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This article addresses the problem of voltage scheduling in unpredictable situations. The voltage
scheduling problem assigns voltages to operations such that the power is minimized under a clock
delay constraint. In the presence of unpredictabilities, meeting the clock latency constraint cannot
be guaranteed. This article proposes a novel risk management based technique to solve this prob-
lem. Here, the risk management paradigm assigns a quantified value to the amount of risk the
designer is willing to take on the clock cycle constraint. The algorithm then assigns voltages in order
to meet the expected value of clock cycle constraint while keeping the maximum delay within the
specified “risk” and minimizing the power. The proposed algorithm is based on dynamic program-
ming and is optimal for trees. Experimental results show that the traditional voltage scheduling
approach is incapable of handling unpredictabilities. Our approach is capable of generating an
effective tradeoff between power and “risk”: the more the risk, the less the power. The results show
that a small increase in design risk positively affects the power dissipation.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—Automatic synthesis, optimization

General Terms: Algorithm, Reliability, Design
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1. INTRODUCTION

Estimation in design automation is marred by inaccuracies. Important design
objectives like power are extremely hard to predict, especially at high levels of
design flow. On the other hand, optimization of design objectives at system the
level has a tremendous impact on design quality. Critical optimizations need to
be performed in unpredictable scenarios.

Risk management tries to control the maximum amount of error/
unpredictability associated with any estimation. Under this paradigm, the user
specifies a risk which signifies the amount of inaccuracy the designer can “risk.”
This risk is the “violation likelihood” of the constraint for potential gains in de-
sign quality.
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This article demonstrates this paradigm through the voltage scheduling
problem, which assigns voltages to individual operations in a data flow graph
(DFG) for power minimization. Assigning multiple voltages to operations is a
very strong technique for power optimization. This comes from the quadratic
dependence of voltage on power. This methodology was primary investigated
by [Raje and Sarrafzadeh 1995] and generalized by [Chang and Pedram 1995].
Both these approaches assume accurate information about power and delay
are available through estimation engines. Since the complete implementation
information is not known, this assumption is far from valid. In this work, we
extend voltage scheduling in a risk management paradigm.

Instead of characterizing the delay and power at each voltage by exact values,
we represent them by probability distributions. This is more realistic since the
estimation is inaccurate. The designer specifies a clock constraint C and a risk
factor R which represents the maximum number of clock cycles the designer
is willing to “risk.” The algorithm then assigns voltages such that both the
expected value of clock delay is ≤ C and the maximum latency is ≤ R while
minimizing the power.

The advantage of a risk management paradigm is that it gives control of
the unpredictabilities to the designer. Depending on the amount of “risk” the
designer is willing to take, the design quality changes. If the acceptable “risk”
is high, the algorithm will be relaxed and will generate a lower power solution.
Hence we can expect a “risk” versus power tradeoff. The designer should then
be able to pick the appropriate point on this tradeoff curve which indicates a
balance between design risk and design quality.

In this endeavor, the expected value of the clock cycle constraint is never
relaxed; hence this approach is different from slack-based techniques. We also
demonstrate that small increase in “risk” can significantly affect power. The
designers can experiment with this new parameter to generate solutions that
meet their power constraints with a reasonable degree of predictability. The
main contribution of this article includes proposing the risk management
paradigm and demonstrating its effectiveness through the voltage scheduling
problem.

The rest of this paper is organized as follows. Section 2 contains a brief
discussion on the issue of unpredictabilities. Section 3 reinvestigates the
low-power voltage scheduling problem. Section 3.2 presents our risk manage-
ment algorithm and Section 4 contains the experimental results.

