 4. Then, the

statistical positive cycle detection algorithm proposed in [27] is used. If the probability

of having no positive cycle is less than an acceptable probability, the algorithm returns

FALSE, otherwise it returns TRUE.

123



Statistical Bellman-Ford(G,w, s, t,Pa)

Reachability Check Step
DFS(s); // find all backward edges
backward node← 1;
for (each v ∈ V )

if (backward edge connected to v)
backward node← backward node+ 1;
list backward node← v;

max k ← 0;
for (each v ∈ list backward node)
k ← DFS’(v); // backward nodes connected with v
if (max k < k)
k ← max k;

Initialization Step
for (each v ∈ V )
a[v]← −∞;

a[s]← 0;

Relaxation Step
for (iter ← 1 to k + 1)

for (each v ∈ V )

a[v]← maxu∈FI(v)

[
a[u] + w(u, v)

]
;

Checking Positive Cycles Step
P(cycle)← check pos cycle();

Output Step
if (P(cycle) ≤ Pa)

then return FALSE;
else return TRUE and a[t];

Figure 62: k-Statistical Bellman-Ford algorithm (kSBF) used in our statistical retiming-
based timing analysis(SRTA)

8.2 Global Placement with Statistical Retiming

8.2.1 Modeling Delay Distribution

In this chapter, the delay distribution model is based on [125]. It is assumed that the delay

of each gate and wire has a Gaussian distribution. The Elmore delay model is used for the

wire delay computation based on the following equation (similar to [20]):

dint = d0
int +

∑

i∈Γg

[
∂d

∂Li
g

]4Li
g +

∑

i∈Γg

[
∂d

∂W i
g

]4W i
g

+
∑

i∈Γint

[
∂d

∂T i
int

]4T i
int

where d0
int is the expected value of wire delay. Γg and Γint are the set of grids where all the

receivers reside and the interconnect tree traverses, respectively. 4Li
g, 4W

i
g, and 4T i

int
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are random variables representing the variation over the expected value of transistor length,

transistor width, and metal thickness, respectively (similar to [20]). The differentiations are

derived based on the transistor and wire delay model from [95, 122, 103]. A 10% variation

in each process parameter term is assumed in this study.

The principal component analysis technique (PCA), similar to [20], is used to derive the

first-order form for arrival and required time delay distribution. The basic idea of PCA is

to classify the input coefficients into orthogonal terms so that each coefficient term is un-

correlated. Reconvergent correlation can be efficiently handled by PCA. A grid hierarchical

model is used for spatial correlation similar to [20]. If two gates are located near each other,

they are more correlated than when they are far apart.

Four operations involved during statistical sequential arrival time and statistical required

time computation are maximum, minimum, addition, and subtraction. The addition and

subtraction of two Gaussian distributions result in another Gaussian distribution. The

coefficient of each term in the first-order model can be added and subtracted directly. The

maximum and minimum functions require the tightness probability calculation from [125],

which is derived from [29, 16]. Based on this model and the assumption that the maximum

and/or minimum of two Gaussian distributions result in a new Gaussian distribution, the

coefficient results can be expressed as the summation of the product between the input

distributions and the tightness probabilities.

8.2.2 Statistical Retiming based Timing Analysis

Similar to retiming-based timing analysis (RTA) [36], which is based on the Bellman-Ford

longest path computation, statistical retiming-based timing analysis (SRTA) can be com-

puted by using the k-statistical Bellman-Ford algorithm(kSBF) (see section 8.1). The sta-

tistical required time and the statistical arrival time are used to compute the statistical

slack. The statistical slack is then used to identify the criticality of the cells and the nets.

Unlike in the deterministic case, the statistical sequential required time cannot be computed

at the same time as the statistical sequential arrival time because the distribution of the

arrival time at the sink is not yet known until the statistical sequential arrival times of all
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Figure 63: Positive cycle

nodes are computed. Note that the statistical sequential required time uses the minimum

operation instead of the maximum operation.

Another difference from the kSBF algorithm is the early exit condition. In deterministic

retiming-based timing analysis, the algorithm can perform early exit when the arrival time

at the sink node exceeds the target clock period. In particular, if the graph has a positive

cycle, performing the longest path computation over that cycle can cause the arrival time of

the sink node to exceed the target clock period. This still holds in the statistical case, that

is, if the expectation of the summation of the gate and wire delay over a cycle is positive,

then the arrival time of the sink can exceed the target clock period. This condition can

be used for the algorithm to terminate early. However, one has to be aware that if the

expectation of the summation of the gate and wire delay over a cycle is negative, it does

not mean that there is no positive cycle, as shown in Figure 63. A cycle could be negative

in terms of the mean value, but there is a high probability that a positive cycle exists. Also

note that a strict condition (mean plus three times standard deviation less than zero) should

be used for verifying a positive mean in a statistical case. In other words, the expectation

of the summation along a cycle should be less than some positive ε value to ensure that the

early exit condition comes from positive mean cycles, not from an error from approximation.
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8.2.3 Bounds on Target Clock Period