2. UNPREDICTABILITIES: AN INTEGRAL ASPECT OF DESIGN AUTOMATION

Design automation is a step by step procedure mainly comprised of optimiza-
tion algorithms driven by estimation engines. Estimation of the design quality
especially at a system level of design flow is an extremely complicated task to
perform. Accuracy of estimation is severely limited at the system level since
various design parameters are not known. On the other hand, design decisions
taken at the high level greatly impact the design quality and the time to
market. Hence critical design decisions need to be made in the presence of
high degrees of estimation inaccuracies.
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There has been a tremendous amount of effort aimed at improving the
prediction accuracy, especially with respect to power [Pedram 1996], in the
past. Typically, most approaches try to increase the amount of implementation
information (like wire-delay, leakage power) at the earlier stages in the design
flow, hoping to increase the accuracy of prediction. Estimation tools try to
predict the course of future/low-level optimizations in order to increase the
implementation details. Unfortunately, even state-of-the-art estimation tech-
niques cannot guarantee a reasonable degree of accuracy. Unpredictabilities
creep into any such strategy. This article addresses the issue of unpredictability
by proposing a strategy which does an accuracy/risk versus design quality
tradeoff, hence managing the unpredictability and design quality.

2.1 Unpredictability: Sources and Impact

Unpredictability is defined as the quantified form of accuracy [Srivastava and
Sarrafzadeh 2002].

There are many sources of unpredictabilities for various cost functions
such as power. At higher stages of design flow, the unawareness of the exact
logic structure of the functional module makes exact estimation of power,
area, delay, etc., impossible. Another important source of unpredictability in
power estimation is unawareness of exact switching activity. Furthermore,
exact values of low-level details like wire delay or wire capacitance cannot be
determined either, forcing estimation to have inaccuracies. Hence inaccuracies/
unpredictabilities creep in due to an unawareness of exact implementation
details.

From a practical point of view, it is not possible to estimate the exact
implementation details. Even if we have excellent estimation engines which
capture each and every parameter responsible for a particular design objective,
there is no way to predict the exact value of those parameters. One strong
reason for this fact is the interdependence between various cost functions.
At later stages of design flow, aggressive optimization of one design objective
usually drastically affects other design objectives, hence invalidating any
system level decisions/optimization based on early estimation.

2.2 Risk Management: Tradeoff Between Design Quality and Predictability

In any optimization problem, the design constraints must be satisfied to
generate a valid/feasible design. More specifically in this work, let us suppose
the constraint C is the clock cycle constraint of a DFG and O is the power
optimization objective obtained through voltage scheduling. Even if the gener-
ated solution satisfies C, there is no guarantee that it will be satisfied after the
low levels of design optimization (logic synthesis, physical design). This might
result in forcing several iterations.

Hence, if area/noise is heavily optimized at the placement stage, the clock
cycle constraint may get violated. Now let us assume that we know the kind
of unpredictabilities associated with each solution of the optimization problem.
This means for each solution to the voltage scheduling problem, we know not only
the expected value of the clock cycles C but also its range. Let us also suppose
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the designer specifies a risk factor he/she is willing to take on C. This specifies
the maximum violation of C the designer is willing to tolerate. For example,
C might be 10 clocks but the designer is willing to tolerate C up to 12. In the
presence of such a scenario, an unpredictability/risk management paradigm
would approach the problem in a following style:

(1) The expected value of the latency should always be less than C (previously
C itself was the constraint).

(2) The associated unpredictability is such that it is always less than the
designer-specified risk R.

(3) The objective value O is the best possible among this range of accepted
(valid) solutions.

Hence the unpredictability management paradigm manages the associated
error to keep it within acceptable bounds. Note that the expected value of the
constraint must still be less than C. It’s just that the worst case likelihood of
the constraint can be tuned.

It should be noted that the work done in modeling and optimization
under uncertain/unpredictable cost functions is completely in contrast to our
approach. As an example Jyu and Malik [1993, 1994], Tomiyama et al. [1998]
and Tomiyama and Yasuura [1998] addressed the issue of predictability in
their own individual ways. Tomiyama et. al. [1998] and Tomiyama and Yasuura
[1998] addressed the unpredictability in delay estimation due to manufacturing
defects. They presented techniques for resource binding and module selection
such that the likelihood of failure is minimized. Jyu et. al. [1993, 1994] again
captured the manufacturing defects and tried to maximize the probability of
meeting the performance constraints in the presence of manufacturing vari-
ations. They proposed optimization methodologies and delay models to this
effect.

In contrast, the approach here is to make the designs more predictable in the
presence of low-level optimization uncertainties such that the high-level deci-
sions can be taken with greater confidence. Here, we expect a tradeoff between
risk and design quality. If the designer’s specified risk is low then the design
quality (power in the voltage scheduling problem) will be worse. If the risk is
infinity then the problem will be the same as the traditional approach.

3. LOW-POWER VOLTAGE SCHEDULING: TRADITIONAL VERSUS RISK
MANAGEMENT APPROACHES

In this section we will initially overview the multiple supply voltage scheduling
problem. Power is quadratically dependent on the supply voltage, as illustrated
below [Chandrakasan et al. 1992]:

Power = K .V 2.β, (1)

where K = proportionality constant, V = supply voltage, and β = switched
capacitance factor

Numerous techniques have been proposed to optimize the various compo-
nents of this expression. Chen et al. [2001] described a strategy that reduces
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the power dissipation through voltage scaling but without any performance
penalty. A substantial amount of power is dissipated in clock trees. This is
because its switching activity is the highest. Many articles have addressed the
issue of clock power. Tellez et al. [1995] presented one of the approaches.

At the behavioral level, a wide class of transformations can be done in order
to achieve lower switched capacitance. These include low-power binding and re-
source allocation [Chang and Pedram 1995; Kruse et al. 2001]. Dynamic power
management is a system-level power management technique for controlling
the power dissipation by shutting down idle components [Chung et al. 1999].

Power has a nonlinear relationship with the voltage. Reduction of voltage
reduces the power dissipation but also increases the gate delay. Hence there
is a power performance tradeoff. Voltage scaling which reduces the supply
voltage quadratically affects the power but also increases the delay, which can
be presented as follows:

Delay = K .V/(V − Vt)α, (2)

where K = proportionality constant, V = Supply voltage, and Vt = Threshhold
voltage.

3.1 Traditional Approach

System-level voltage scheduling techniques take a DFG as input and assign
voltages to each operation such that the sum of the overall operation power is
minimized and the given clock constraint is satisfied. This problem was tackled
in Raje and Sarrafzadeh [1995] and solved optimally for general directed acyclic
graphs (DAGs) assuming the same voltage-delay/power curves for all nodes.
Chang and Pedram [1997] relaxed this assumption and solved the problem
optimally for tree-like DFGs.

The voltage scheduling problem has the following inputs and outputs:

(1) Input: DFG, voltage/delay, voltage/power curves for all operations. This
can include availability of different architectures for each operation type,
which means each operation can have multiple voltage/delay, voltage/power
curves. A delay constraint in clock cycle C is also known.

(2) Output: Voltage (and architecture) assignments to each operation such that
power dissipation is minimized while the clock constraint is satisfied.

Figure 1 illustrates a typical variation of voltage/delay and voltage/power.
The formulation assumes a set of predecided voltages (V1, V2, and V3 in this
case) which will be available on the chip. The algorithm for tree-like DFGs
has two iterations: the forward pass and the backward pass. In the forward
pass, the DFG is traversed topologically from primary inputs (PIs) to primary
outputs (POs). By the end of the forward pass, the cooptimal solutions that meet
the clock delay constraint are determined. The optimal solution that results in
minimum power is then chosen. This is followed by a backward pass where the
voltage assignment corresponding to the optimal solution is determined. Next,
more details on these two passes are provided.
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Fig. 1. Power/voltage, delay/voltage variation.

3.1.1 The Forward Pass. Initially we introduce the notation used to
describe the delay/power curves in Figure 1. The solution at a node i, referred
to as nodeInfi, includes these curves. NodeInfi contains information for each
predecided voltage and its associated delay and power values. In the forward
pass, initially the DFG is traversed from PI to PO in topological order. At each
node, the minimum power dissipation of the subgraph rooted at that node is
stored as a delay curve corresponding to that node. This is represented as a set
of ordered tuples (t, p) that contains a solution with the arrival delay of t clock
steps and minimum power of p in the subgraph rooted at that node. Here we
will be referring to this ordered set as arrivalInf for each node.