In this subsection, a theoretical result on the bounds of the target clock period, φ, which

will be useful in the binary search procedure is provided. Recall that the target clock period

is set to the smallest value for which the graph G = (V,E) has no positive cycle, and the

arrival time of the sink node, a[t], is no larger than φ. Let the delay of the ith directed

simple s − t path in G be represented by li = ψi − κiφ, where ψi denotes the sum of the

gate and wire delays along path i, and κi denotes the number of flip-flops in path i. Let C

denote the number of directed cycles in G, and ζj = ξj − σjφ denote the total delay of the

jth directed cycle, where ξj denotes the sum of the gate and wire delays along cycle j. σj

denotes the number of flip-flops in cycle j. Now φ is the smallest number that satisfies

φ ≥ a[t] = max
i=1,...,K

{ψi − κiφ} (69)

ζj = ξj − σjφ ≤ 0 j = 1 . . . , C. (70)

Equivalently, the target clock period is given by

φ = max

[
max

i=1...,K

{
ψi

κi + 1

}
, max
j=1...,C

{
ξj
σj

}]
. (71)

Recall that each gate and wire delay is a random variable, and hence, ψi and ξj , which are

the sums of the gate and wire delays, are also random variables. Let φl
d, φ

m
d , φ

u
d denote the

values of φ obtained from (71) when all the gate and wire delays are replaced by their lower

bounds (best case), means (average case), and upper bounds (worst case), respectively. It

is obvious that φ, which is a random variable, is in [φl
d, φ

u
d ] with probability 1. Moreover,

as will be shown in the theorem below, the mean of φ is bounded below by φm
d .

Theorem 5 Let E[φ] be the mean (expected value) of φ. Then, φl
d ≤ φ ≤ φ

u
d with probability

1, and φm
d ≤ E[φ].

Proof: Only the mean case requires a proof. Equation (71) implies

φ ≥
ψi

κi + 1
, i = 1, . . . ,K φ ≥

ξj
σj

, j = 1, . . . , C

Since the ψi and ξj are the sum of the gate and wire delays, and κi and σj are constants,

the expected values of the right-hand terms of the inequalities above can be obtained by
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replacing all the gate and wire delays by their means. As a result, taking the expectation

on both sides of the inequalities shows that the mean of φ is greater than each right-hand

term under a deterministic average case. This implies that the mean of φ is greater than

the maximum of all such terms, which is φm
d .

Note that the bounds φl
d, φ

m
d , φ

u
d can be obtained by solving deterministic longest path

problems.

8.2.4 Mincut-based Constructive Placement

The SRTA algorithm is integrated into a mincut-based global placer to optimize statis-

tical longest paths in sequential circuits. The placer performs multi-level bipartitioning

recursively until the desired number of partitions is obtained. Then, statistical retiming-

based timing analysis is used to compute statistical critical paths that consider retiming.

The placer then tries to place these paths into a single partition. Unlike the deterministic

Bellman-Ford, which can stop before |V | − 1 iterations if there is no update in the graph,

the kSBF algorithm requires k+1 iterations before it can terminate. In addition, the kSBF

requires a maximum function computation and the arrival time distribution propagation

along the circuit and hence it tends to be much slower compared with the deterministic

approach. To alleviate this problem, tighter upper and lower bounds on the target clock

period are used to accelerate the binary search process in Theorem 5. The feasible clock

period of the circuit has to be between the mean of the deterministic RTA and the worst

case of the deterministic RTA.

8.2.5 Retiming Delay Distribution

Unlike the statistical longest path, which can report the delay of the sink node as the output

delay of the graph, calculating the retiming delay distribution is more complex. Note that

the combinational delay distribution can be computed as the maximum distribution of all

the primary output nodes. A heuristic algorithm to calculate the retiming delay distribution

is proposed. Given a sequential circuit, the retiming delay distribution is a function of the

longest path distribution of the graph and the maximum mean cycle. Given an acyclic

graph, the retiming delay distribution is the delay distribution of the sink node. On the
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Figure 64: Impact of cycle on retiming delay distribution

other hand, if the graph has critical cycles with the cycle delay close to zero in the worst

case, the maximum mean cycles can have an impact on the retiming delay distribution

similar to the deterministic case [60].