ArrivalInfn contains information about the times the signal from node n
becomes available. Given the arrivalInf of the fanins for any node, a func-
tion max is defined which considers the arrival times of all the fanins of the
node simultaneously. The output of max is another delay curve referred to as
arrivalMax for each node. Since the output of different fanins becomes available
at different times, the signal coming from all the fanins is valid at the maximum
of all these arrival times. This is done by merging the arrivalInf of each fanin.
Considering any node i, max function looks at the arrivalInf of all the fanins
of i and creates one delay curve (arrivalMax) representing the availability of
the signal from the fanins. Note since different delay combinations might have
the same maximum, among all combinations with the same maximum, the one
with minimum power will be stored. This is briefly represented in equation
below:

arrivalMaxi = max(arrivalInf j ∀ j ∈ fanin i). (3)

The function max symbolically finds the maximum of the arrivalInf curves
for the fanins of each node. For each delay combination, power is simply the
addition of the powers of each fanin. The power of fanin will be specified based
on the assigned delay of the fanin. This is represented in equation below:

pi =
∑

∀ j∈fanini

pj . (4)

When computing arrivalMaxi for each node i, the delay values greater than
constraint C will be discarded. Hence the size of this function is always bounded.
The arrivalMax obtained after max on all the fanins is then subjected to a
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sum function. The input to sum is arrivalMax and nodeInf of the operation.
Recall that each point on nodeInf reflects a voltage assignment that results in
a known delay and its power. The sum function adds these curves to generate
arrivalInf of the node. ArrivalInf signifies the arrival delay at the output of the
corresponding node/operation and the total power dissipation of the subgraph
rooted at that node. Each combination of arrivalMax and nodeInf will be added
to generate a point on the arrivalInf of the node. Therefore arrivalInf is in fact
the convolution of the two curves. This is computed for all nodes in forward
topological order. By the end, by looking at the solutions stored at the primary
output(s), the one with minimum power will be selected as the best solution.
Note that the best solution is in a compact form reflecting the overall power
of all nodes. A reverse topological traversal is necessary to specify the delay
associated with each node.

3.1.2 The Backward Pass. In this stage, the DFG is traversed from PO to PI
in topological order. At each step, the exact voltage and architecture decisions of
the operations are made. At each node, the indices of nodeInf specify the solution
for that node. The indices from arrivalMax specify the referring indices for the
fanins of the node. Therefore the reverse topological traversal ensures that in
the end at the PI the assignment for all operations has been done and the
solution is complete. This approach will be optimal if the DFG is a tree. If the
DFG is not a tree, in the backward pass, more than one choice exists for nodes
with more than one fanout. Heuristics can then be used to make a good choice.
Chang and Pedram [1997] discussed the use of level converters to maintain the
integrity of the signal.

Now that the traditional approach has been explained, in the next section
the risk management alternative will be presented.

3.2 Risk Management for Voltage Scheduling

Referring back to Section 2, we propose a new voltage scheduling methodol-
ogy to address unpredictabilities. The previous algorithm assumed accurate
information about delay/voltage and power/voltage variations. This is definitely
not a realistic assumption. Figure 1 illustrates that, instead of having a fixed
delay and power value for each voltage, we might have a distribution (the
dotted distribution for each voltage). In this case, the traditional assumption
of having accurate estimates made by the optimization algorithm is completely
wrong. Let us suppose that somehow we know the distribution (range of values
with associated probabilities) for both delay and power at each voltage. Let us
assume that each distribution has a range of interest. The likelihood of the value
falling outside this range is very low (typically within a distance of 3 × variance
from the expected value). With this information, we would like to redefine our
objective as follows:

(1) Assume the delay/voltage and power/voltage curves for all architectures for
each operation are provided such that for each voltage choice we also have
the distribution of delay and power. A delay constraint of C clocks and a
risk factor R (R ≥ C) are also provided.
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(2) The objective is to minimize the expected value of power such that the
expected value of delay ≤ C clocks and the worst case delay of the associated
delay distribution is always less than the risk R.

Since we add the power dissipation of all nodes in the final solution,
replacing the power estimate for each operation by its expected value should
be enough. This is because the expected value of a sum of n variables is the
sum of the expected values. Handling delay constraint and delay risk requires
a sophisticated algorithm which will be described later.

3.2.1 Estimating Operation Unpredictabilities. An important question is:
“How do we know the distribution in delay and power for each voltage?” This is a
very tricky problem. The basic premise of this work is that estimating distribu-
tions is easier than estimating exact values. Distributions will strongly depend
on the kind of optimizations the subdesign will be subjected to in future, which
in turn will depend on how critical a certain objective function becomes in that
subdesign. It also depends on the sensitivity between different cost functions.
A complex estimation engine that has models for tools (like gate sizing, buffer
insertion) and not just libraries, along with consideration of sensitivity, will be
needed. Such an estimation engine will take a subdesign and, depending on the
criticality of different constraints, generate a range of values for each design
objective. Of course, to the best of the authors’ knowledge, no such estimation
system exists, although development of such a system is underway. Any further
discussion of unpredictability estimation is beyond the scope of this work. The
rest of this article assumes that these ranges are available as input.

3.2.2 Algorithms for Risk Management. Once again, we are given delay
distributions for all voltages. Let us suppose that the delay distributions are
provided in terms of clock steps (the general delay distribution can be easily
transformed to generate this if the clock frequency is given).

Hence we know, for each operation and each modular architecture for that
operation, the expected value, maximum value, and distribution for delay in
clocks for each prespecified voltage. The problem is to assign voltages and
architectures to operations such that the new objective enumerated above can
be satisfied. Once again the algorithm contains two passes over the DFG. The
forward pass traverses DFG in forward topological order and the reverse pass
in reverse order.

In regard to the forward pass, before the forward pass starts, some prepro-
cessing is performed. For each node, we first generate a double dimensional
array which stores relevant information about that node and is referred to as
nodeInfn for a node n. NodeInfn is essentially some way of representing the
power and delay distributions for each voltage in a compact form. This is done
through indexing the array in terms of the expected delay and the taken risk.
In this array, the rows correspond to the expected delay, ranging from 1 to C.
The columns signify the taken risk, ranging from 1 to R. The values stored
at the (i, j ) cell signify the minimum (expected) power solution with expected
delay of i clocks and max delay (or risk) of j clocks. This is stored in the power
field of each cell (nodeInfn[i][ j ].expPow). Note that since, in the final objective,
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the expected value of power is minimized, we are storing the expected value of
each power distribution in the power field.

The associated probability distribution of delay (which has an expected
value of i clocks) is also stored in nodeInfn[i][ j ].prob. We also remember
the voltage and architecture that result in this solution. Note that this data
is computed independently without any consideration in the inputs of these
operations.

Now we proceed with the forward topological traversal of the DFG. At each
node, we compute another double dimensional data called arrivalInfn with the
same rows and columns as nodeInf. arrivalInfn essentially represents the times
(resulting from different combinations of delays of previous nodes) that the
signal from node n becomes valid and available. Therefore from the definition
it can be concluded that arrivalInfn should include all different delay combi-
nations of the subgraph rooted at n to be able to reflect the arrival time of the
signal for n. It should be clear that if node n is a primary input then nodeInfn
and arrivalInfn are the same. The (i, j ) location of arrivalInfn contains the
solution with minimum (expected) power dissipation of the subgraph rooted at
node n and expected arrival delay of exactly i with max delay (risk) of exactly
j clocks.

The term arrival delay signifies the number of clock cycles it would take
for the data of n to become available. Conceptually it is similar to arrival
time in gate-level circuits. arrivalInfn[i][ j ].expPow stores the power value and
arrivalInfn[i][ j ].prob stores the distribution in arrival delay. If a node n is not
a primary input then the computation of arrivalInfn is more involved.

Let us point out the following: the arrival time for a node is defined as

arrivalInfn[i][ j ].prob = max(arrivalInfk[i′][ j ′].prob|k
∈ Fanin(n)) + nodeInfn[i′′][ j ′′].prob (5)

Here arrivalInfn[i][ j ].prob corresponds to one of the delay distributions
stored at arrivalInfn. Similarly nodeInfn[i′′][ j ′′] corresponds to a possible
delay distribution for node n stored at nodeInfn. Here all fanins of node n should
be considered.