However, identifying the statistical maximum mean cycle itself is not trivial and warrants

further research. A heuristic to identify the distribution of the cycle is used. Note that if

the cycle is critical, the worst case delay distribution of the gate and wire delays along

that cycle can closely approach zero. The maximum mean cycle can be approximated by

shifting the distribution of the cycle to the value of the target clock period. Consider the

deterministic case example shown in Figure 64. Suppose the value of the gate delay is one,

and the wire delay is zero. Based on retiming-based timing analysis, the delay of the sink

node is three. However, the feasible clock period is eight because of the critical cycle. The

retiming delay distribution can be approximated by taking the maximum function between

the arrival time of the sink node and the distribution of the cycle. For example, if the

cycle has a large negative delay value, (after shifting the cycle the delay distribution will

be far less than the target clock period). Hence, this cycle will not have much impact

during the computation of the retiming delay distribution. On the other hand, if this cycle

is critical, its distribution will have larger impact during the computation of the retiming

delay distribution.

8.3 Experimental Results

The SRTA algorithms are implemented in C++/STL, compiled with gcc v3.2.2, and run on

a Pentium IV 2.4 GHz machine. The benchmark set shown in Table 17 consists of six big

circuits from the ISCAS89 and five big circuits from the ITC99 suites. k+ 1 is the number

of iterations required by the k-statistical Bellman-Ford (kSBF) algorithm. BW represents

the number of backward edges in the graph.
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Table 17: Benchmark circuit characteristics
ckt gate PI PO FF k + 1 BW

s5378 2828 36 49 163 76 95

s9234 5597 36 39 211 239 354

s13207 8027 31 121 669 510 637

s15850 9786 14 87 597 495 699

s38417 22397 28 106 1636 1444 1660

s38584 19407 12 278 1452 1860 2054

b14o 5401 32 299 245 451 616

b15o 7092 37 519 449 988 1408

b20o 11979 32 512 490 1486 2197

b21o 12156 32 512 490 1511 2209

b22o 17351 32 725 703 1870 2770

Table 18 shows a comparison of the results obtained by using the Monte Carlo simula-

tion, the modified Bellman-Ford algorithm with the error bound (eSBF), and the modified

Bellman-Ford with k+ 1 iterations (kSBF) on 8x8 dimension. The Monte Carlo simulation

is performed using 10,000 samples. The expectation (mean) and standard deviation (sigma)

of the retiming delay distribution are reported. Note that both the eSBF and the kSBF

provide results close to the Monte Carlo simulation results, especially in terms of the mean

value. The kSBF provides more accurate results than the eSBF because, as pointed out in

Section 8.1, the eSBF can ignore some paths during its computation. Note that it is possi-

ble that the eSBF outperforms the kSBF since the kSBF may require more iterations than

necessary. Because of the error arising from the analytical model, the higher the number of

iterations, the more errors can be accumulated. However, for most of the cases, the kSBF

is more accurate that the eSBF. Both the eSBF and the kSBF substantially outperform

the Monte Carlo simulation in terms of runtime. The runtime reported in all tables is the

average runtime. The kSBF, however, requires longer runtime than the eSBF because it

requires a higher number of iterations than the eSBF.

Figure 65 shows the comparison in terms of delay distribution among the Monte Carlo

simulation, the eSBF, and the kSBF on s5378 benchmark. The solid, dotted, and dashed

lines represent the Monte Carlo simulation, the eSBF, and the kSBF, respectively. Results

show that the kSBF can provide a distribution similar to that of the Monte Carlo simulation.
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Table 18: The comparison between the deterministic Monte Carlo simulation, the eSBF,
and the kSBF on 8x8 dimension

ckt monte eSBF kSBF

mean std.dev. mean std.dev. mean std.dev.

s5378 179.65 6.27 163.29 5.49 179.47 6.51

s9234 229.24 16.18 164.58 7.14 225.531 10.5073

s13207 304.93 13.27 279.47 8.72 305.7588 13.0487

s15850 363.16 15.83 317.32 7.57 363.373 15.7213

s38417 187.11 4.53 184.95 5.28 189 8.4122

s38584 437.02 19.41 399.62 10.45 436.7471 19.3315

b14o 161.19 10.70 117.42 5.37 160.4306 5.3107

b15o 247.00 10.00 212.72 18.45 247.8771 10.2265

b20o 259.68 9.03 229.16 6.12 267.126 9.3349

b21o 267.57 6.18 240.01 4.08 267.984 9.2448

b22o 286.63 18.92 300.49 25.17 320.6154 15.2599

runtime 21 days 2.7 hours 3.7 hours

In this case, it shows that the kSBF is better since the eSBF stops early and can ignore

some paths.

8.4 Summary

In this chapter, a SBF algorithm is proposed to compute the longest path length distribution

for directed graphs with cycles. The SBF algorithm is used in Statistical Retiming-based

Timing Analysis (SRTA). It is used to check for the feasibility of the given target clock

period distribution for retiming. The Monte Carlo simulation validates the accuracy of

the SRTA algorithm. SRTA is used to guide a global placement with retiming to optimize

statistical longest paths in sequential circuits.
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