Equation (5) states that, given a combination of arrival delay distributions
for fanins of a node n and a delay distribution for the node itself, the arrival
distribution for the node will be the maximum of the arrival distributions of
its fanins summed with the delay of the node. Note that Equation (5) should
be considered for all valid combinations of fanins and node delay distributions
(all valid i, j , i′, j ′, i′′, j ′′). Recall the definitions of the rows and columns of the
arrays. A row indexed by i indicates an expected arrival time of i clock steps.
A column indexed by j indicates an exact risk of j units for the corresponding
stored solutions. Based on these definitions, the following conditions should
hold for any valid combination:

—i′ ≤ i and i′′ ≤ i to ensure that the expected arrival of solution stored at row
i is by clock step i;

— j ′ + j ′′ = j to ensure all solutions stored at column j have a risk equal to j .
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Algorithm 1. MAX-PROB(P1,P2)
INPUTS: P1,P2: Input delay distributions
OUTPUT: P : Distribution which is Max(P1,P2)
comment: P1 and P2 are bounded by R, the maximum risk in delay
for (i =1; i ≤ R; i++)

P[i] = 0;
for (j = 1; j ≤ i; j++)

P[i] + = P1[i] * P2[j]
for (j = 1; j ≤ i; j++)

P[i] + = P2[i] * P1[j]
return P
end

Algorithm 2. ARRIVAL-MAX(n1,n2)
INPUTS: Operations n1,n2
OUTPUT: arrivalMax(Max(n1,n2))
comment: arrivalInf(n1)and arrivalInf(n2) has been computed
Allocate Memory for Temp
for (i = 1; i ≤ C; i++)

for (j = 1 j ≤ R; j++)
d for (k = 1; k ≤ C; k++)

for (l = 1; l ≤ R; l++)
Temp[i,j,k,l].prob =
MAX-PROB(arrivalInf[n1][i][j].prob,arrivalInf[n2][k][l].prob)
Temp[i,j,k,l].expPow =
arrivalInf[n1][i][j].expPow + arrivalInf[n2][k][l].expPow
for (i = 1; i ≤ C; i++)

for (j = 1; j ≤ R; j++)
Find k,l,m,n such that
EXPECT(Temp[k,l,m,n].prob) = i and
MAX(Temp[k,l,m,n].prob) = j, and with minimum power.
arrival-max[i][j].prob = Temp[k,l,m,n].prob
arrival-max[i][j].expPow = Temp[k,l,m,n].expPow

return arrival-max
end

We need to first compute the max of all fanins probabilistically and add it
with the delay of the node. Since we are traversing the DFG topologically, the
arrivalInfn for all fanins is known. The computation of max is illustrated in
Algorithms 1. Algorithm 1 describes standard max between two probability
distributions. Algorithm 2 merges the arrivalInf of two fanins using the max
function. Note that arrivalInf of each fanin contains distributions reflecting
different scenarios where the signal becomes available from the fanin output.
Therefore, Algorithm 2 uses Algorithm 1 to combine two sets of distributions
corresponding to two fanins to generate a new set of distributions reflecting
the arrival time of the two nodes. For all possible combinations of arrival delay
distributions at the outputs of fanins, the algorithm calls MAX-PROB, which
computes the max.

Out of all these combinations, the ones with minimum (expected) power are
chosen. In other words, if two resulting distributions have the same expected
delay and risk factor indices, the one that has the minimum expected power
will be stored. This data is stored in a temporary arrivalMax array.
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Algorithm 3. SUM-PROB(P1,P2)
INPUTS: P1,P2: Input distributions
OUTPUT: P : Distribution which is SUM(P1,P2)
comment: P1 and P2 are bounded by R, the maximum risk
comments: P can be more than R
for (i = 1; i ≤ R; i++)

for (j = 1; j ≤ R; j++)
P[i + j] + = P1[i] * P2[j]

return P
end

Algorithm 4. arrivalInf(n)
INPUTS: n
OUTPUT: arrivalInf for n
compute arrival-max for n using Algorithm-2
for (i = 1; i ≤ C; i++)

for (j = 1 j ≤ R; j++)
for (k = 1; k ≤ C; k++)

for (l = 1; l ≤ R; l++)

Temp[i,j,k,l].prob =
SUM-PROB(arrival-max[n][i][j].prob,nodeInf[n][k][l].prob)
Temp[i,j,k,l].expPow =
arrival-max[n][i][j].expPow + nodeInf[n][k][l].expPow
for (i = 1; i ≤ C; i++)

for (j = 1; j ≤ R; j++)
Find k,l,m,n such that
EXPECT(Temp[k,l,m,n].prob) = i and
MAX(Temp[k,l,m,n].prob) = j, and with minimum power.
arrivalInf[i][j].prob = Temp[k,l,m,n].prob
arrivalInf[i][j].expPow = Temp[k,l,m,n].expPow

return arrivalInf
end

Finally, we have one arrivalMax data structure which contains the first term
of Equation (5). This needs to be added to the delay of the node n in order to com-
pute arrivalInfn. This again needs to be done probabilistically. This procedure
is illustrated in Algorithm 4, which basically describes the convolution of two
distributions which corresponds to their additions. All possible delay solutions
of an operation are stored in nodeInf . This is merged with the computed
arrivalMax using a probabilistic addition function (Algorithm 3). Finally, for
each expected delay i and risk j , the solution with minimum power is stored.

After forward traversal, the arrivalInf for all the primary outputs is
investigated to select the solution with minimum power.

In regard to the backward pass, after reaching the PO of the DFG, we choose
the solution with the minimum power dissipation. This corresponds to a certain
expected clock value ≤ C and a certain risk ≤ R. Taking this solution, we
traverse the DFG in topological order from PO to PI. At each step the fanout of
the pertinent node forces a certain expected delay and risk factor ((i, j ) location
in arrivalInfn). This corresponds to a certain architecture and voltage for the
node n and certain expected and max delay values for the fanins. In this fashion,
the voltage and architecture for all the operations can be determined.
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If the DFG is not a “tree,” then there will be nodes with more than one
fanout. Therefore in the backward traversal the solution of such node can be
potentially decided by any of its fanouts, and this might result in a suboptimal
solution. This corresponds to several choices of (i, j ) locations in arrivalInfn
imposed by different fanouts. We solve this deadlock by accepting the solutions
in the following priority order E, W. The first priority E selects the selects the
solution with minimum row index i. This corresponds to the solution with the
minimum expected value of arrival time at n. If E is the same for two solutions,
we choose the option that has the smallest worst-case arrival delay W (or column
index j ). In this way, we try to ensure that the expected value constraint of
the delay can be satisfied with a higher priority than the user-specified risk
constraint.

The algorithm for voltage scheduling with risk management generates an
optimal solution for tree-like DFGs. In the forward pass, definitely the minimum
expected power can be verified due to the dynamic programming approach. If
the DFG is tree-like in the backward pass, this minimum solution can be exactly
verified by verifying the solution of each node from its one fanout.

3.2.3 Postscheduling Resource Binding. We believe that resource binding
can be conducted in a similar fashion as discussed in Chang and Pedram [1997].
Another aspect ignored in the described algorithm is the use of level converters
to enable communication between different voltage levels. This algorithm can
be trivially extended to consider level converters. This can be incorporated into
Algorithm 4. When adding the power of two subsolutions, an extra term for
level converter power can be added.

4. RESULTS

The primary objective of this article is to propose the idea of risk management.
The basic philosophy is to have a user-controlled parameter, which we call risk,
which controls the amount of possible risk in meeting the constraints at the
penalty of design quality.

There are a few things that we want to demonstrate through our
experiments. First, in the presence of unpredictabilities, traditional design
methodology (voltage scaling in this case) results in invalid solutions. Second,
we want to demonstrate how the penalty in design quality (power in this case)
varies as the risk factor is varied.

In our experiment to compute the power and delay distributions, we as-
sumed the existence of four distinct voltages (5, 3.3, 2.4, 1.5). The estimated
power and delay at these voltages were then calculated using Equations (1)
and (2). Now each delay/power estimated should be assigned an associated
unpredictability/distribution. We assume that, at each specific voltage, the
distribution of delay and power follows a Gaussian distribution with the value
predicted by Equations (1) and (2) as the mean. The variance was set as
20% of the mean. In reality, these values should be generated by an unpre-
dictability estimation engine. Since no such system exists, we had to make this
assumption. Now for large data sets, the pertinent statistics are usually
Gaussian. Hence the Gaussian assumption should be accurate. But this
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Table I. Comparison of Traditional Versus Risk Management Approaches

Bench T-Clk(ns) Traditional Risk Management
Const. Risk Power Expect.const. Risk Power

dct 8 25 50 212.63 25 25 301.35
ecbenc-4 8 25 50 128.65 25 25 225.92
ellipt 12 40 80 356.29 40 40 523.50
fft2 8 15 30 319.11 15 15 543.00
fir 8 35 70 157.93 35 35 197.00
jdmer-4 8 20 40 253.26 20 20 429.00
jdmer-3 8 8 20 399.86 8 8 472.78
jdmer-1 8 8 20 381.40 8 8 441.50
motion-2 8 14 30 404.00 14 14 655.38
motion-3 8 14 30 404.00 14 14 655.00
noise-2 8 8 20 773.21 8 8 837.44

needs to be experimentally validated. Proceeding further, we calculated the
expected value for each delay/power and gave that as the estimate for
the traditional algorithm proposed by Chang and Pedram [1997]. Then we
used our proposed algorithm to generate a solution in the risk management
paradigm.

Table I illustrates the comparison between the traditional and risk-driven
approaches. The benchmarks are a mix of MediaBench [Lee et al. 1997] and
traditional high-level synthesis bench-set. For the traditional approach, the
provided delay constraint is reported in column 3. The power of the solu-
tion generated by the traditional approach is reported in column 5. Once the
traditional solution is generated, the risk associated with it is evaluated, and
is reported in column 4. As can be seen, this risk is very high compared to
the input delay constraint. For the risk management approach, columns 6 and
7 report the expected value of delay constraint and maximum allowed risk
provided as input. The expected value of delay constraint is the same as the
delay constraint in the traditional solution. However, the maximum allowed
risk is given as an input equal to the delay constraint. This means the designer
is not willing to take any risk on timing constraint. It can be seen that the
risk-driven approach always results in a valid solution, for which the power is
reported in column 8.

If the designer is not willing to risk (as in the risk management case), the
result of the traditional approach should be considered as invalid. This
illustrates the superiority of our approach over the traditional one.

The next set of experiments illustrate the variation of design quality (power)
as the risk is changed. Hence, without changing the expected value of tim-
ing, we illustrate the variation of power as the risk changes. Figure 2 re-
ports this data for fft2 (the rest are omitted due to space considerations)
for various expected delay constraints. It can be seen that as the risk fac-
tor is increased (which means that the designer can tolerate more risk on
the expected delay constraint), the power dissipation reduces. Hence there
is clearly a risk/design quality tradeoff. It can also be seen that a small in-
crease in the risk factor tremendously affects the design quality, especially in
Figure 2.
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Fig. 2. FFT2: X -axis risk, Y -axis power.

5. CONCLUSION AND FUTURE WORK

This research proposes a formal methodology of addressing unpredictabilities
at the system level. The idea is to associate a risk factor with each constraint,
and by controlling the risk factor an appropriate solution that is guaranteed
to be within the prescribed limits can be generated. This was demonstrated
using the voltage scheduling problem. The delay constraint was assigned a
risk factor and an optimal algorithm was proposed which generates the min-
imum power dissipating solution within the clock and risk constraints. This
illustrates a formal way of handling unpredictabilities. Our future work will
include the development of an unpredictability estimation engine. Develop-
ment of a formal synthesis system that addresses unpredictabilities is also
underway.
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